張 燦 王之盛 彭全輝 鄒華圍 景小平 蒲啟建
(四川農(nóng)業(yè)大學(xué)動(dòng)物營(yíng)養(yǎng)研究所,雅安625014)
濕熱應(yīng)激對(duì)藏綿羊和山羊生長(zhǎng)性能、抗氧化能力以及免疫功能的影響
張 燦 王之盛*彭全輝 鄒華圍 景小平 蒲啟建
(四川農(nóng)業(yè)大學(xué)動(dòng)物營(yíng)養(yǎng)研究所,雅安625014)
本試驗(yàn)旨在研究藏綿羊和山羊在相同營(yíng)養(yǎng)及濕熱應(yīng)激條件下血清激素、抗氧化和免疫指標(biāo)的變化規(guī)律,考察濕熱應(yīng)激對(duì)藏綿羊和山羊生長(zhǎng)性能、抗氧化能力以及免疫功能影響的差異。選取年齡和體重[(45.83±3.54) kg]相近的藏綿羊與山羊(波爾山羊×本地黃羊)各6只,試驗(yàn)共進(jìn)行135 d,其中預(yù)試期15 d,正試期120 d。每日測(cè)定溫濕度指數(shù)(THI),每月測(cè)定藏綿羊和山羊的血清相關(guān)指標(biāo)。結(jié)果表明:1)5—7月份,羊舍THI隨月份的增加顯著升高(P<0.05),6—8月份羊舍THI均大于72,因此將6—8月份定為濕熱應(yīng)激期。2)7、8月份藏綿羊和山羊直腸溫度和呼吸頻率均顯著高于5月份(P<0.05),且濕熱應(yīng)激期內(nèi)藏綿羊直腸溫度和呼吸頻率均顯著高于山羊(P<0.05)。3)正試期內(nèi),濕熱應(yīng)激使得藏綿羊和山羊的干物質(zhì)采食量最大降幅分別為10.70%和10.44%,平均日增重(ADG)最大降幅分別為50.00%和47.82%。4)羊舍THI由71.17(5月份)升高到76.82(7月份),藏綿羊和山羊血清皮質(zhì)醇和胰島素濃度顯著升高(P<0.05),血清葡萄糖和三碘甲狀腺原氨酸濃度顯著降低(P<0.05)。濕熱應(yīng)激下,藏綿羊血清中生長(zhǎng)激素和甲狀腺素濃度的最大降幅均大于山羊。5)除藏綿羊7月份和山羊8月份血清總抗氧化能力,藏綿羊和山羊7、8月份的血清超氧化物歧化酶、谷胱甘肽過(guò)氧化物酶活性和總抗氧化能力均顯著低于5月份(P<0.05)外,血清丙二醛濃度均顯著高于5月份(P<0.05)。濕熱應(yīng)激下,山羊血清超氧化物歧化酶活性、總抗氧化能力和丙二醛濃度變化幅度均大于藏綿羊。6)與5月份相比,藏綿羊和山羊8月份的血清免疫球蛋白A、免疫球蛋白M、免疫球蛋白G和白細(xì)胞介素-2濃度顯著降低(P<0.05),而血清腫瘤壞死因子-α濃度則顯著升高(P<0.05)。濕熱應(yīng)激下,藏綿羊血清免疫球蛋白、白細(xì)胞介素-2和腫瘤壞死因子-α濃度的變化幅度均大于山羊。綜上所述,濕熱應(yīng)激狀態(tài)下藏綿羊和山羊的呼吸頻率和直腸溫度升高,抗氧化能力和免疫功能降低,從而導(dǎo)致生長(zhǎng)性能降低。藏綿羊生長(zhǎng)性能和免疫功能受濕熱應(yīng)激影響較大,而山羊抗氧化能力受濕熱應(yīng)激影響較大。
濕熱應(yīng)激;藏綿羊;山羊;生長(zhǎng)性能;抗氧化能力;免疫功能
養(yǎng)羊業(yè)是我國(guó)畜牧業(yè)的重要組成部分,我國(guó)肉羊業(yè)發(fā)展快速,2005—2014年10年間肉羊存欄數(shù)同比增長(zhǎng)1.75%,羊肉產(chǎn)量增長(zhǎng)22.31%[1]。藏綿羊(Ovisaries)經(jīng)長(zhǎng)期的進(jìn)化和選育,具有耐高海拔、低氧和低溫的能力,是青藏高原上養(yǎng)殖數(shù)量最多的家畜,約3 000萬(wàn)頭,是我國(guó)養(yǎng)羊業(yè)重要的組成部分,為高原牧民提供了重要的物料資源。“牧繁農(nóng)育”是現(xiàn)實(shí)生產(chǎn)中反芻動(dòng)物飼養(yǎng)常采用的一種生產(chǎn)經(jīng)營(yíng)方式,而低海拔的西南農(nóng)區(qū)夏季濕熱環(huán)境往往會(huì)導(dǎo)致畜禽產(chǎn)生濕熱應(yīng)激,濕熱應(yīng)激會(huì)導(dǎo)致畜禽機(jī)體代謝紊亂、免疫力下降、生產(chǎn)性能降低[2]。在熱應(yīng)激狀態(tài)下,熱適應(yīng)性強(qiáng)的家畜有較低的呼吸頻率和直腸溫度[3],其通過(guò)呼吸和排汗散發(fā)的熱量增多,代謝水平和水分流失率也比普通家畜低[4]。目前國(guó)內(nèi)的研究較多的集中在添加劑緩解熱應(yīng)激效果方面[5-6],對(duì)于不同品種反芻動(dòng)物在濕熱應(yīng)激狀態(tài)下機(jī)體代謝變化規(guī)律的研究尚缺。目前關(guān)于藏綿羊從高海拔牧區(qū)到低海拔農(nóng)區(qū)后,其對(duì)濕熱應(yīng)激的適應(yīng)性如何未見(jiàn)報(bào)道。鑒于此,本試驗(yàn)通過(guò)考察藏綿羊和山羊在濕熱應(yīng)激條件下生理生化、機(jī)體抗氧化和免疫功能相關(guān)指標(biāo)的變化,旨在比較生活在不同海拔地區(qū)的肉羊品種對(duì)濕熱應(yīng)激適應(yīng)性的差異,為我國(guó)南方地區(qū)夏季肉羊應(yīng)對(duì)濕熱應(yīng)激提供試驗(yàn)依據(jù),并為拓展藏綿羊的飼養(yǎng)區(qū)域和實(shí)現(xiàn)“牧繁農(nóng)育”提供指導(dǎo)意見(jiàn)。
1.1 試驗(yàn)動(dòng)物和試驗(yàn)設(shè)計(jì)
本試驗(yàn)采用配對(duì)試驗(yàn)設(shè)計(jì),設(shè)藏綿羊組和山羊組2個(gè)組。選取1.5歲、體重為(45.83±3.54) kg的健康藏綿羊和山羊(波爾山羊×本地黃羊)各6只,羯羊和母羊各占1/2。藏綿羊購(gòu)自四川省阿壩州紅原縣牧區(qū)(海拔3 504 m),山羊購(gòu)自綿陽(yáng)市三臺(tái)縣(海拔672 m)。
1.2 試驗(yàn)飼糧與飼養(yǎng)管理
于2015年4—8月在四川省雅安市四川農(nóng)業(yè)大學(xué)動(dòng)物營(yíng)養(yǎng)研究所科研基地(海拔601 m)開(kāi)展飼養(yǎng)試驗(yàn)。試驗(yàn)開(kāi)始前對(duì)所有羊只驅(qū)蟲(chóng),參照《肉羊飼養(yǎng)標(biāo)準(zhǔn)》(NY/T 816—2004),按照體重50 kg、日增重200 g育肥羊的飼養(yǎng)標(biāo)準(zhǔn)配制飼糧,精粗比為55∶45。飼糧組成及營(yíng)養(yǎng)水平見(jiàn)表1。試驗(yàn)動(dòng)物圈舍飼養(yǎng),每天08:00和15:00各飼喂1次,飼養(yǎng)期間自由飲水。試驗(yàn)共進(jìn)行135 d,其中預(yù)試期15 d,正試期120 d。
表1 飼糧組成及營(yíng)養(yǎng)水平(干物質(zhì)基礎(chǔ))Table 1 Composition and nutrient levels of the diet (DM basis) %
1)濃香型酒糟購(gòu)自宜賓市五糧液酒廠。Grain stillage (strength flavor type) was purchased fromWuliangyedistillery ofYibincity.
2)每千克預(yù)混料含有One kilogram of premix contained the following:VA 200 000 IU,VD380 000 IU,VE 600 IU,F(xiàn)e 42 g,Cu 50 mg,Mn 0.45 g,Zn 0.24 g,I 0.14 g,Se 0.16 g,Co 40 mg。
3)代謝能為計(jì)算值,其余營(yíng)養(yǎng)水平為實(shí)測(cè)值。ME was a calculated value, while the other nutrient levels were measured values.
1.3 樣品采集
每次飼喂前稱(chēng)取給料量,第2天晨飼前收集料槽中剩余飼料,計(jì)算每圈試驗(yàn)羊每日的干物質(zhì)采食量(DMI)。
2015年5—8月,每月的30日晨飼前對(duì)所有試驗(yàn)羊空腹稱(chēng)重,計(jì)算平均日增重(ADG)。并同時(shí)對(duì)所有試驗(yàn)羊頸靜脈采血10 mL,靜置30 min后4 000 r/min離心15 min制備血清,分裝于1.5 mL滅菌離心管中,-20 ℃保存,用于后續(xù)血清指標(biāo)的測(cè)定。
1.4 指標(biāo)測(cè)定方法
1.4.1 環(huán)境溫、濕度
在羊舍的中部和兩端距離地面約1.5 m高處懸掛3只干濕球溫度計(jì),避免動(dòng)物觸及。于每日08:00、11:00、14:00和17:00記錄羊舍的干球溫度(Td)和濕球溫度(Tw),并計(jì)算每日平均溫濕度指數(shù)(THI),THI計(jì)算公式如下:
THI=0.72×(Td+Tw)+40.6[7]。
1.4.2 直腸溫度和呼吸頻率
直腸溫度和呼吸頻率的測(cè)定參照J(rèn)ohnson等[8]的方法。正式試驗(yàn)期內(nèi)每10 d利用秒表和計(jì)數(shù)器測(cè)定羊只的呼吸頻率,分別于每日08:00和14:00各測(cè)定1次,每次測(cè)定1 min內(nèi)的呼吸次數(shù),連續(xù)測(cè)定3次求平均值。每次測(cè)定呼吸頻率之后,用獸用體溫計(jì)測(cè)定試驗(yàn)羊直腸溫度,分別于每日08:00和14:00各測(cè)定1次,取2次測(cè)定的平均值。測(cè)定直腸溫度具體操作步驟為:將獸用體溫計(jì)汞柱甩至35 ℃以下,隨后用醫(yī)用酒精消毒并涂抹潤(rùn)滑劑(凡士林),保定待測(cè)羊后將體溫計(jì)插入直腸約5 cm,5 min后取出讀數(shù)并記錄。
1.4.3 血清指標(biāo)
血清中葡萄糖(GLU)濃度由四川農(nóng)業(yè)大學(xué)獸醫(yī)院生化實(shí)驗(yàn)室采用意大利AMS公司的AUTOLAB PM-4000批量式全自動(dòng)生化分析儀測(cè)定。
血清中皮質(zhì)醇(COR)、胰島素(INS)、生長(zhǎng)激素(GH)、三碘甲狀腺原氨酸(T3)、甲狀腺素(T4)、白細(xì)胞介素-2(IL-2)、腫瘤壞死因子α(TNF-α)濃度采用酶聯(lián)免疫吸附試驗(yàn)(ELISA)法測(cè)定,超氧化物歧化酶(SOD)和谷胱甘肽過(guò)氧化物酶(GSH-Px)活性、總抗氧化能力(T-AOC)、丙二醛(MDA)濃度采用比色法測(cè)定,免疫球蛋白A(IgA)、免疫球蛋白M(IgM)、免疫球蛋白G(IgG)濃度采用免疫濁度法測(cè)定,上述指標(biāo)測(cè)定所用試劑盒均購(gòu)于南京建成生物工程研究所。
1.5 數(shù)據(jù)統(tǒng)計(jì)分析
使用Excel 2016軟件進(jìn)行基礎(chǔ)數(shù)據(jù)的整理,品種間比較采用SPSS 19.0軟件進(jìn)行獨(dú)立樣本t檢驗(yàn),品種內(nèi)比較采用SPSS 19.0軟件進(jìn)行單因素方差分析(one-way ANOVA),并采用Duncan氏法進(jìn)行多重比較,設(shè)顯著性水平為P<0.05,結(jié)果采用“平均值±標(biāo)準(zhǔn)差”方式表示。
2.1 羊舍內(nèi)THI變化
正試期內(nèi)羊舍THI的變化情況如表2和圖1所示。正試期內(nèi)羊舍THI逐漸升高,6、7、8月份的THI均顯著高于5月份(P<0.05)且在數(shù)值上均大于72,據(jù)此將整個(gè)試驗(yàn)階段分為非應(yīng)激期(5月份)和濕熱應(yīng)激期(6—8月份)。
表2 正試期內(nèi)羊舍THI的月變化Table 2 Monthly change of THI in sheep barn during trial period
同行數(shù)據(jù)肩標(biāo)不同小寫(xiě)字母表示差異顯著(P<0.05)。
Values in the same row with different small letter superscripts mean significant different (P<0.05).
2.2 THI變化對(duì)藏綿羊和山羊直腸溫度和呼吸頻率的影響
由表3可知,藏綿羊和山羊的直腸溫度和呼吸頻率均隨THI的升高而升高,藏綿羊的直腸溫度和呼吸頻率均表現(xiàn)為7和8月份顯著高于5和6月份(P<0.05),6月份顯著高于5月份(P<0.05);山羊的直腸溫度表現(xiàn)為7月份顯著高于5、6和8月份(P<0.05),8月份顯著高于5月份(P<0.05);山羊的呼吸頻率表現(xiàn)為6、7和8月份顯著高于5月份(P<0.05)。濕熱應(yīng)激期內(nèi)藏綿羊直腸溫度和呼吸頻率均顯著高于山羊(P<0.05)。藏綿羊和山羊的直腸溫度最大增幅分別為2.19%和0.97%,呼吸頻率最大增幅分別為98.49%和33.70%。
圖1 正試期內(nèi)羊舍THI的日變化Fig.1 Daily change of THI in sheep barn during trial period表3 不同時(shí)期藏綿羊和山羊的生理指標(biāo)Table 3 Physiological parameters of Tibetan sheep and goats at different periods
項(xiàng)目Items品種Breed月份Month5678直腸溫度藏綿羊39.20±0.18c39.58±0.30Ab40.06±0.31Aa40.03±0.28AaRT/℃山羊39.15±0.13c39.26±0.21Bbc39.53±0.36Ba39.32±0.25Bb呼吸頻率藏綿羊75.93±14.35c116.95±16.11Ab147.67±8.60Aa150.71±12.40AaRR/(次/min)山羊72.14±10.66b94.88±15.79Ba96.45±19.13Ba96.07±15.91Ba
同行數(shù)據(jù)肩標(biāo)不同小寫(xiě)字母表示差異顯著(P<0.05),同列數(shù)據(jù)肩標(biāo)不同大寫(xiě)字母表示差異顯著(P<0.05)。下表同。
In the same row, values with different small letter superscripts mean significant different (P<0.05). In the same column, values with different capital superscripts mean significant different (P<0.05). The same as below.
2.3 THI變化對(duì)藏綿羊和山羊生長(zhǎng)性能的影響
由表4可知,THI的變化對(duì)藏綿羊和山羊的DMI和ADG均產(chǎn)生了一定的影響。藏綿羊的DMI表現(xiàn)為7和8月份顯著低于5和6月份(P<0.05),山羊的DMI表現(xiàn)為8月份顯著低于5月份(P<0.05);藏綿羊的ADG表現(xiàn)為8月份顯著低于5月份(P<0.05),山羊的ADG表現(xiàn)為7和8月份顯著低于5月份(P<0.05)。正試期內(nèi)藏綿羊和山羊的DMI和ADG差異均不顯著(P>0.05)。藏綿羊和山羊的DMI最大降幅分別為10.70%和10.44%,ADG最大降幅分別為50.00%和47.82%。
表4 不同時(shí)期藏綿羊和山羊的生長(zhǎng)性能Table 4 Performance of Tibetan sheep and goats at different periods kg/d
2.4 THI變化對(duì)藏綿羊和山羊血清指標(biāo)的影響
由表5可知,藏綿羊和山羊血清COR濃度隨THI的升高而升高,藏綿羊血清COR濃度除5、6月份間差異不顯著(P>0.05)外,其他月份間均差異顯著(P<0.05),而山羊血清COR濃度則表現(xiàn)為7、8月份顯著高于5、6月份(P<0.05),5月份顯著高于6月份(P<0.05)。THI由71.17(5月份)升高到76.82(7月份)使藏綿羊和山羊血清GLU濃度顯著降低(P<0.05),降幅分別為36.25%和26.81%。與5月份相比,藏綿羊血清INS濃度在6、7月份顯著升高(P<0.05),山羊血清INS濃度在6、7、8月份顯著升高(P<0.05),藏綿羊和山羊的最大增幅分別為27.52%和30.04%。與5月份相比,藏綿羊血清T3濃度在6、7、8月份以及血清T4和GH濃度在8月份均顯著降低(P<0.05),山羊血清T3和T4濃度在7、8月份以及血清GH濃度在8月份均顯著降低(P<0.05)。藏綿羊和山羊血清T4濃度最大降幅分別為48.49%和36.59%,血清GH濃度最大降幅分別為45.50%和36.32%。藏綿羊血清COR濃度在7月份顯著低于山羊(P<0.05),血清INS濃度在8月份顯著低于山羊(P<0.05),血清T3濃度在6、7、8月份均顯著低于山羊(P<0.05)。
表5 不同時(shí)期藏綿羊和山羊的血清指標(biāo)Table 5 Serum indices of Tibetan sheep and goats at different periods
2.5 THI變化對(duì)藏綿羊和山羊血清抗氧化指標(biāo)的影響
由表6可知,除藏綿羊7月份和山羊8月份血清T-AOC,藏綿羊和山羊7、8月份的血清SOD、GSH-Px活性和T-AOC均顯著低于5月份(P<0.05),血清MDA濃度均顯著高于5月份(P<0.05)。藏綿羊和山羊血清SOD活性最大降幅分別為23.46%和34.84%,血清T-AOC最大降幅分別為25.80%和28.46%,血清MDA濃度最大增幅分別為29.23%和42.07%。藏綿羊血清SOD活性和T-AOC在7月份顯著高于山羊(P<0.05)。
表6 不同時(shí)期藏綿羊和山羊血清抗氧化指標(biāo)Table 6 Serum antioxidant indices of Tibetan sheep and goats at different periods
2.6 THI變化對(duì)藏綿羊和山羊血清免疫指標(biāo)的影響
由表7可知,與5月份相比,藏綿羊和山羊血清IgA、IgM、IgG濃度在7、8月份均有不同程度的降低,藏綿羊和山羊血清IgA濃度最大降幅分別為48.90%和34.14%,血清IgM濃度最大降幅分別為49.21%和36.02%,血清IgG濃度最大降幅分別為40.33%和25.39%。藏綿羊和山羊血清IL-2濃度隨THI的升高而降低,且7、8月份顯著低于5、6月份(P<0.05),藏綿羊和山羊血清IL-2濃度
最大降幅分別為48.84%和39.59%。藏綿羊和山羊血清TNF-α濃度隨THI的升高而升高,且7、8月份顯著高于5、6月份(P<0.05),藏綿羊和山羊血清TNF-α濃度最大增幅分別為63.64%和21.43%。藏綿羊6月份血清IgA、IgM濃度及8月份血清IgA、IgG濃度均顯著低于山羊(P<0.05);藏綿羊5月份血清TNF-α濃度顯著低于山羊(P<0.05);正試期內(nèi)藏綿羊血清IL-2濃度均顯著低于山羊(P<0.05)。
表7 不同時(shí)期藏綿羊和山羊血清免疫指標(biāo)Table 7 Serum immune indices of Tibetan sheep and goats at different periods
3.1 THI變化對(duì)藏綿羊和山羊直腸溫度和呼吸頻率的影響
直腸溫度和呼吸頻率是用來(lái)衡量動(dòng)物生理狀態(tài)的重要指標(biāo),熱應(yīng)激使家畜直腸溫度和呼吸頻率升高,生理狀態(tài)發(fā)生改變[9]。Srikandakumar等[10]研究表明,熱應(yīng)激狀態(tài)下阿曼綿羊直腸溫度與其增幅低于美利奴綿羊,表明阿曼綿羊機(jī)體的儲(chǔ)熱能力較強(qiáng)并且具有較強(qiáng)的熱耐受性,從而降低熱應(yīng)激造成的額外的水和能量消耗;而較低的呼吸頻率和呼吸頻率增幅表明阿曼綿羊維持能量需要量低于美利奴綿羊,受到熱應(yīng)激的影響較小。本研究發(fā)現(xiàn),濕熱應(yīng)激使藏綿羊和山羊呼吸頻率和直腸溫度升高,藏綿羊直腸溫度和直腸溫度增幅大于山羊,說(shuō)明濕熱環(huán)境下藏綿羊機(jī)體儲(chǔ)熱能力較差,熱耐受性能低于山羊。濕熱應(yīng)激狀態(tài)下藏綿羊呼吸頻率和呼吸頻率增幅大于山羊,因此其機(jī)體維持能量需要量也更高,受到濕熱應(yīng)激的影響更大。
3.2 THI變化對(duì)藏綿羊和山羊生長(zhǎng)性能和血清指標(biāo)的影響
已有研究表明,熱應(yīng)激可顯著降低動(dòng)物的DMI[11]和ADG[11-12]。本研究發(fā)現(xiàn),濕熱應(yīng)激狀態(tài)下藏綿羊和山羊的DMI和ADG均有不同程度的降低,藏綿羊的DMI于7月份顯著降低且降幅大于山羊,藏綿羊的ADG降幅大于山羊,表明濕熱應(yīng)激對(duì)藏綿羊生長(zhǎng)性能的影響較大。
COR是應(yīng)激反應(yīng)發(fā)生的生物標(biāo)志物,熱應(yīng)激狀態(tài)下動(dòng)物血清COR濃度顯著升高[13]。本研究發(fā)現(xiàn),隨THI的升高,藏綿羊和山羊進(jìn)入濕熱應(yīng)激狀態(tài),血清COR濃度顯著升高,與前人研究一致。熱應(yīng)激狀態(tài)下動(dòng)物生長(zhǎng)受阻與機(jī)體GH分泌減少有關(guān),Renaville等[14]認(rèn)為T(mén)4與GH有協(xié)同促生長(zhǎng)作用,而熱應(yīng)激狀態(tài)下動(dòng)物機(jī)體甲狀腺功能減退,T3、T4分泌減弱[15];此外,McGuire等[16]研究發(fā)現(xiàn),熱應(yīng)激會(huì)導(dǎo)致奶牛血液GH濃度降低。因此,熱應(yīng)激通過(guò)影響動(dòng)物血液T3、T4和GH濃度而影響動(dòng)物的生長(zhǎng)性能。本研究發(fā)現(xiàn),濕熱應(yīng)激使藏綿羊和山羊血清T3、T4與GH濃度降低,與前人研究結(jié)果一致,表明在濕熱應(yīng)激狀態(tài)下,藏綿羊和山羊機(jī)體產(chǎn)熱降低的同時(shí)合成代謝降低,生長(zhǎng)速率減慢,這與其ADG降低的結(jié)果一致。此外,本研究還發(fā)現(xiàn)藏綿羊血清T4和GH濃度的降幅均大于山羊,與其ADG降幅較大的結(jié)果一致,表明藏綿羊的生長(zhǎng)性能受濕熱應(yīng)激影響更大。
研究發(fā)現(xiàn),熱應(yīng)激可使肉牛[17]和泌乳奶牛[18]血液INS濃度顯著升高,但熱應(yīng)激對(duì)反芻動(dòng)物血液中GLU濃度影響的研究結(jié)果不盡一致,Mahjoubi等[12]認(rèn)為這可能是由于泌乳家畜和肉用家畜血液中GLU代謝速率不同,導(dǎo)致肉用家畜血液中GLU濃度無(wú)顯著變化而泌乳奶牛血液中GLU濃度降低。本研究發(fā)現(xiàn),濕熱應(yīng)激使藏綿羊和山羊血清INS濃度升高而血清GLU濃度降低,可能是由于熱應(yīng)激使羊只維持能量需要量升高,而能量利用效率降低導(dǎo)致血清GLU濃度降低。藏綿羊呼吸頻率更高,因而更多的能量用于維持需要,因此其ADG降幅大于山羊。
3.3 THI變化對(duì)藏綿羊和山羊抗氧化能力的影響
動(dòng)物血清中的SOD、GSH-Px具有清除自由基的能力,是體內(nèi)重要的抗氧化酶[19],抗氧化系統(tǒng)受損則導(dǎo)致血液中SOD、GSH-Px的活性降低[20]。研究發(fā)現(xiàn),熱應(yīng)激使奶牛血液抗氧化酶的活性降低[21],受到的氧化應(yīng)激反應(yīng)增強(qiáng),抗氧化系統(tǒng)受損[22]。Megahed等[23]研究發(fā)現(xiàn),熱應(yīng)激可顯著降低水牛血液SOD活性和T-AOC。Yang等[24]研究表明,熱應(yīng)激狀態(tài)下動(dòng)物機(jī)體氧化反應(yīng)加劇,使脂質(zhì)過(guò)氧化物MDA積累,造成細(xì)胞膜氧化損傷。本研究發(fā)現(xiàn),濕熱應(yīng)激使藏綿羊和山羊血清SOD和GSH-Px活性及T-AOC顯著降低,MDA濃度顯著升高,與前人研究結(jié)果一致。此外,濕熱應(yīng)激狀態(tài)下山羊血清SOD活性、T-AOC和MDA濃度的變化幅度大于藏綿羊,表明在濕熱應(yīng)激狀態(tài)下,山羊抗氧化能力受到的影響大于藏綿羊。
3.4 THI變化對(duì)藏綿羊和山羊免疫功能的影響
免疫球蛋白是體內(nèi)免疫系統(tǒng)的重要組成部分,其中IgG是免疫球蛋白的主成分,約占血清中免疫球蛋白總濃度的75%。熱應(yīng)激對(duì)奶牛免疫功能有抑制作用[25]。Tao等[26]研究發(fā)現(xiàn),熱應(yīng)激使奶牛血清IgG濃度顯著降低,影響免疫功能;Starkie等[27]認(rèn)為,熱應(yīng)激使男性機(jī)體血液TNF-α等細(xì)胞因子的濃度升高,機(jī)體炎癥反應(yīng)加劇,從而影響機(jī)體免疫功能。但目前關(guān)于熱應(yīng)激對(duì)不同品種動(dòng)物免疫功能影響的研究未見(jiàn)報(bào)道。本研究發(fā)現(xiàn),濕熱應(yīng)激使藏綿羊和山羊血清免疫球蛋白(IgA、IgM、IgG)濃度顯著降低,IL-2和TNF-α濃度顯著升高,與Starkie等[27]和Cheng等[28]的研究結(jié)果一致;此外,藏綿羊血清免疫球蛋白、IL-2和TNF-α濃度的變化幅度大于山羊,表明濕熱應(yīng)激對(duì)藏綿羊免疫功能的影響較大。
① 濕熱應(yīng)激導(dǎo)致藏綿羊和山羊的呼吸頻率和直腸溫度升高,同時(shí)伴隨著生長(zhǎng)性能、抗氧化能力和免疫功能的下降。
② 藏綿羊生長(zhǎng)性能和免疫功能受濕熱應(yīng)激影響較大,而山羊抗氧化能力受濕熱應(yīng)激影響較大。
[1] 中華人民共和國(guó)國(guó)家統(tǒng)計(jì)局.中國(guó)統(tǒng)計(jì)年鑒[M].北京:中國(guó)統(tǒng)計(jì)出版社,2014.
[2] RHOADS M L,RHOADS R P,VANBAALE M J,et al.Effects of heat stress and plane of nutrition on lactating Holstein cows:Ⅰ.Production,metabolism,and aspects of circulating somatotropin[J].Journal of Dairy Science,2009,92(5):1986-1997.
[3] MCMANUS C,PRESCOTT E,PALUDO G R,et al.Heat tolerance in naturalized Brazilian cattle breeds[J].Livestock Science,2009,120(3):256-264.
[4] GAUGHAN J,LACETERA N,VALTORTA S E,et al.Response of domestic animals to climate challenges[M]//EBI K L,BURTON I,MCGREGOR G R.Biometeorology for adaptation to climate variability and change.Netherlands:Springer,2009:131-170.
[5] 楊游,袁志琳,董國(guó)忠,等.飼糧中添加脂肪酸鈣和煙酸鉻對(duì)熱應(yīng)激奶牛產(chǎn)奶性能、生理指標(biāo)及血清生化指標(biāo)的影響[J].動(dòng)物營(yíng)養(yǎng)學(xué)報(bào),2012,24(1):145-151.
[6] 楊耐德,黃曉亮,高振華,等.煙酸對(duì)熱應(yīng)激奶牛營(yíng)養(yǎng)物質(zhì)表觀消化率及血清生化指標(biāo)的影響[J].中國(guó)飼料,2010(12):20-23.
[7] MAUST L E,MCDOWELL R E,HOOVEN N W.Effect of summer weather on performance of holstein cows in three stages of lactation[J].Journal of Dairy Science,1972,55(8):1133-1139.
[8] JOHNSON J S,SCHARF B,WEABER R L,et al.Patterns of heat response and adaptation on summer pasture:a comparison of heat-sensitive (Angus) and-tolerant (Romosinuano) cattle[J].Journal of Thermal Biology,2012,37(1):344-350.
[9] SILANIKOVE N.Effects of heat stress on the welfare of extensively managed domestic ruminants[J].Livestock Production Science,2000,67(1/2):1-18.
[10] SRIKANDAKUMAR A,JOHNSON E H,MAHGOUB O.Effect of heat stress on respiratory rate,rectal temperature and blood chemistry in omani and australian merino sheep[J].Small Ruminant Research,2003,49(2):193-198.
[11] MAHJOUBI E,YAZDI M H,AGHAZIARATI N,et al.The effect of cyclical and severe heat stress on growth performance and metabolism in Afshari lambs[J].Journal of Animal Science,2015,93(4):1632-1640.
[12] MAHJOUBI E,AMANLOU H,MIRZAEI-ALAMOUTI H R,et al.The effect of cyclical and mild heat stress on productivity and metabolism in Afshari lambs[J].Journal of Animal Science,2014,92(3):1007-1014.
[13] RONCHI B,STRADAIOLI G,SUPPLIZI A V,et al.Influence of heat stress or feed restriction on plasma progesterone,oestradiol-17β,LH,FSH,prolactin and cortisol in Holstein heifers[J].Livestock Production Science,2001,68(2/3):231-241.
[14] RENAVILLE R,HAMMADI M,PORTETELLE D.Role of the somatotropic axis in the mammalian metabolism[J].Domestic Animal Endocrinology,2002,23(1/2):351-360.
[15] MAGDUB A,JOHNSON H D,BELYEA R L.Effect of environmental heat and dietary fiber on thyroid physiology of lactating cows[J].Journal of Dairy Science,1982,65(12):2323-2331.
[16] MCGUIRE M A,BEEDE D K,COLLIER R J,et al.Effects of acute thermal stress and amount of feed intake on concentrations of somatotropin,insulin-like growth factor (IGF)-Ⅰ and IGF-Ⅱ,and thyroid hormones in plasma of lactating Holstein cows[J].Journal of Animal Science,1991,69(5):2050-2056.
[17] O’BRIEN M D,RHOADS R P,SANDERS S R,et al.Metabolic adaptations to heat stress in growing cattle[J].Domestic Animal Endocrinology,2010,38(2):86-94.
[18] WHEELOCK J B,RHOADS R P,VANBAALE M J,et al.Effects of heat stress on energetic metabolism in lactating Holstein cows[J].Journal of Dairy Science,2010,93(2):644-655.
[19] KURATA M,SUZUKI M,AGAR N S.Antioxidant systems and erythrocyte life-span in mammals[J].Comparative Biochemistry and Physiology Part B:Comparative Biochemistry,1993,106(3):477-487.
[20] MILLER J K,BRZEZINSKA-SLEBODZINSKA E,MADSEN F C.Oxidative stress,antioxidants,and animal function[J].Journal of Dairy Science,1993,76(9):2812-2823.
[21] HARMON R J,LU M,TRAMMEL D S,et al.Influence of heat stress and calving on antioxidant activity in bovine blood[J].Journal of Dairy Science,1997,80(2):264-272.
[22] BERNABUCCI U,RONCHI B,LACETERA N,et al.Markers of oxidative status in plasma and erythrocytes of transition dairy cows during hot season[J].Journal of Dairy Science,2002,85(9):2173-2179.
[23] MEGAHED G A,ANWAR M M,WASFY S I,et al.Influence of heat stress on the cortisol and oxidant-antioxidants balance during oestrous phase in buffalo-cows (Bubalusbubalis):thermo-protective role of antioxidant treatment[J].Reproduction in Domestic Animals,2008,43(6):672-677.
[24] YANG L,TAN G Y,FU Y Q,et al.Effects of acute heat stress and subsequent stress removal on function of hepatic mitochondrial respiration,ROS production and lipid peroxidation in broiler chickens[J].Comparative Biochemistry and Physiology Part C:Toxicology & Pharmacology,2010,151(2):204-208.
[25] CAROPRESE M,MARZANO A,ENTRICAN G,et al.Immune response of cows fed polyunsaturated fatty acids under high ambient temperatures[J].Journal of Dairy Science,2009,92(6):2796-2803.
[26] TAO S,MONTEIRO A P A,THOMPSON I M,et al.Effect of late-gestation maternal heat stress on growth and immune function of dairy calves[J].Journal of Dairy Science,2012,95(12):7128-7136.
[27] STARKIE R,HARGREAVES M,ROLLAND J,et al.Heat stress,cytokines,and the immune response to exercise[J].Brain,Behavior,and Immunity,2005,19(5):404-412.
[28] CHENG J B,ZHENG N,SUN X Z,et al.Feeding rumen-protected gamma-aminobutyric acid enhances the immune response and antioxidant status of heat-stressed lactating dairy cows[J].Journal of Thermal Biology,2016,60:103-108.
*Corresponding author, professor, E-mail: zswangsicau@126.com
(責(zé)任編輯 菅景穎)
Effects of Moist-Heat Stress on Growth Performance, Oxidation Resistance and Immunity of Tibetan Sheep and Goats
ZHANG Can WANG Zhisheng*PENG Quanhui ZOU Huawei JING Xiaoping PU Qijian
(InstituteofAnimalNutrition,SichuanAgriculturalUniversity,Ya’an625014,China)
The present study was conducted to investigate the variation regularities of serum hormone, antioxidant and immune indices of Tibetan sheep and goats raised under the same nutritional condition with moist-heat environment, and aimed to reveal the different effects of moist-heat stress on growth performance, oxidation resistance and immunity between Tibetan sheep and goats. Six individuals of Tibetan sheep and goats (Boar goat×local yellow goat) were selected based on similar age and body weight [(45.83±3.54) kg]. Feeding experiment lasted for 135 days, including a 15-day adaption period and another 120-day text period. Temperature and humidity of sheep barn were measured daily and temperature-humidity index (THI) was calculated, and serum related indices of Tibetan sheep and goats were monitored monthly. The results showed as follows: 1) the THI of sheep barn was significantly raised in May to July along with month increasing (P<0.05). The THI of sheep barn was above 72 in June to August so that this period was regarded as the moist-heat stress period. 2) Respiratory rate and rectal temperature of Tibetan sheep and goats were all significantly increased in July and August compared with those in May (P<0.05). Compared with goats, Tibetan sheep presented a significantly higher respiratory rate and rectal temperature during the moist-heat stress period (P<0.05). 3) During the text period, the maximal decrease of dry matter intake (DMI) of Tibetan sheep and goats was 10.70% and 10.44%, respectively, besided, the maximal decrease of average daily gain was 50.00% and 47.82%, respectively. 4) The THI of sheep barn was raised from 71.17 (May) to 76.82 (July) resulted in a significant rise in serum cortisol and insulin concentrations (P<0.05) accompanied with a significant reduction in serum glucose and triiodothyronine concentrations (P<0.05). The maximal amplifications in serum growth hormone and thyroxine concentrations of Tibetan sheep were larger than those of goats under moist-heat stress. 5) In addition to the serum total antioxidant capacity (T-AOC) of Tibetan sheep (July) and goats (August), the serum superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) activities and T-AOC in July and August were all significantly decreased compared with those in May (P<0.05), while the serum malondialdehyde (MDA) concentration was significantly increased (P<0.05). Under moist-heat stress, the variation ranges of serum SOD activity, T-AOC and MDA concentration of goats were larger than those of Tibetan sheep. 6) The serum immunoglobulin A (IgA), immunoglobulin M (IgM), immunoglobulin G (IgG) and interleukin-2 (IL-2) concentrations of Tibetan sheep and goats were all significantly decreased in August compared with those in May (P<0.05), while the serum tumor necrosis factor-α (TNF-α) concentration was significantly increased (P<0.05). Under moist-heat stress, the variation ranges of serum immunoglobulin, IL-2 and TNF-α concentrations of Tibetan sheep were larger than those of goats. It is concluded that moist-heat stress increase the respiratory rate and rectal temperature in both Tibetan sheep and goats accompanied with the decrease of growth performance, oxidation resistance and immunity. The Tibetan sheep is affected severer by moist-heat stress on growth performance and immunity, whereas the oxidation resistance of goat is affected severer by moist-heat stress.[ChineseJournalofAnimalNutrition, 2017, 29(6):2179-2187]
moist-heat stress; Tibetan sheep; goat; growth performance; oxidation resistance; immunity
10.3969/j.issn.1006-267x.2017.06.041
2016-12-14
青藏高原社區(qū)畜牧業(yè)行業(yè)科技項(xiàng)目(201203008)
張 燦(1992—),男,新疆呼圖壁人,碩士研究生,從事反芻動(dòng)物營(yíng)養(yǎng)研究。E-mail: 316383773@qq.com
*通信作者:王之盛,教授,博士生導(dǎo)師,E-mail: zswangsicau@126.com
S816
A
1006-267X(2017)06-2179-09
動(dòng)物營(yíng)養(yǎng)學(xué)報(bào)2017年6期