• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    EP300 contributes to high-altitude adaptation in Tibetans by regulating nitric oxide production

    2017-06-21 12:08:04WangShanZhengYaoXiHeChaoYingCuiOuzhuluobuDejiquzongYiPengCaiJuanBaiDuojizhuomaGonggalanziBianbaBaimakangzhuoYongYuePanQulaKangminCirenyangjiBaimayangjiWeiGuoYanglaHuiZhangXiaoMingZhangYongBoGuoShuHuaXuHuaChenShen
    Zoological Research 2017年3期
    關鍵詞:專題研討順利開展省部級

    Wang-Shan Zheng, Yao-Xi He, Chao-Ying Cui, Ouzhuluobu, Dejiquzong, Yi Peng, Cai-Juan Bai, Duojizhuoma, Gonggalanzi, Bianba, Baimakangzhuo, Yong-Yue Pan, Qula, Kangmin, Cirenyangji, Baimayangji, Wei Guo, Yangla, Hui Zhang, Xiao-Ming Zhang, Yong-Bo Guo,, Shu-Hua Xu, Hua Chen, Sheng-Guo Zhao, Yuan Cai, Shi-Ming Liu, Tian-Yi Wu, Xue-Bin Qi,*, Bing Su,*

    1College of Animal Science and Technology,Gansu Agricultural University,Lanzhou Gansu730070,China

    2State Key Laboratory of Genetic Resources and Evolution,Kunming Institute of Zoology,Chinese Academy of Sciences,Kunming Yunnan650223,China

    3High Altitude Medical Research Center,School of Medicine,Tibetan University,Lhasa Tibet850000,China

    4Kunming College of Life Science, University of Chinese Academy of Sciences,Kunming Yunnan650204,China

    5Chinese Academy of Sciences Key Laboratory of Computational Biology,Max Planck Independent Research Group on Population Genomics,CAS-MPG Partner Institute for Computational Biology,Shanghai Institutes for Biological Sciences,Chinese Academy of Sciences, Shanghai200031,China

    6Center for Computational Genomics,Beijing Institute of Genomics,Chinese Academy of Sciences,Beijing100101,China

    7National Key Laboratory of High Altitude Medicine,High Altitude Medical Research Institute,XiningQinghai810012,China

    8School of Life Science and Technology,Shanghai Tech University,Shanghai200031,China

    9Collaborative Innovation Center of Genetics and Development,Shanghai200438,China

    ZOOLOGICAL RESEARCH

    EP300 contributes to high-altitude adaptation in Tibetans by regulating nitric oxide production

    Wang-Shan Zheng1,2,#, Yao-Xi He2,4,#, Chao-Ying Cui3,#, Ouzhuluobu3, Dejiquzong3, Yi Peng2, Cai-Juan Bai3, Duojizhuoma3, Gonggalanzi3, Bianba3, Baimakangzhuo3, Yong-Yue Pan3, Qula3, Kangmin3, Cirenyangji3, Baimayangji3, Wei Guo3, Yangla3, Hui Zhang2, Xiao-Ming Zhang2, Yong-Bo Guo1,2, Shu-Hua Xu5,8,9, Hua Chen6, Sheng-Guo Zhao1, Yuan Cai1, Shi-Ming Liu7, Tian-Yi Wu7, Xue-Bin Qi2,*, Bing Su2,*

    1College of Animal Science and Technology,Gansu Agricultural University,Lanzhou Gansu730070,China

    2State Key Laboratory of Genetic Resources and Evolution,Kunming Institute of Zoology,Chinese Academy of Sciences,Kunming Yunnan650223,China

    3High Altitude Medical Research Center,School of Medicine,Tibetan University,Lhasa Tibet850000,China

    4Kunming College of Life Science, University of Chinese Academy of Sciences,Kunming Yunnan650204,China

    5Chinese Academy of Sciences Key Laboratory of Computational Biology,Max Planck Independent Research Group on Population Genomics,CAS-MPG Partner Institute for Computational Biology,Shanghai Institutes for Biological Sciences,Chinese Academy of Sciences, Shanghai200031,China

    6Center for Computational Genomics,Beijing Institute of Genomics,Chinese Academy of Sciences,Beijing100101,China

    7National Key Laboratory of High Altitude Medicine,High Altitude Medical Research Institute,XiningQinghai810012,China

    8School of Life Science and Technology,Shanghai Tech University,Shanghai200031,China

    9Collaborative Innovation Center of Genetics and Development,Shanghai200438,China

    The genetic adaptation of Tibetans to high altitude hypoxia likely involves a group of genes in the hypoxic pathway, as suggested by earlier studies. To test the adaptive role of the previously reported candidate geneEP300(histone acetyltransferase p300), we conducted resequencing of a 108.9 kb gene region ofEP300in 80 unrelated Tibetans. The allele-frequency and haplotype-based neutrality tests detected signals of positive Darwinian selection onEP300in Tibetans, with a group of variants showing allelic divergence between Tibetans and lowland reference populations, including Han Chinese, Europeans, and Africans. Functional prediction suggested the involvement of multipleEP300variants in gene expression regulation. More importantly, genetic association tests in 226 Tibetans indicated significant correlation of the adaptiveEP300variants with blood nitric oxide (NO) concentration. Collectively, we propose thatEP300harbors adaptive variants in Tibetans, which might contribute to high-altitude adaptation through regulating NO production.

    Tibetans; High altitude; Hypoxia;EP300; Genetic adaptation; Nitric oxide

    INTRODUCTION

    Tibetans are well adapted to high-altitude environments, in which the key environmental stress is hypobaric hypoxia. Physiologically, Tibetans show blunted responses to high altitude hypoxia, with low pulmonary vasoconstrictor response and low hemoglobin concentration compared with lowlanders moving to high altitude (Wu & Kayser, 2006). Previous genetic studies have reported a group of genes that show deep genetic divergence between Tibetans and Han Chinese. These genes are involved in the hypoxic pathway and therefore likely play important roles in thegenetic adaptation to high altitude hypoxia found in Tibetans (Beall et al., 2010; Bigham et al., 2010; Peng et al., 2011; Simonson et al., 2010; Wang et al., 2011; Xu et al., 2011; Yi et al., 2010).

    Hypoxia inducible factor 2α(HIF2α, also calledEPAS1) and its negative regulatorEGLN1are considered key genes responsible for Tibetan adaptation (Lorenzo et al., 2014; Peng et al., 2017; Xiang et al., 2013). Compared with these two genes, other reported candidate genes show relatively less between-population divergence, implying that they are probably modifiers for high-altitude adaptation. One reported example is heme oxygenase-2 (HMOX2), with Tibetan-enriched adaptive mutations ofHMOX2shown to cause more efficient breakdown of heme during hemoglobin metabolism (Yang et al., 2016). However, the functional roles of other modifier genes are unknown. In addition, although we have a fundamental understanding of the genetic basis for Tibetan adaptation to high altitude, the studied genes thus far only explain a small part of the adaptive traits in Tibetans, highlighting the need for further genetic studies.

    In reported genome-wide comparisons between Tibetans and Han Chinese, histone acetyltransferase p300 (EP300) is among the candidate genes showing signals of selection (Peng et al., 2011).EP300is located on human chromosome 22 (22q13.2), spanning about 88.9 kb with 31 exons (Eckner et al., 1994). It functions as a histone acetyltransferase regulating the transcription of genes by chromatin remodeling, and plays an essential role in regulating cell growth and division and promoting cell maturation and differentiation (Goodman & Smolik, 2000; Ogryzko et al., 1996).EP300is also a hypoxia switch, regulating hypoxia inducible factor 1α (HIF1α) transactivation through specific recognition and hydroxylation of asparagine (Anokhina & Buravkova, 2010; Liao & Johnson, 2007; Peng et al., 2011; Teufel et al., 2007). More importantly,EP300plays a role in the stimulation of hypoxia-induced genes, such as vascular endothelial growth factor (VEGF) (Gray et al., 2005; Teufel et al., 2007; Zhang et al., 2013). Furthermore, disruption ofEP300function can cause Rubinstein-Taybi syndrome, a condition characterized by short stature, moderate to severe intellectual disability, distinctive facial features, and broad thumbs and first toes, an indication of its functional importance (Negri et al., 2016; Solomon et al., 2015; Teufel et al., 2007).

    To understand the potential role ofEP300in Tibetan adaptation to high altitude hypoxia, we resequenced the entire genomic region ofEP300. Neutrality tests suggested a signal of positive Darwinian selection onEP300in Tibetans. Genetic association analysis indicated the involvement ofEP300in regulating nitric oxide production.

    MATERIALS AND METHODS

    Tibetan samples andEP300resequencing

    We resequenced a 108.9 kb genomic fragment of 47 unrelated Tibetan individuals, with sample details reported in previous study (Peng et al., 2011). We also obtained sequence data of the same gene region of 33 Tibetans from previously published genome sequencing (Lu et al., 2016). In total, we had sequencing data from 80 unrelated Tibetans.

    Selection tests of candidate variants

    From the resequencing data (108.9 kb) of 80 Tibetans, we obtained 250 sequence variants. For quality control, we removed variants showing a significant deviation from the Hardy-Weinberg Equilibrium (HWE<0.000 1) and variants with an excessive missing genotype rate (MGR>0.05). A total of 185 variants remained after the filtering process. Following the methodology of Weir & Cockerham (1984), locus specificFSTwas calculated between Tibetans and the three lowland reference populations from the 1000 Genomes Project, which included 103 Han Chinese (CHB), 99 Europeans (CEU), and 108 Africans (YRI). Tajima’sD-test was also performed to detect selection (Tajima, 1989).

    For haplotype-based selection tests, the iHS score was calculated for each variant in Tibetans using selscan (Szpiech & Hernandez, 2014) based on the phased haplotypes, and only loci whose ancestral alleles were known with certainty were included (Voight et al., 2006). Additionally, XP-EHH analysis was used to detect the extended haplotypes resulting from positive selection (Sabeti et al., 2007). We computed XP-EHH scores using selscan (Szpiech & Hernandez, 2014) based on phased haplotypes of Tibetans and Han Chinese (reference population). The XP-EHH score of each variant was standardized by the mean XP-EHH and the standard deviation over the entire genome.

    Functional prediction and expression quantitative trait loci (eQTL) analysis ofEP300candidate SNPs

    Functional enrichment analyses of the candidate variants were performed using the Combined Annotation Dependent Depletion (CADD) database (http://krishna.gs.washington.edu/ download/CADD/v1.3/1000G_phase3_inclAnno.tsv.gz), which incorporates data from ENCODE and NIH Roadmap Epigenomics using ChromHMM (https://sites.google.com/site/ anshulkundaje/projects/epigenome roadmap#TOC-Core-Integrativechromatin-state-maps-127-Epigenomes-) (Ernst & Kellis, 2012).

    We measured the evolutionary constraints of each variant using Genome Evolutionary Rate Profiling (GERP) (http://mendel. stanford.edu/SidowLab/downloads/gerp/). The GERP++ method was used to calculate site-specific RS scores and discover evolutionarily constrained elements (Davydov et al., 2010). Positive scores suggest evolutionary constraint, with higher scores indicating higher levels of evolutionary constraint.

    The H3K4Me1 value indicates the maximum ENCODE H3K4 methylation level (maximum value observed across 16 ENCODE cell lines at a given position), where modification of histone proteins is suggestive of an enhancer and, to a lesser extent, other regulatory activities. The H3K4Me3 value indicates the maximum ENCODE H3K4 trimethylation level (maximum value observed across 16 ENCODE cell lines at a given position), where modification of histone proteins is suggestive of a promoter. The DNase-I hypersensitivity sites indicate chromatin regions hypersensitive to cutting by the DNase enzyme. In general, gene regulatory regions tend to be DNasesensitive, and promoters are particularly DNase-sensitive. DNase-P indicates theP-value (PHRED-scale) of DNaseevidence for open chromatin. The transcription factor binding site (TFBS) is indicated by the number of different overlapping ChIP transcription factor binding sites. It also defines the boundaries between active and heterochromatic DNA. Transcriptional repressor CTCF is a versatile transcription regulator involved in regulating the 3D structure of chromatin. In addition, splice site analysis indicates whether the tested variants are located in the ACCEPTOR or DONOR sequences.

    The eQTL analysis for candidateEP300single nucleotide polymorphisms (SNPs) was conducted using publicly available datasets (Blood eQTL Browser: http://genenetwork.nl/ bloodeqtlbrowser/).

    Measurements of physiological traits

    Physiological data and blood samples were collected from 226 unrelated Tibetans permanently residing in Bange County (n=127, 37.41±3.8 years old) at an elevation of 4 700 m and Lhasa city (n=99, 35.33±6.8 years old) at an elevation of 3 600 m. Written informed consent was obtained from all participants. For physiological parameters, we determined the hemoglobin (Hb) concentration, arterial oxygen saturation (SaO2) level, and blood nitric oxide (NO) concentration, which are key adaptive physiological traits in Tibetans (Wu & Kayser, 2006).

    The Hb concentration was measured using a HemoCue Hb 201+ analyzer (Angelholm, Sweden) and SaO2was measured from the forefinger tip with a hand-held pulse oximeter (Nellcor NPB-40, CA, USA) at rest. Venous blood was collected for Hb measurement and DNA extraction. To reveal the NO level in serum, predominant species NO2?and NO3?were measured using a nitric oxide analyzer (Sievers Model-280, GE Analytical Instruments, Boulder, CO, USA).

    Genotyping and association analysis

    We genotyped six candidate variants and conducted association analysis in 226 Tibetans. The variants were rs58268766, rs2076578, rs2076580, rs5758251, rs5758256, and rs2143694. Genotyping was conducted by the SNaPshot method on an ABI 3130 sequencer (Applied Bio-systems, Forster City, CA, USA). Genetic association analysis was conducted using PLINK 1.07 (Purcell et al., 2007). An additive genetic model was used because all tested variants were located in the non-coding region ofEP300and likely influenced gene expression. For multiple test correction, we performed 100 000 permutations.

    RESULTS

    Resequencing ofEP300in Tibetans and neutrality tests

    We resequenced a 108.9 kbEP300genomic region, covering the 88.9 kb gene region as well as two 10 kb flanking regions upstream and downstream ofEP300. In total, we obtainedEP300sequencing data of 80 unrelated Tibetans.

    We identified a total of 185EP300sequence variants among the 80 unrelated Tibetans. After comparing with three lowlander populations, including Han Chinese, Europeans, and Africans, there were 149 shared variants. The remaining 36 variants were all rare mutations in Tibetans (<1.0%). To detect selection signals of these variants, we performed neutrality tests, including both allele-frequency-based (FSTand Tajima’sD) and haplotype-based tests (iHS and XP-EHH). Consistent with previous research (Peng et al., 2011), we observed many variants showing above-genome-average divergence (FST>0.03) between Tibetans and Han Chinese. The highestFSTwas 0.14 for rs2076580. The derived allele at rs2076580 was predominant in Tibetans (76%), much higher than the frequencies in the lowland reference populations (48% in Han Chinese, 34% in Europeans, and only 3% in Africans). Consistently, in the haplotype-based XP-EHH test, we found 34EP300variants showing high scores (XP-EHH>0.2) (Supplementary Table S1). These high-XP-EHH variants were likely under positive Darwinian selection, and were located in a LD block spanning about 6 kb from intron-6 to the 3' flanking region (Figure 1). The allele-frequency-based Tajima’sD-test was not significant, likely due to its insensitivity to recent selection. Overall, compared with the reported strong selection onEPAS1andEGLN1(Peng et al., 2011; Xiang et al., 2013; Xu et al., 2011), the selection onEP300in Tibetans was relatively weak, consistent with a modifier role in genetic adaptation to high altitude.

    Functional prediction and eQTL analysis of candidateEP300variants

    With the detected signal of selection onEP300in Tibetans, the next question was what were the functional consequences of the variants under selection? We chose 34 candidate variants that showed high XP-EHH scores (>2.0), and except for two synonymous variants, most were non-coding. We performed functional prediction based on sequence conservation (GERP), transcription factor binding sites (TFBS), splicing motif, H3K4Me1/H3K4Me3 sites, and DNAase-I hypersensitive sites. There were 14 variants showing conserved sequences across species (GREP++ >5.0), an implication of functional constraint. In addition, multiple variants were located in the H3K4Me1/ H3K4Me3 sites, suggesting their potential involvement in enhancer or promoter activities (Supplementary Table S1).

    We also performed eQTL analysis using published data (Blood eQTL Browser: http://genenetwork.nl/bloodeqtlbrowser/), and found that three candidate variants showed highly significant association with the expression ofEP300in blood (P=1.64×10-54for rs2076578,P=3.63×10-54for rs575825, andP=3.26×10-54for rs2143694), suggesting that these variants are probably involved in the expression regulation ofEP300. However, further experiments are needed to test their suggestive functions.

    Genetic association analysis of candidateEP300variants with multiple physiological traits in Tibetans

    To test whether the candidateEP300variants contributed to the adaptive traits in Tibetans, we collected data on three physiological parameters, including Hb, SaO2, and NO. A total of 226 unrelated adult Tibetans were included (91 males and 135 females from Lhasa and Bange, Tibetan Autonomous Region of China). Six candidate variants were selected based on theirFSTvalues and XP-EHH scores (FST>0.1 and XPEHH>2.0). As shown in Table 1, five of the six variants showed significant association with blood NO level when an additive genetic model was assumed (P<0.05, after multiple test corrections with permutations). The same result was observed when males and females were analyzed separately (Table 1),with no gender difference detected for average blood NO level. The presumably adaptive alleles were correlated with a decreased NO level and explained about 3% of NO variance. For example, the three genotypes at rs2076580 had NO levels of 61.53 μmol/L (GG genotype), 54.96 μmol/L (GA genotype), and 43.43 μmol/L (AA genotype), respectively, and each adaptive allele caused, on average, 15.8% decrease in NO in the blood (Figure 2). Hence, theEP300variants are likely involved in the regulation of blood NO production. In contrast, no association was detected for Hb or SaO2.

    Figure 1 Information on 34 EP300 candidate variants

    DISCUSSION

    EP300is a candidate gene showing relatively deep allelic divergence between Tibetans and lowlanders (Peng et al., 2011). As previous data were obtained from DNA arrays with limitedEP300variant coverage, whetherEP300plays a role in Tibetan adaptation to high altitude has remained inconclusive. In this study, we resequenced the entireEP300gene region. In combination with published data, we showed thatEP300in Tibetans has undergone positive Darwinian selection.EP300acts as a transcriptional coactivator ofHIF1α, one of the most important hypoxic genes (Freedman et al., 2002; Gray et al., 2005; Lando et al., 2002). Functional prediction analysis suggested multipleEP300SNPs with potential functional effects. Hence, the function of selection onEP300is probably related to its role in the hypoxic pathway.

    Importantly, we observed a significant association of many high XP-EHH variants with NO concentration. It has been proposed previously that high NO levels are an adaptive feature of Tibetans for high altitude living. Prior studies have shown that the NO levels of 88 Tibetans living at 4 300 m elevation were 10 times higher than those of 50 European-Americans living at 203 melevation (Beall, 2007; Levett et al., 2011). High NO levels would allow for better vasodilation and therefore better blood flow (Beall, 2007), which is an adaptive physiological trait observed in Tibetans. Enzymes eNOS and iNOS synthesize NO products in the body. They are encoded byNOS3andNOS2, respectively, and both contain hypoxia-responseelement (HRE) motifs in the gene promoter regions (Coulet et al., 2003; Melillo et al., 1995). In other words,NOS3andNOS2can be directly regulated byHIF1α andHIF2α. Therefore, the observed association ofEP300with blood NO level can be explained by the co-transactivating role ofEP300in expression regulation ofHIF1α and eventually its downstream genes, includingNOS3andNOS2. Notably, eNOS mainly functions in blood vessels (Matouk & Marsden, 2008). AsEP300works in histone modification (Goodman & Smolik, 2000; Ogryzko et al., 1996), whether the functional role ofEP300in high-altitude adaptation involves downstream gene regulation through chromatin remodeling is yet to be tested.

    Table 1 Association of six EP300 variants with three physiological traits in Tibetans

    Under hypoxic conditions, in addition to the pathway of stabilizing HIF with reduced PHD2 hydroxylation, the nitroso sulfation of the HIF element is also important (Foster et al., 2003), and NO is the key component of nitroso sulfation. It has been reported that hypoxia upregulates iNOS, and thereby increases NO products in tissues and cells, especially in the case of chronic hypoxia. NO helps create a blunted response to hypoxia by inhibiting the oxygen consumption of mitochondria and consequently provide more oxygen for PHDs to reduce the levels of HIF proteins caused by hypoxia (Won et al., 2007). Collectively, NO is not only involved in the process of blood flow control, but is also a regulator of blood oxygen utilization (Ho et al., 2012). As shown in our results, the adaptive alleles were associated with a decreased level of blood NO, which might serve as a protection measure for Tibetans from overproduction of NO, and might be similar to the relatively low hemoglobin concentrations observed in Tibetans (Beall et al., 2010).

    In summary, we proved thatEP300has been under positive Darwinian selection, with a significant association with blood NO levels in Tibetans. These data suggest thatEP300likely contributes to Tibetan adaptation to high-altitude. However, further studies are needed to reveal the underlying molecular mechanism.

    ACKNOWLEDGEMENTS

    We are grateful to all the volunteers participated in this study.

    Figure 2 NO levels of different genotypes of six EP300 variants in 226 Tibetans

    REFERENCES

    Anokhina EB, Buravkova LB. 2010. Mechanisms of regulation of transcription factor HIF under hypoxia.Biochemistry (Moscow),75(2): 151-158.

    Beall CM. 2007. Two routes to functional adaptation: tibetan and Andean high-altitude natives.Proceedings of the National Academy of Sciences ofthe United States of America,104(S1): 8655-8660.

    Beall CM, Cavalleri GL, Deng LB, Elston RC, Gao Y, Knight J, Li CH, Li JC, Liang Y, McCormack M, Montgomery HE, Pan H, Robbins PA, Shianna KV, Tam SC, Tsering N, Veeramah KR, Wang W, Wangdui P, Weale ME, Xu YM, Xu Z, Yang L, Zaman MJ, Zeng CQ, Zhang L, Zhang XL, Zhaxi PC, Zheng YT. 2010. Natural selection onEPAS1(HIF2α)associated with low hemoglobin concentration in Tibetan highlanders.Proceedings of the National Academy of Sciences of the United States of America,107(25):11459-11464.

    Bigham A, Bauchet M, Pinto D, Mao XY, Akey JM, Mei R, Scherer SW, Julian CG, Wilson MJ, Herráez DL, Brutsaert T, Parra EJ, Moore LG, Shriver MD. 2010. Identifying signatures of natural selection in Tibetan and Andean populations using dense genome scan data.PLoS Genetics,6(9): e1001116.

    Coulet F, Nadaud S, Agrapart M, Soubrier F. 2003. Identification of hypoxiaresponse element in the human endothelial nitric-oxide synthase gene promoter.Journal of Biological Chemistry,278(47): 46230-46240.

    Davydov EV, Goode DL, Sirota M, Cooper GM, Sidow A, Batzoglou S. 2010. Identifying a high fraction of the human genome to be under selective constraint using GERP++.PLoS Computational Biology,6(12): e1001025.

    Eckner R, Ewen ME, Newsome D, Gerdes M, Decaprio JA, Lawrence JB, Livingston DM. 1994. Molecular cloning and functional analysis of the adenovirus E1A-associated 300-kD protein (p300) reveals a protein with properties of a transcriptional adaptor.Genes & Development,8(8): 869-884.

    Ernst J, Kellis M. 2012. ChromHMM: automating chromatin-state discovery and characterization.Nature Methods,9(3): 215-216.

    Foster MW, Mcmahon TJ, Stamler JS. 2003. S-nitrosylation in health and disease.Trends in Molecular Medicine,9(4): 160-168.

    Freedman SJ, Sun ZYJ, Poy F, Kung AL, Livingston DM, Wagner G, Eck MJ. 2002. Structural basis for recruitment of CBP/p300 by hypoxiainducible factor-1α.Proceedings of the National Academy of Sciences of the United States of America,99(8): 5367-5372.

    Goodman RH, Smolik S. 2000. CBP/p300 in cell growth, transformation, and development.Genes & Development,14(13): 1553-1577.

    Gray MJ, Zhang J, Ellis LM, Semenza GL, Evans DB, Watowich SS, Gallick GE. 2005. HIF-1α,STAT3, CBP/p300 and Ref-1/APE are components of a transcriptional complex that regulates Src-dependent hypoxia-induced expression of VEGF in pancreatic and prostate carcinomas.Oncogene,24(19): 3110-3120.

    Ho JJ, Man HSJ, Marsden PA. 2012. Nitric oxide signaling in hypoxia.Journal of Molecular Medicine,90(3): 217-231.

    Lando D, Peet DJ, Whelan DA, Gorman JJ, Whitelaw ML. 2002. Asparagine hydroxylation of the HIF transactivation domain: a hypoxic switch.Science,295(5556): 858-861.

    Levett DZ, Fernandez BO, Riley HL, Martin DS, Mitchell K, Leckstrom CA, Ince C, Whipp BJ, Mythen MG, Montgomery HE, Grocott MP, Feelisch M, Caudwell Extreme Everest Research Group. 2011. The role of nitrogen oxides in human adaptation to hypoxia.Scientific Reports,1: 109.

    Liao D, Johnson RS. 2007. Hypoxia: a key regulator of angiogenesis in cancer.Cancer and Metastasis Reviews,26(2): 281-290.

    “全面建成小康社會是我們的戰(zhàn)略目標,全面深化改革、全面依法治國、全面從嚴治黨是三大戰(zhàn)略舉措?!绷暯娇倳?012年2月在省部級主要領導干部專題研討開班會議上第一次對“四個全面”的邏輯關系進行了闡述,從習近平總書記的闡述中可以看出,全面從嚴治黨是對確保其他三個方面順利開展的保障。為了實現(xiàn)四個全面,更加需要中國共產(chǎn)黨發(fā)揮核心推動作用,領導全中國奮發(fā)前進。所以,全面從嚴治黨是四個全面的重要組成部分,是基礎與關鍵,也是推進“四個全面”戰(zhàn)略布局的根本保障,它適應了當前國內(nèi)外深刻變化的現(xiàn)實需要。[3]

    Lorenzo FR, Huff C, Myllym?ki M, Olenchock B, Swierczek S, Tashi T, Gordeuk V, Wuren T, Ri-Li G, McClain DA, Khan TM, Koul PA, Guchhait P, Salama ME, Xing JC, Semenza GL, Liberzon E, Wilson A, Simonson TS, Jorde LB, Kaelin WG, Jr., Koivunen P, Prchal JT. 2014. A genetic mechanism for Tibetan high-altitude adaptation.Nature Genetics,46(9): 951-956.

    Lu DS, Lou HY, Yuan K, Wang XJ, Wang YC, Zhang C, Lu Y, Yang X, Deng L, Zhou Y, Feng QD, Hu Y, Ding QL, Yang YJ, Li SL, Jin L, Guan YQ, Su B, Kang LL, Xu SH. 2016. Ancestral origins and genetic history of tibetan highlanders.The American Journal of Human Genetics,99(3): 580-594.

    Matouk CC, Marsden PA. 2008. Epigenetic regulation of vascular endothelial gene expression.Circulation Research,102(8): 873-887.

    Melillo G, Musso T, Sica A, Taylor LS, Cox GW, Varesio L. 1995. A hypoxiaresponsive element mediates a novel pathway of activation of the inducible nitric oxide synthase promoter.Journal of Experimental Medicine,182(6): 1683-1693.

    Negri G, Magini P, Milani D, Colapietro P, Rusconi D, Scarano E, Bonati MT, Priolo M, Crippa M, Mazzanti L, Wischmeijer A, Tamburrino F, Pippucci T, Finelli P, Larizza L, Gervasini C. 2016. From whole gene deletion to point mutations ofEP300-positive Rubinstein-Taybi patients: new insights into the mutational spectrum and peculiar clinical hallmarks.Human Mutation,37(2): 175-183.

    Ogryzko VV, Schiltz RL, Russanova V, Howard BH, Nakatani Y. 1996. The transcriptional coactivators p300 and CBP are histone acetyltransferases.Cell,87(5): 953-959.

    Peng Y, Cui CY, He YX, Ouzhuluobu, Zhang H, Yang DY, Zhang Q, Bianbazhuoma, Yang LX, He YB, Xiang K, Zhang XM, Bhandari S, Shi P, Yangla, Dejiquzong, Baimakangzhuo, Duojizhuoma, Pan YY, Cirenyangji, Baimayangji, Gonggalanzi, Bai CJ, Bianba, Basang, Ciwangsangbu, Xu SH, Chen H, Liu SM, Wu TY, Qi XB, Su B. 2017. Down-regulation of EPAS1 transcription and genetic adaptation of tibetans to high-altitude hypoxia. Molecular biology and evolution.Molecular Biology and Evolution,34(4): 818-830.

    Peng Y, Yang Z, Zhang H, Cui C, Qi X, Luo X, Tao X, Wu T, Ouzhuluobu, Basang, Ciwangsangbu, Danzengduojie, Chen H, Shi H, Su B. 2011. Genetic variations in Tibetan populations and high-altitude adaptation at the Himalayas.Molecular Biology and Evolution,28(2): 1075-1081.

    Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, Maller J, Sklar P, de Bakker PI, Daly MJ, Sham PC. 2007. PLINK: a tool set for whole-genome association and population-based linkage analyses.American Journal of Human Genetics,81(3): 559-575.

    Sabeti PC, Varilly P, Fry B, Lohmueller J, Hostetter E, Cotsapas C, Xie XH, Byrne EH, McCarroll SA, Gaudet R, Schaffner SF, Lander ES, The International HapMap Consortium. 2007. Genome-wide detection and characterization of positive selection in human populations.Nature,449(7164): 913-918.

    Simonson TS, Yang YZ, Huff CD, Yun HX, Qin G, Witherspoon DJ, Bai ZZ, Lorenzo FR, Xing JC, Jorde LB, Prchal JT, Ge RL. 2010. Genetic evidence for high-altitude adaptation in Tibet.Science,329(5987): 72-75.

    Solomon BD, Bodian DL, Khromykh A, Mora GG, Lanpher BC, Iyer RK, Baveja R, Vockley JG, Niederhuber JE. 2015. Expanding the phenotypic spectrum in EP300-related Rubinstein-Taybi syndrome.American Journal of Medical Genetics. Part A,167(5): 1111-1116.

    Szpiech ZA, Hernandez RD. 2014. Selscan: an efficient multithreaded program to perform EHH-based scans for positive selection.Molecular Biology and Evolution,31(10): 2824-2827.

    Tajima F. 1989. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism.Genetics,123(3): 585-595.

    Teufel DP, Freund SM, Bycroft M, Fersht AR. 2007. Four domains of p300 each bind tightly to a sequence spanning both transactivation subdomains of p53.Proceedings of the National Academy of Sciences of the United States of America,104(17): 7009-7014.

    Voight BF, Kudaravalli S, Wen XQ, Pritchard JK. 2006. A map of recent positive selection in the human genome.PLoS Biology,4(3): e72.

    Wang BB, Zhang YB, Zhang F, Lin HB, Wang XM, Wan N, Ye ZQ, Weng HY,Zhang LL, Li X, Yan JW, Wang PP, Wu TT, Cheng LF, Wang J, Wang DM, Ma X, Yu J. 2011. On the origin of Tibetans and their genetic basis in adapting high-altitude environments.PLoS One,6(2): e17002.

    Weir BS, Cockerham CC. 1984. Estimating F-statistics for the analysis of population structure.Evolution,38(6): 1358-1370.

    Won D, Zhu SN, Chen M, Teichert AM, Fish JE, Matouk CC, Bonert M, Ojha M, Marsden PA, Cybulsky MI. 2007. Relative reduction of endothelial nitric-oxide synthase expression and transcription in atherosclerosis-prone regions of the mouse aorta and in aninvitromodel of disturbed flow.The American Journal of Pathology,171(5): 1691-1704.

    Wu TY, Kayser B. 2006. High altitude adaptation in Tibetans.High Altitude Medicine & Biology,7(3): 193-208.

    Xiang K, Ouzhuluobu, Peng Y, Yang ZH, Zhang XM, Cui CY, Zhang H, Li M, Zhang YF, Bianba, Gonggalanzi, Basang, Ciwangsangbu, Wu TY, Chen H, Shi H, Qi XB, Su B. 2013. Identification of a Tibetan-specific mutation in the hypoxic gene EGLN1 and its contribution to high-altitude adaptation.Molecular Biology and Evolution,30(8): 1889-1898.

    Xu SH, Li SL, Yang YJ, Tan JZ, Lou HY, Jin WF, Yang L, Pan XD, Wang JC, Shen YP, Wu BL, Wang HY, Jin L. 2011. A genome-wide search for signals of high-altitude adaptation in Tibetans.Molecular Biology and Evolution,28(2): 1003-1011.

    Yang DY, Peng Y, Ouzhuluobu, Bianbazhuoma, Cui CY, Bianba, Wang LB, Xiang K, He YX, Zhang H, Zhang XM, Liu JW, Shi H, Pan YY, Duojizhuoma, Dejiquzong, Cirenyangji, Baimakangzhuo, Gonggalanzi, Liu SM, Gengdeng, Wu TY, Chen H, Qi XB, Su B. 2016.HMOX2functions as a modifier gene for high-altitude adaptation in Tibetans.Human Mutation,37(2): 216-223.

    Yi X, Liang Y, Huerta-Sanchez E, Jin X, Cuo ZXP, Pool JE, Xu X, Jiang H, Vinckenbosch N, Korneliussen TS, Zheng HC, Liu T, He WM, Li K, Luo RB, Nie XF, Wu HL, Zhao MR, Cao HZ, Zou J, Shan Y, Li SZ, Yang Q, Asan, Ni PX, Tian G, Xu JM, Liu X, Jiang T, Wu RH, Zhou GY, Tang MF, Qin JJ, Wang T, Feng SJ, Li GH, Huasang, Luosang JB, Wang W, Chen F, Wang YD, Zheng XG, Li Z, Bianba Z, Yang G, Wang XP, Tang SH, Gao GY, Chen Y, Luo Z, Gusang L, Cao Z, Zhang QH, Ouyang WH, Ren XL, Liang HQ, Zheng HS, Huang YB, Li JX, Bolund L, Kristiansen K, Li YR, Zhang Y, Zhang XQ, Li RQ, Li SG, Yang HM, Nielsen R, Wang J, Wang J. 2010. Sequencing of 50 human exomes reveals adaptation to high altitude.Science,329(5987): 75-78.

    Zhang B, Day DS, Ho JW, Song LY, Cao JJ, Christodoulou D, Seidman JG, Crawford GE, Park PJ, Pu WT. 2013. A dynamic H3K27ac signature identifies VEGFA-stimulated endothelial enhancers and requires EP300 activity.Genome Research,23(6): 917-927.

    24 March 2017; Accepted: 27 April 2017

    s: This study was supported by grants from the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB13010000), the National Natural Science Foundation of China (91631306 to BS, 31671329 to XQ, 31460287 to Ou, 31501013 to HZ, and 31360032 to CC), the National 973 program (2012CB518202 to TW), the State Key Laboratory of Genetic Resources and Evolution (GREKF15-05, GREKF16-04), and the Zhufeng Scholar Program of Tibetan University

    #Authors contributed equally to this work

    *Corresponding authors, E-mail: sub@mail.kiz.ac.cn; qixuebin@mail.kiz.ac.cn DOI: 10.24272/j.issn.2095-8137.2017.036

    猜你喜歡
    專題研討順利開展省部級
    淮委黨組學習貫徹習近平總書記在省部級主要領導干部專題研討班上的重要講話精神
    治淮(2022年8期)2022-09-03 03:42:42
    《倫理學研究》編輯部開展黨史學習教育專題研討
    倫理學研究(2021年4期)2021-09-09 08:27:44
    云南警官學院完成四項省部級廳級等科研項目課題結(jié)項
    專題研討嘉賓
    人民論壇(2020年35期)2020-01-18 02:25:36
    “閱讀”越有收獲
    西部論叢(2019年1期)2019-01-15 12:39:42
    淺議初中英語小組合作學習的順利開展
    上半年230名省部級官員履新
    河北省人大常委會機關召開“不忘初心做合格黨員”專題研討交流會
    充分發(fā)揮黨組織戰(zhàn)斗堡壘作用促進衛(wèi)生監(jiān)督執(zhí)法工作順利開展
    公民與法治(2016年1期)2016-05-17 04:07:52
    2015年河北省地礦局獲省部級科技獎項目
    日本与韩国留学比较| 欧美一区二区亚洲| 国产精品精品国产色婷婷| 91精品伊人久久大香线蕉| 乱系列少妇在线播放| 97精品久久久久久久久久精品| 日韩 亚洲 欧美在线| 午夜精品国产一区二区电影| 中文资源天堂在线| 亚洲欧美一区二区三区黑人 | 亚洲成色77777| 22中文网久久字幕| 女人十人毛片免费观看3o分钟| 91精品伊人久久大香线蕉| a级毛色黄片| 中文字幕制服av| 成年av动漫网址| 国产免费又黄又爽又色| 色综合色国产| 一区二区三区精品91| 国产精品人妻久久久影院| 亚洲精品久久午夜乱码| 午夜福利影视在线免费观看| 国产精品久久久久久精品古装| 国产色爽女视频免费观看| 亚洲久久久国产精品| 国产精品久久久久久久电影| 黄片wwwwww| 欧美国产精品一级二级三级 | 国产色爽女视频免费观看| 99国产精品免费福利视频| 国产高潮美女av| 日本av免费视频播放| 一级片'在线观看视频| 少妇猛男粗大的猛烈进出视频| 欧美xxxx性猛交bbbb| 涩涩av久久男人的天堂| av福利片在线观看| 精品国产三级普通话版| 久久6这里有精品| 51国产日韩欧美| 精品亚洲成国产av| 大香蕉久久网| 街头女战士在线观看网站| 777米奇影视久久| 亚洲成人手机| 干丝袜人妻中文字幕| 国产 一区 欧美 日韩| 国产探花极品一区二区| 日韩av不卡免费在线播放| 亚洲真实伦在线观看| 一本—道久久a久久精品蜜桃钙片| 最近中文字幕高清免费大全6| 亚洲人与动物交配视频| av专区在线播放| 九九在线视频观看精品| 少妇人妻久久综合中文| 免费观看性生交大片5| 亚洲精品第二区| 一级爰片在线观看| 精品少妇黑人巨大在线播放| 国产亚洲5aaaaa淫片| 爱豆传媒免费全集在线观看| 18禁裸乳无遮挡免费网站照片| 99热这里只有是精品在线观看| 亚洲国产毛片av蜜桃av| .国产精品久久| 91aial.com中文字幕在线观看| 有码 亚洲区| 亚洲成人手机| 蜜桃久久精品国产亚洲av| 色5月婷婷丁香| 国产女主播在线喷水免费视频网站| 精品久久久久久电影网| 91久久精品国产一区二区成人| 国产黄色视频一区二区在线观看| 久久这里有精品视频免费| 国产精品久久久久久久电影| 日韩中文字幕视频在线看片 | 久久鲁丝午夜福利片| 交换朋友夫妻互换小说| 18禁裸乳无遮挡动漫免费视频| 91久久精品国产一区二区成人| 干丝袜人妻中文字幕| 人人妻人人看人人澡| 国产成人精品久久久久久| 久久99热这里只有精品18| 免费观看性生交大片5| 少妇熟女欧美另类| 国产精品不卡视频一区二区| 两个人的视频大全免费| 97超视频在线观看视频| 久久国内精品自在自线图片| 又黄又爽又刺激的免费视频.| 国产欧美亚洲国产| 欧美日韩精品成人综合77777| 免费人妻精品一区二区三区视频| 成人毛片a级毛片在线播放| 国产成人freesex在线| 三级国产精品欧美在线观看| 男女啪啪激烈高潮av片| 91午夜精品亚洲一区二区三区| 美女脱内裤让男人舔精品视频| 人人妻人人爽人人添夜夜欢视频 | 亚洲av电影在线观看一区二区三区| 18禁裸乳无遮挡免费网站照片| 麻豆精品久久久久久蜜桃| 如何舔出高潮| 国产日韩欧美亚洲二区| 亚洲国产精品国产精品| 国产成人精品一,二区| 国产大屁股一区二区在线视频| 蜜桃久久精品国产亚洲av| 老女人水多毛片| 人妻 亚洲 视频| 我的女老师完整版在线观看| 亚洲欧美成人综合另类久久久| 一本色道久久久久久精品综合| 国产精品免费大片| 午夜免费鲁丝| 99久久精品国产国产毛片| 久久久久网色| 一级av片app| 中文字幕久久专区| 亚洲中文av在线| 日本色播在线视频| 亚洲高清免费不卡视频| 国产色爽女视频免费观看| 黑丝袜美女国产一区| 亚洲三级黄色毛片| 中文字幕av成人在线电影| 日韩大片免费观看网站| 亚洲欧美中文字幕日韩二区| 久热这里只有精品99| 国产高潮美女av| xxx大片免费视频| 99久国产av精品国产电影| 丝袜喷水一区| 美女脱内裤让男人舔精品视频| 九九久久精品国产亚洲av麻豆| 日本爱情动作片www.在线观看| 色视频www国产| 小蜜桃在线观看免费完整版高清| 国产一区二区三区av在线| 99九九线精品视频在线观看视频| 国产一级毛片在线| 久久女婷五月综合色啪小说| 亚州av有码| 性色avwww在线观看| 亚洲国产精品国产精品| av在线蜜桃| 久久人人爽人人爽人人片va| 最近的中文字幕免费完整| av视频免费观看在线观看| 亚洲精品亚洲一区二区| 成人18禁高潮啪啪吃奶动态图 | 免费少妇av软件| 99精国产麻豆久久婷婷| 色吧在线观看| 老司机影院成人| 日本欧美视频一区| 日本黄大片高清| 在线观看三级黄色| 亚洲国产色片| 最近最新中文字幕大全电影3| 赤兔流量卡办理| 午夜福利高清视频| 色婷婷av一区二区三区视频| av卡一久久| 国产乱人偷精品视频| 看十八女毛片水多多多| 最近最新中文字幕免费大全7| 免费观看的影片在线观看| 精品亚洲成国产av| 身体一侧抽搐| 免费久久久久久久精品成人欧美视频 | 欧美精品一区二区大全| 国国产精品蜜臀av免费| 成人二区视频| 国产精品久久久久久久电影| 国产一区亚洲一区在线观看| 18禁裸乳无遮挡免费网站照片| 99热这里只有是精品50| 亚洲av二区三区四区| 日韩精品有码人妻一区| 欧美日韩国产mv在线观看视频 | 免费观看a级毛片全部| 国产av国产精品国产| 中文字幕制服av| 看免费成人av毛片| 国内揄拍国产精品人妻在线| 国模一区二区三区四区视频| 秋霞伦理黄片| 日产精品乱码卡一卡2卡三| 久久综合国产亚洲精品| 18禁动态无遮挡网站| 小蜜桃在线观看免费完整版高清| 国产午夜精品久久久久久一区二区三区| 一级a做视频免费观看| 国产精品99久久99久久久不卡 | 国产亚洲最大av| 久久精品国产亚洲网站| 欧美最新免费一区二区三区| 久久久久视频综合| 老司机影院成人| 久久久欧美国产精品| 黄片无遮挡物在线观看| 一区二区三区乱码不卡18| 在线观看一区二区三区激情| 国内少妇人妻偷人精品xxx网站| 亚洲国产精品一区三区| 中文字幕制服av| 精品国产露脸久久av麻豆| 国产欧美另类精品又又久久亚洲欧美| 国产视频内射| 成人高潮视频无遮挡免费网站| 精品国产三级普通话版| 在现免费观看毛片| 国产在线男女| 日韩不卡一区二区三区视频在线| 亚洲av免费高清在线观看| 久久久精品免费免费高清| 国产黄频视频在线观看| 精品久久久久久久末码| 久久婷婷青草| av播播在线观看一区| 卡戴珊不雅视频在线播放| 中文字幕人妻熟人妻熟丝袜美| 国产成人精品久久久久久| 91久久精品国产一区二区三区| 热re99久久精品国产66热6| 十八禁网站网址无遮挡 | 一个人免费看片子| 欧美精品人与动牲交sv欧美| 91狼人影院| xxx大片免费视频| 国产精品蜜桃在线观看| 午夜福利高清视频| 日本欧美国产在线视频| 精品国产一区二区三区久久久樱花 | 久久99蜜桃精品久久| 亚洲aⅴ乱码一区二区在线播放| 少妇精品久久久久久久| 欧美精品一区二区免费开放| 亚洲va在线va天堂va国产| 久热这里只有精品99| 成人毛片a级毛片在线播放| 欧美性感艳星| 欧美高清性xxxxhd video| 寂寞人妻少妇视频99o| av一本久久久久| 亚洲精品中文字幕在线视频 | 国产精品不卡视频一区二区| 五月伊人婷婷丁香| 日韩亚洲欧美综合| 免费看不卡的av| 久久精品久久久久久噜噜老黄| 91久久精品国产一区二区成人| 国产v大片淫在线免费观看| 国产亚洲精品久久久com| 美女xxoo啪啪120秒动态图| 亚洲成人手机| 精品99又大又爽又粗少妇毛片| 欧美变态另类bdsm刘玥| 精品国产露脸久久av麻豆| 亚洲怡红院男人天堂| 久久 成人 亚洲| 久久久久久久久久久丰满| 欧美区成人在线视频| 日韩制服骚丝袜av| 亚洲精品国产av成人精品| 日本欧美视频一区| 高清黄色对白视频在线免费看 | 26uuu在线亚洲综合色| 亚洲自偷自拍三级| 王馨瑶露胸无遮挡在线观看| 极品教师在线视频| 在线播放无遮挡| 国产乱人视频| 久久久久视频综合| videossex国产| 亚洲不卡免费看| 女性生殖器流出的白浆| 精华霜和精华液先用哪个| 啦啦啦中文免费视频观看日本| 亚洲国产精品国产精品| 午夜日本视频在线| 欧美xxxx黑人xx丫x性爽| 久热这里只有精品99| 日韩伦理黄色片| 久久久久网色| 女人久久www免费人成看片| 日韩av免费高清视频| 中文字幕亚洲精品专区| 日本-黄色视频高清免费观看| 成人影院久久| 精品久久久噜噜| 在线观看免费日韩欧美大片 | 少妇被粗大猛烈的视频| 麻豆成人午夜福利视频| 大香蕉久久网| 久久影院123| 国产大屁股一区二区在线视频| av在线观看视频网站免费| 日韩免费高清中文字幕av| 欧美一级a爱片免费观看看| 国产精品偷伦视频观看了| 亚洲va在线va天堂va国产| 欧美高清成人免费视频www| 搡女人真爽免费视频火全软件| a 毛片基地| 伦理电影大哥的女人| 又粗又硬又长又爽又黄的视频| 一级av片app| 男女免费视频国产| 在线观看免费高清a一片| 18禁动态无遮挡网站| av在线蜜桃| 一区二区三区四区激情视频| 夜夜爽夜夜爽视频| 精华霜和精华液先用哪个| 久久久久网色| 波野结衣二区三区在线| 搡老乐熟女国产| 老女人水多毛片| 日本色播在线视频| 国产 精品1| 波野结衣二区三区在线| 丰满迷人的少妇在线观看| 少妇精品久久久久久久| av免费观看日本| 免费观看性生交大片5| 联通29元200g的流量卡| 日韩制服骚丝袜av| 中文字幕亚洲精品专区| 亚洲欧美精品专区久久| 亚洲国产精品成人久久小说| 日本黄色日本黄色录像| 精品国产三级普通话版| 韩国av在线不卡| 中国美白少妇内射xxxbb| 各种免费的搞黄视频| 中文字幕制服av| 国产极品天堂在线| 精品一区二区三区视频在线| 精品国产一区二区三区久久久樱花 | 久久国产亚洲av麻豆专区| 18+在线观看网站| 丰满人妻一区二区三区视频av| 国产无遮挡羞羞视频在线观看| 欧美精品一区二区大全| 婷婷色综合www| 色综合色国产| 嫩草影院新地址| 久久久欧美国产精品| 色哟哟·www| 国产欧美日韩一区二区三区在线 | 国产精品99久久久久久久久| 午夜免费鲁丝| 久久精品国产亚洲av涩爱| 99久久精品热视频| 久久ye,这里只有精品| 亚洲图色成人| 美女国产视频在线观看| 99热这里只有是精品50| 免费久久久久久久精品成人欧美视频 | 亚洲色图av天堂| 少妇猛男粗大的猛烈进出视频| 色综合色国产| 国模一区二区三区四区视频| 久久人妻熟女aⅴ| 男男h啪啪无遮挡| 亚洲经典国产精华液单| 午夜福利影视在线免费观看| 亚洲av日韩在线播放| 一本一本综合久久| av网站免费在线观看视频| 国产 精品1| 在线看a的网站| 亚洲四区av| 国产成人精品久久久久久| 男人舔奶头视频| 交换朋友夫妻互换小说| 91午夜精品亚洲一区二区三区| 亚洲精品国产成人久久av| 亚洲不卡免费看| 哪个播放器可以免费观看大片| 久久精品夜色国产| 三级国产精品欧美在线观看| 亚洲欧美中文字幕日韩二区| 欧美区成人在线视频| 天堂8中文在线网| 男女无遮挡免费网站观看| 免费不卡的大黄色大毛片视频在线观看| 亚洲图色成人| 精品一区二区免费观看| 亚洲精品成人av观看孕妇| 天天躁夜夜躁狠狠久久av| 人妻少妇偷人精品九色| 男人舔奶头视频| 99热这里只有是精品在线观看| 国产极品天堂在线| 国产无遮挡羞羞视频在线观看| 91午夜精品亚洲一区二区三区| 久久精品夜色国产| 欧美日韩视频精品一区| 狠狠精品人妻久久久久久综合| 亚洲欧美日韩无卡精品| 成人二区视频| 日本wwww免费看| 99久久人妻综合| 精品久久久久久电影网| 又爽又黄a免费视频| 亚洲欧洲国产日韩| 老师上课跳d突然被开到最大视频| 日日撸夜夜添| av在线老鸭窝| 少妇的逼好多水| 久久这里有精品视频免费| 夫妻午夜视频| 欧美老熟妇乱子伦牲交| 深爱激情五月婷婷| 国产欧美亚洲国产| 男男h啪啪无遮挡| av福利片在线观看| 国产亚洲精品久久久com| 制服丝袜香蕉在线| 亚洲欧美日韩另类电影网站 | 99久国产av精品国产电影| 免费观看在线日韩| 国产人妻一区二区三区在| 国产成人精品久久久久久| 水蜜桃什么品种好| 国产亚洲5aaaaa淫片| 美女高潮的动态| 一区在线观看完整版| 欧美极品一区二区三区四区| www.色视频.com| 一个人免费看片子| 一级a做视频免费观看| 午夜视频国产福利| 天堂8中文在线网| 伦理电影大哥的女人| 99久久综合免费| 九九在线视频观看精品| 麻豆成人午夜福利视频| 汤姆久久久久久久影院中文字幕| 亚洲av综合色区一区| 亚洲欧美日韩无卡精品| 高清在线视频一区二区三区| 亚洲国产欧美在线一区| 另类亚洲欧美激情| 校园人妻丝袜中文字幕| 九九在线视频观看精品| 狂野欧美激情性bbbbbb| 国产黄频视频在线观看| 久久久久久人妻| 久久久久久久久大av| 亚洲av成人精品一区久久| 国产精品免费大片| 亚洲三级黄色毛片| 国产精品一区二区在线不卡| 日韩,欧美,国产一区二区三区| 校园人妻丝袜中文字幕| 在线天堂最新版资源| 成年人午夜在线观看视频| 亚洲一区二区三区欧美精品| 嘟嘟电影网在线观看| 搡女人真爽免费视频火全软件| 国产中年淑女户外野战色| 亚洲国产日韩一区二区| 国产精品成人在线| 国产av码专区亚洲av| 亚洲国产欧美在线一区| 新久久久久国产一级毛片| 欧美一级a爱片免费观看看| 两个人的视频大全免费| 女人十人毛片免费观看3o分钟| 在线观看免费视频网站a站| 国产成人91sexporn| 日韩一区二区三区影片| 亚洲av日韩在线播放| 大片免费播放器 马上看| 中文资源天堂在线| 国产男人的电影天堂91| 国产91av在线免费观看| 亚洲精品久久久久久婷婷小说| 中文字幕精品免费在线观看视频 | 久久精品国产a三级三级三级| 国产精品国产三级国产av玫瑰| 亚洲丝袜综合中文字幕| 天堂8中文在线网| 色网站视频免费| 国产美女午夜福利| 亚洲成人中文字幕在线播放| 免费黄网站久久成人精品| 久久久久视频综合| 日韩成人伦理影院| 男男h啪啪无遮挡| 国产免费一级a男人的天堂| 日韩一区二区三区影片| www.色视频.com| 欧美变态另类bdsm刘玥| 久久青草综合色| 欧美区成人在线视频| 狂野欧美激情性bbbbbb| 日韩不卡一区二区三区视频在线| 成人美女网站在线观看视频| 亚洲av电影在线观看一区二区三区| 国产成人精品福利久久| 美女福利国产在线 | 91精品国产国语对白视频| 精品熟女少妇av免费看| 久久久久性生活片| 日本wwww免费看| 久热这里只有精品99| 日本av手机在线免费观看| 人体艺术视频欧美日本| 亚洲欧美一区二区三区国产| 五月伊人婷婷丁香| 99热这里只有是精品50| 舔av片在线| 亚洲成人av在线免费| 国产 精品1| 五月伊人婷婷丁香| 精品视频人人做人人爽| 日本爱情动作片www.在线观看| 欧美三级亚洲精品| 韩国高清视频一区二区三区| 亚洲国产av新网站| 久久久精品免费免费高清| 亚洲,一卡二卡三卡| 亚洲欧美精品自产自拍| 啦啦啦啦在线视频资源| 亚洲av.av天堂| 午夜免费男女啪啪视频观看| 欧美成人一区二区免费高清观看| 久久国产精品大桥未久av | 久久久久久久亚洲中文字幕| 国产精品精品国产色婷婷| 国产精品99久久久久久久久| 热99国产精品久久久久久7| 自拍偷自拍亚洲精品老妇| 老女人水多毛片| 久久影院123| 久久久久国产网址| 亚洲精品日本国产第一区| 日本与韩国留学比较| 内地一区二区视频在线| 91久久精品国产一区二区三区| 日韩国内少妇激情av| 欧美xxxx黑人xx丫x性爽| 高清黄色对白视频在线免费看 | 欧美日本视频| 午夜老司机福利剧场| 午夜福利高清视频| 99热这里只有精品一区| 国产成人精品婷婷| 久久久久国产网址| 热99国产精品久久久久久7| av在线观看视频网站免费| 亚洲不卡免费看| 搡老乐熟女国产| 成人亚洲欧美一区二区av| 亚洲精品成人av观看孕妇| 国产精品一及| 久久av网站| 日韩免费高清中文字幕av| 在线观看免费日韩欧美大片 | 久久久久久久久久人人人人人人| 国产男人的电影天堂91| 婷婷色av中文字幕| 91午夜精品亚洲一区二区三区| 男人爽女人下面视频在线观看| 男女免费视频国产| 国产精品嫩草影院av在线观看| 国产免费福利视频在线观看| 最近手机中文字幕大全| 亚洲第一区二区三区不卡| 夜夜骑夜夜射夜夜干| 1000部很黄的大片| av女优亚洲男人天堂| 日产精品乱码卡一卡2卡三| 国产爽快片一区二区三区| 亚洲精品乱久久久久久| 国产午夜精品一二区理论片| 人人妻人人添人人爽欧美一区卜 | 男女免费视频国产| 国产乱来视频区| 精品久久久久久久久亚洲| 老熟女久久久| 丰满人妻一区二区三区视频av| 一级爰片在线观看| 国产精品三级大全| 尾随美女入室| 日日摸夜夜添夜夜爱| 精品国产一区二区三区久久久樱花 | 一个人看的www免费观看视频| 能在线免费看毛片的网站| 国内少妇人妻偷人精品xxx网站| 免费黄色在线免费观看| 男女下面进入的视频免费午夜| 国产日韩欧美亚洲二区| 少妇的逼好多水| 麻豆成人av视频| 99久久综合免费| 中文天堂在线官网| 三级国产精品片| 九九久久精品国产亚洲av麻豆| 国产一区有黄有色的免费视频| 国国产精品蜜臀av免费| 日韩国内少妇激情av| 婷婷色综合www| 亚洲精品乱码久久久久久按摩| 妹子高潮喷水视频|