• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Multi-example feature-constrained back-projection method for image super-resolution

    2017-06-19 19:20:12JunleiZhangDianguangGaiXinZhangandXuemeiLi
    Computational Visual Media 2017年1期
    關(guān)鍵詞:耐鹽菌劑菌液

    Junlei Zhang,Dianguang Gai,Xin Zhang,and Xuemei Li()

    Multi-example feature-constrained back-projection method for image super-resolution

    Junlei Zhang1,Dianguang Gai2,Xin Zhang1,and Xuemei Li1()

    Example-based super-resolution algorithms, which predict unknown high-resolution image information using a relationship model learnt from known high-and low-resolution image pairs,have attracted considerable interest in the f i eld of image processing.In this paper,we propose a multi-example feature-constrained back-projection method for image super-resolution.Firstly,we take advantage of a feature-constrained polynomial interpolation method to enlarge the low-resolution image.Next,we consider low-frequency images of dif f erent resolutions to provide an example pair.Then,we use adaptive k NN search to f i nd similar patches in the low-resolution image for every image patch in the high-resolution low-frequency image,leading to a regression model between similar patches to be learnt.The learnt model is applied to the low-resolution high-frequency image to produce high-resolution high-frequency information.An iterative back-projection algorithm is used as the f i nal step to determine the f i nal high-resolution image. Experimental results demonstrate that our method improves the visual quality of the high-resolution image.

    feature constraints;back-projection; super-resolution(SR)

    1 Introduction

    The aim of image super-resolution(SR)is to determine a corresponding high-resolution(HR)image from one or multiple low-resolution(LR) images[1,2].As a basic task in image processing, image SR is widely applied in many f i elds,such as computer vision,medical imaging,computer animation,and digital media technology[3].As many diverse unknown pixels are estimated from groups of pixels in the original LR image,image super-resolution still faces great challenges.Over the past several decades,many experts and scholars have undertaken much research into producing SR images. SR image algorithms can be loosely classif i ed into three categories of methods based on interpolation, reconstruction,and example learning,respectively.

    The classical method is to use polynomial interpolation,particularly using cubic splines[4,5] or cubic convolution[6].Interpolation-based SR methods typically utilize dif f erent kernel functions to estimate the unknown pixels in the HR image. Such methods are widely applied in a variety of commercial image processing softwares:the advantage of this class of SR approaches is that they are simple yet fast.However,the drawback is that they often blur details in textures and cause jagged artifacts along edges[7],as they do not model edges and textures in the image.

    Reconstruction-based SR methods are based upon an image degradation model and solve an illposed inverse problem of deblurring,up-sampling, and denoising to produce the high-quality image. The iterative back-projection(IBP)method,f i rst proposed by Irani and Peleg[8],projects errors back to the HR image iteratively,and the f i nal HR image is the one with minimum reconstruction errors. However,the HR images produced always suf f er from obvious jagged and ringing artifacts along edges, and the back-projection of reconstruction errors ignores anisotropic structures in image features.Later,Dong et al.[9]proposed a nonlocal iterative back-projection(NLIBP)method,combining nonlocal information with the IBP algorithm, which ef f ectively reduces the reconstruction errors. Unfortunately,the NLIBP algorithm may induce noise during the process of searching pixels for local information for reconstruction.

    In recent years,example learning-based methods for image SR have become popular.This type of method predicts the unknown image information by learning from known instances.Example-based SR can be further generally subdivided into three categories of methods based on image pyramids, sparse representations,and neighbor embedding. Image pyramid methods obtain HR image sequences, which are taken as known examples,and according to the similarity between dif f erent resolution versions of the same image,the high-resolution image blocks are predicted[10–12].With the gradual improvement of the theory of sparse representation[13],the method was introduced to the f i eld of image SR,and has not been investigated by many researchers[14–17]. The principle of this kind of method is that the LR image can be sparsely expressed using a lowresolution dictionary,giving weights for use with a corresponding high-resolution dictionary to obtain the HR image.Neighbor embedding methods are based on local linear embedding[18–20],which f i nds several neighboring image patches for each LR image patch in the low-resolution dictionary,and calculates each neighbor’s weight using a least-squares method. The weights are used to combine HR image patches to get the f i nal HR image patches.

    Compared with the polynomial interpolation method,the example-based method has higher complexity,but the resulting images are visually better at preserving image features and keeping more image details.Although these approaches are capable of adding details,the output image quality depends greatly on the image training set selected.

    In this paper,we put forward a novel multiexample feature-constrained back-projection method for image super-resolution.Unlike other multiple example-based methods,image instances come from the input image instead of from an external image library.The proposed method f i rst makes use of a simple and effi cient feature interpolation algorithm to initialize the HR image.Then the instance pair comprises the initial HR image and the lowfrequency information from the low-resolution input image.For each patch in the high-resolution lowfrequency image we seek similar patches from the low-resolution image using an adaptive k NN search algorithm,which learns a regression model between similar patches.This learnt model is applied to the low-resolution high-frequency image to augment it with high-resolution high-frequency information. Iterative back-projection is used as the f i nal step to get the f i nal HR image.Experiments indicate that the proposed method achieves highly competitive performance in visual quality,especially along the edges and within textures.

    The rest of this paper is organized as follows.In Section 2,we brief l y review the image degradation model,which forms the basis of this paper.We present our algorithm in Section 3.In Section 4,we introduce the feature-constrained interpolation,and the iterative back-projection algorithm is described in Section 5.Section 6 gives experimental results for our method,compares it with other state-of-the-art methods,and draws conclusions.

    2 Image degradation model

    The image degradation model describes the inverse process of image super-resolution,and indicates reasons for image degradation.In this paper,we use degradation model formulated as

    where L is the LR image,H is the HR image,D is downsampling by a scale factor,B is an operation which can be interpreted as Gaussian smoothing,?is the convolution operation,and N is noise.Figure 1 gives a schematic diagram for downsampling by a scale factor n=2,where the undegraded pixels are represented by red dots and the blurred pixels are represented by orange dots.

    Fig.1 Schematic diagram of degradation model.

    3 Example-based method

    Relative to smooth areas,the changes at edges and the texture characteristics of natural images, are obvious.The human visual system is more sensitive to high-frequency areas,so it is crucial to maintain the structure of image feature areas in SR.This paper makes full use of edges and texture structures,and other image features,with using a feature-constrained interpolation method for initialization.In addition,in images,it is often the case that many patterns appear repeatedly in the image[21–23],especially in regions with regular structures.This property is called image self-similarity,and is very helpful to f i x pixels with disturbing artifacts.In this paper,we propose a multi-example feature-constrained back-projection method for SR which uses the similarity between images at dif f erent resolutions.The method is as follows.

    Fig.2 Schematic diagram of the proposed approach.Steps 1 and 2 use feature-constrained polynomials,steps 3 and 4 are performed using adaptive k NN search,and step 5 uses iterative backprojection.

    Given an input LR image L,the aim of image super-resolution is to determine the HR image.As shown in Fig.2,we enlarge the input image L n times using a feature-constrained polynomial interpolation method to get an initial HR image.Part of the high-frequency information is lost due to polynomial interpolation,so the initial HR image is considered to be a low-frequency image,denoted Ilf,hr(lowfrequency high-resolution image).Using a Gaussian fuzzy sampling model for image degradation of image L,the same feature-constrained polynomial interpolation method is applied to get the same resolution image as input image L without highfrequency information,denoted Ilf,lr(low-frequency low-resolution image).Then{Ilf,hr,Ilf,lr}constitute the known example pair at low frequency in highand low-resolution images.For the high-frequency information,compared to image L,Ilf,hris missing part of the high-frequency information,so the high frequency of the LR image is Ihf,lr=L?Ilf,lr.The unknown high frequency of HR image is given by Ihf,hr=H?Ilf,hr,with{Ihf,hr,Ihf,lr}regarded as the example pair for high frequency at a dif f erent resolution.We then determine a regression model by learning from the example pair{Ilf,hr,Ilf,lr},and apply it to the low-resolution high-frequency image to determine the high-resolution high-frequency information.This can be written H0=Ilf,hr+Ihf,hr. Iterative back-projection is used as the f i nal step to get the f i nal HR image.Figure 2 gives a schematic diagram of the proposed approach.

    3.1 Feature vectors

    The regression relation between the image example pair{Ilf,hr,Ilf,lr}is based on image patches.Thus, we f i rstly extract image patches in order.Each small patch has 3×3 pixels.In order to increase information consistency between the image patches, the number of overlapping pixels is set to 2.The image patches make up feature vectors;the feature vector sets of the images Ilf,lr,Ilf,hr,Ihf,lr,Ihf,hrare respectivelyvh:Vh:where m is the number of HR image patches and n is the number of LR image patches.

    In this paper,we employ Euclidean distance to measure similarity between feature vectors,and hence the similarity of image patches.To make feature vectors suitably ref l ect image features,the mean value is subtracted from the pixel values, and these are combined with weighted information from the image for use as feature vectors of the low-frequency images,Ilf,hrand Ilf,lr.Figure 3 illustrates the feature vector representation for an image patch whose center coordinates are (46,70).The edge information is the result of Canny edge detection,λ denotes weight,and the feature vectors of the high-frequency images Ihf,hrand Ihf,lrare expressed as pixel values.

    Fig.3 Feature vectors.

    3.2 Adaptive k NN search algorithm

    The relationship between the example pair {Ilf,hr,Ilf,lr}is a one-to-many adaptive multiinstance regression model.Compared to the single-instance model in Ref.[1],this model is more robust.LLE-based k NN search algorithms search for fi xed k instances for each patch,but on account of the anisotropic structures of image features,we take advantage of an adaptive k NN search algorithm.

    The i th image patch belonging to Ilf,hrhas feature vectorWe search adaptively for k similar vectors from the feature vector of Ilf,lr,vl,to f i nd a similar set for,denoted Si:{bt}.Then weighted reconstruction is used to get0

    We sort the feature vectors of vlin descending order according to the degree of similarity tothen add to Si:{bt}in sequence the most similar feature vectors toWhen the reconstruction error e=no longer changes,we stop adding vectors to Si:{bt}.The objective function used is (

    In the LEE-based k NN search method[18],the weight values for similar patches are calculated by a least-squares method,and their values sum to 1,which results in appearance of negative weights. Thus the image quality usually f l uctuates with the value of k.To avoid this problem,we use a Gaussian function to set the weight values of similar patches, making them all positive:

    where N is the size of each image patch,and h2controls the decay speed,set to 1 in this paper. The procedure for adaptive k NN search algorithm is summarized in Algorithm 1.

    The adaptive k NN search method determines Si,the similar set forand the values of the weights. The learnt model is applied to the example pair {Ihf,hr,Ihf,lr},so the high-frequency information in Ihf,hr,def i ned ascorresponding withcan be found as follows:

    Algorithm 1 Adaptive k NN search algorithm

    By traversing the feature vector set,we get the vector set for Ihf,hr,def i ned as Vh:{Bih}mi=1.By performing the process of fetching image patches and the inverse process of vector operations,we get the Ihf,hr.As a result,the HR image can be def i ned as H0=I hf,hr+I lf,hr.

    4 Feature-constrained polynomial interpolation method

    In the degradation model in Eq.(1),the high-frequency information is f i ltered out by a Gaussian blurring f i lter,producing L from H.Thus,dif f erent HR images having dif f erent highfrequency information but the same low-frequency information can produce the same LR image.Thus, the initial HR image is essential to the f i nal HR image.Most learning-based methods adopt polynomial interpolation to initialize the HR imagefor simplicity,but these methods often cause severe jagged artifacts along edges and blurring as they do not consider feature areas suffi ciently.Instead, this paper adopts a simple and effi cient featureconstrained polynomial interpolation(FCI)method.

    For every small region,a 3×3 patch shown in Fig.4,we assume that the surface can be expressed by a quadratic function fi,j,where(i,j)is the coordinate of the center pixel Pi,jof the surface:

    where(x,y)is the coordinate for the sample point on the surface with(i,j)as the original point,(x,y)∈[?1.5,1.5],(a1,...,a5)are the unknown coeffi cients, and the coordinates of Pi,jare(0,0).

    As shown in Fig.4,there are four directions marked by red arrows around the center pixel Pi,jand other eight pixels surrounding it.The f i rst order dif f erences at the original point along the four directions x,y,x+y,and x?y are correspondingly as follows:

    Coeffi cients a4and a5can be computed by solving Eq.(7)with a weighted least-squares method def i ned as follows:

    where Uqican be expressed via the following set of equations:

    The weight Wifor each equation is given by

    Fig.4 Four directions.

    Fig.5 Overlap region for four neighboring patches.

    where?iis the second order dif f erence along the same direction as the relevant equation,and?i⊥is the second order dif f erence in the vertical direction. For example,?iin the x direction is given by?x= Pi+1,j+Pi?1,j?2Pi,j,and its?i⊥is given by?x⊥= Pi,j+1+Pi,j?1?2Pi,j.Here,σ is a small value to make Wimeaningful when?i=0.The smaller?iis,the more the possible pixels forming the edges. The relationship for?i⊥is just the opposite.

    To determine the unknown coeffi cients a1,a2,a3, we f i t the other eight pixels around Pi,jusing the objective function:

    where(u,v)is the coordinate of the pixel around Pi,j, (u,v)∈[?1,0,1],and u2+v20.Abbreviating the function in Eq.(7),we can write that equation as fi,j(u,v)=Pi+u,j+v.The equation is solved by using the least-squares method on the following function:

    where weights along the same direction are def i ned in the same way as for Eq.(6).For example,pixels Pi+1,jand Pi?1,jboth lie in the same direction along the x direction,so the weight can be set to

    We can observe from Fig.5 that the blue region, which is the center of the overlap region for four neighboring patches,can be def i ned as

    where(m,n)is the coordinate of the interpolated point for which(i,j)is the original point.Using function F,we can interpolate unknown pixels by averaging four adjacent pixels with relevant scale factors.

    5 Iterative back-projection

    After these operations are complete,we have the HR image H0.In order to further improve the quality of the image,we introduce iterative back-projection as a global post-processing operation.In fact,it plays an important role in determining the HR image’s visual quality.

    In ideal conditions,a perfect HR image will reproduce the same LR image as the original oneby the degradation model in Eq.(1).However,the HR image always reproduces LR images with errors compared to the input LR image.To describe this concisely,let L denote the input LR image and H denote the reconstructed HR image.The ideal HR image is the one with minimum reconstruction error: (

    This problem is solved by projecting reconstruction errors back to the HR image iteratively:

    where P(·)is feature-constrained polynomial interpolation as explained in Section 3;we use it to avoid propagating errors isotropically during the iterative process which would result in jagged artifacts and ringing ef f ects in the HR image. The back-projection procedure is summarized in Algorithm 2.

    Here,the number of iterations is set to 2.This algorithm provides an improved HR image.Then, we shrink the improved HR image using Eq.(1), giving an LR image denoted L0.For each pixelin L0and the corresponding pixel piin the input LR image L,we assume there is a related scale coeffi cientUsing the inverse process of Eq.(1),we can f i nd 4 pixels in the improved HR image by iterative back-projection for each corresponding pixel in L0.Then we get values for these 4 pixels by multiplying them by the relevant scale coeffi cient θi,f i nally giving the desired HR image.

    6 Experimental results and conclusions

    In this section we assess the ef f ectiveness of the proposed method(feature-constrained multi-example back-projection,FCMEBP)through experiments,and compare it with other f i ve methods.CSFI[24]is cubic surface f i tting with edges as constraints.NeedFS[25]is based on neighbor embedding edge detection feature selection. IUIE[26]and NARM[27]represent example-based and sparse coding methods respectively.FCME is our multi-example feature-constrained method ignoring back-projection.

    Algorithm 2 Iterative back-projection

    We use the 8 common test images in Fig.6.The test images are regarded as reference HR images, and appropriate LR images are determined from these HR images using a scaling factor of n= 2.The six super-resolution methods are used to magnify the LR images to the same resolution as the original HR images.The ef f ectiveness of each method is verif i ed by comparing the results with test HR images quantitatively and visually.To be fair,for each method,the degradation model is set in accordance with the corresponding reference.

    6.1 Quantitative assessment

    In order to evaluate the quality of the results of magnif i cation,we adopt the most commonly used objective methods based on comparisons with explicit numerical criteria[28],including peak signal to noise ratio(PSNR)and structural similarity (SSIM).PSNR measures the dif f erence between the HR image and the test image,while SSIM measures the similarity of the structural information in the images.The numerical value of PSNR for each standard image is listed in Table 1,and the value of SSIM of each test image is listed in Table 2.Table 1 shows that the proposed method achieves higher PSNR than the other f i ve methods.For SSIM,the proposed method,FCME,and NeedFS have aboutthe same values,but there is an obvious improvement compared with the other three methods.

    2.1 鹽脅迫條件下生物復(fù)菌劑對(duì)黃瓜種子發(fā)芽及生長(zhǎng)的影響 由表2可知,空白對(duì)照(加水)下,“苗壯素”菌液對(duì)黃瓜種子發(fā)芽率、鮮重及干重影響較小。但在鹽脅迫處理下,種子發(fā)芽率提高17.5%,鮮重提高23.5%,說(shuō)明“苗壯素”對(duì)黃瓜種子具有明顯的耐鹽促生作用。

    Fig.6 Test images.Top:Artwall,Lena,Baby,Butterf l y.Bottom: Zebra,Hat,Head,Pepper.

    Table 1 PSNR values

    Table 2 SSIM values

    6.2 Visual quality comparison

    Fig.8 Two-time reconstructed image Lena using the six SR methods.(a)Input test image.(b)FCME.(c)NARM.(d)CSFI. (e)NeedFS.(f)IUIE.(g)Our method.

    Fig.9 Two-time reconstructed image Pepper using the six SR methods.(a)Input test image.(b)FCME.(c)NARM.(d)CSFI. (e)NeedFS.(f)IUIE.(g)Our method.

    To compare the visual quality of each method,we illustrate two-time reconstructed HR images for the Artwall,Lena,and Pepper images in Figs.7–9.For reasons of space,we simply show some local ef f ects on each image,produced by each method.We see that CSFI avoids jagged artifacts ef f ectively,but the loss of some high frequencies means that the result images are blurred,e.g.,the regions surrounded by red rectangles in Fig.7(d)and Fig.9(d).NeedFS produces evidently blurred textures,e.g.,see the Artwall’s crack in Fig.7(e)and the Pepper’s handle in Fig.9(e).IUIE produces relatively clear HR images,but edge information is distorted,e.g.,in the Artwall’s texture in Fig.7(f),Lena’s hair in Fig.8(f),and the region marked by a red rectangle in Fig.9(f). NARM produces HR images with clear textures,but we can clearly see the blurred eyes in the Artwall image in Fig.7(c);in Fig.9(c),the surface texture of the Pepper is distorted.FCME produces highfrequency information which makes the HR images relatively sharp,but in Fig.7(b)and Fig.9(b),we note that the method cannot produce well-ordered textures.

    We also compare results produced from MR brain images in Fig.10.They show that the proposed method works well not only for natural images,but also for MR images,producing sharp edges while ef f ectively avoiding jagged artifacts during the SR process.

    In order to further compare the FCME and FCMEBP methods,we illustrate other two-time reconstructed HR images for the Baby and Butterf l y in Figs.11 and 12,respectively.In Fig.11(b) and Fig.12(b),information loss along the edge of the woolly hat and the scales on the wings cause the HR images to lack details.However, the proposed method ef f ectively regenerates image features,suppresses jagged and ringing ef f ects, producing high-resolution information that makes the HR image clearer.

    6.3 Conclusions

    Fig.10 Two-time reconstructed MR brain image using the six SR methods NARM,CSFI,NeedFS,IUIE,FCME,and our method,in order.

    Fig.11 Two-time reconstructed image Baby using two SR methods. (a)Input test image.(b)FCME.(c)Our method.

    Fig.12 Two-time reconstructed image Butterf l y using two SR methods.(a)Input test image.(b)FCME.(c)Our method.

    This paper presents a novel method for image superresolution based on multiple examples,using featureconstrained interpolation and back-projection.Our proposed method f i rst obtains an HR image by using feature-constrained polynomial interpolation.We consider low-frequency images of dif f erent resolution images as the example pair.We use adaptive k NN search to f i nd similar patches from the low-resolution image for every image patch in the high-resolution low-frequency image,allowing us to learn a regression model between similar patches.This model is applied to the low-resolution high-frequency image to get high-resolution highfrequency information.Iterative back-projection is used as the f i nal step to get the f i nal high-resolution image.Our experimental results demonstrate that our proposed method can achieve high-quality image super-resolution.Use of direct interpolation helps to avoid jagged artifacts and iterative back-projection preserves sharp edges.

    Acknowledgements

    The authors would like to thank the anonymous reviewers for giving valuable suggestions that greatly improved the paper.The authors also thank other researchers who provided the code for their algorithms for comparative testing.This project was supported by the National Natural Science Foundation of China(Grant Nos.61572292, 61332015,61373078,and 61272430),and the National Research Foundation for the DoctoralProgram of Higher Education of China(Grant No. 20110131130004).

    [1]Glasner,D.;Bagon,S.;Irani,M.Super-resolution from a single image.In:Proceedings of the IEEE 12th International Conference on Computer Vision,349–356,2009.

    [2]Park,S.C.;Park,M.K.;Kang,M.G.Super-resolution image reconstruction:A technical overview.IEEE Signal Processing Magazine Vol.20,No.3,21–36, 2003.

    [3]Kolte,R.;Arora,A.Image super-resolution. Available at https://pdfs.semanticscholar.org/20de/ 2880a4196a733314252a717f1a55f5f0ea64.pdf.

    [4]Hou,H.;Andrews,H.Cubic splines for image interpolation and digital f i ltering.IEEE Transactions on Acoustics,Speech,and Signal Processing Vol.26, No.6,508–517,1978.

    [5]McKinley,S.;Levine,M.Cubic spline interpolation. College of the Redwoods Vol.45,No.1,1049–1060, 1998.

    [6]Keys,R.Cubic convolution interpolation for digital image processing.IEEE Transactions on Acoustics, Speech,and Signal Processing Vol.29,No.6,1153–1160,1981.

    [7]Wang,H.;Gao,X.;Zhang,K.;Li,J.Singleimage super-resolution using active-sampling Gaussian process regression.IEEE Transactions on Image Processing Vol.25,No.2,935–948,2016.

    [8]Irani,M.;Peleg,S.Improving resolution by image registration.CVGIP:Graphical Models and Image Processing Vol.53,No.3,231–239,1991.

    [9]Dong,W.;Zhang,L.;Shi,G.;Wu,X.Nonlocal back-projection for adaptive image enlargement. In:Proceedings of the 16th IEEE International Conference on Image Processing,349–352,2009.

    [10]Adelson,E.H.;Anderson,C.H.;Bergen,J.R.; Burt,P.J.;Ogden,J.M.Pyramid methods in image processing.RCA Engineer Vol.29,No.6,33–41,1984.

    [11]Bevilacqua,M.;Roumy,A.;Guillemot,C.;Alberi-Morel,M.L.Low-complexity single-image superresolution based on nonnegative neighbor embedding. In:Proceedings of British Machine Vision Conference, 135.1–135.10,2012.

    [12]Yang,C.-Y.;Huang,J.-B.;Yang,M.-H.Exploiting self-similarities for single frame super-resolution.In: Computer Vision–ACCV 2010.Kimmel,R.;Klette, R.;Sugimoto,A.Eds.Springer Berlin Heidelberg, 497–510,2010.

    [13]Yang,J.;Wright,J.;Huang,T.S.;Ma,Y. Image super-resolution via sparse representation. IEEE Transactions on Image Processing Vol.19,No. 11,2861–2873,2010.

    [14]Dong,W.;Shi,G.;Zhang,L.;Wu,X.Super-resolution with nonlocal regularized sparse representation.In: Proceedings of SPIE7744,Visual Communications and Image Processing,77440H,2010.

    [15]Yang,J.;Wright,J.;Huang,T.;Ma,Y.Image super-resolution as sparse representation of raw image patches.In:Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,1–8,2008.

    [16]Zhang,H.;Zhang,Y.;Huang,T.S.Effi cient sparse representation based image super resolution via dual dictionary learning.In:Proceedings of the IEEE International Conference on Multimedia and Expo,1–6,2011.

    [17]Zhao,Y.;Yang,J.;Zhang,Q.;Song,L.;Cheng, Y.;Pan,Q.Hyperspectral imagery super-resolution by sparse representation and spectral regularization. EURASIP Journal on Advances in Signal Processing Vol.2011,87,2011.

    [18]Chang,H.;Yeung,D.-Y.;Xiong,Y.Super-resolution through neighbor embedding.In:Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition,I,2004.

    [19]Gao,X.;Zhang,K.;Tao,D.;Li,X.Image superresolution with sparse neighbor embedding.IEEE Transactions on Image Processing Vol.21,No.7, 3194–3205,2012.

    [20]Roweis,S.T.;Saul,L.K.Nonlinear dimensionality reduction by locally linear embedding.Science Vol. 290,No.5500,2323–2326,2000.

    [21]BenAbdelkader,C.;Cutler,R.;Nanda,H.;Davis, L.EigenGait:Motion-based recognition of people using image self-similarity.In:Audio-and Video-Based Biometric Person Authentication.Bigun,J.; Smeraldi,F.Eds.Springer Berlin Heidelberg,284–294, 2001.

    [22]Church,K.W.;Helfman,J.I.Dotplot:A program for exploring self-similarity in millions of lines of text and code.Journal of Computational and Graphical Statistics Vol.2,No.2,153–174,1993.

    [23]Shechtman,E.;Irani,M.Matching local selfsimilarities across images and videos.In:Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,1–8,2007.

    [24]Caiming,Z.;Xin,Z.;Xuemei,L.;Fuhua,C.Cubic surface f i tting to image with edges as constraints.In: Proceedings of the IEEE International Conference on Image Processing,1046–1050,2013.

    [25]Chan,T.-M.;Zhang,J.;Pu,J.;Huang,H. Neighbor embedding based super-resolution algorithm through edge detection and feature selection.Pattern Recognition Letters Vol.30,No.5,494–502,2009.

    [26]Freedman,G.;Fattal,R.Image and video upscaling from local self-examples.ACM Transactions on Graphics Vol.30,No.2,Article No.12,2011.

    [27]Dong,W.;Zhang,L.;Lukac,R.;Shi,G. Sparse representation based image interpolation with nonlocal autoregressive modeling.IEEE Transactions on Image Processing Vol.22,No.4,1382–1394,2013.

    [28]Hore,A.;Ziou,D.Image quality metrics:PSNR vs.SSIM.In:Proceedings of the 20th International Conference on Pattern Recognition,2366–2369,2010.

    Dianguang Gaireceived his master of engineering degree in computer science and technology from Shandong University,Jinan,China,and is working in the Earthquake Administration of Shandong Province.His research interests include data warehousing and earthquake prediction.

    Xin Zhangis a Ph.D.student in the Department of Computer Science and Technology,Shandong University,Jinan,China.She received her bachelor degree in computer science from Shandong University in 2012.Her research interests include image processing,computer graphics, geometry processing,and CAGD.

    Xuemei Lireceived her master and doctor degrees from Shandong University,Jinan,China,in 2004 and 2010,respectively.She is currently an associate professor in the School of Computer Science and Technology, Shandong University,and a member of the GD and IV Lab.She is engaged in research on geometric modeling,CAGD,medical image processing,and information visualization.

    Open AccessThe articles published in this journal are distributed under the terms of the Creative Commons Attribution 4.0 International License(http:// creativecommons.org/licenses/by/4.0/),which permits unrestricted use,distribution,and reproduction in any medium,provided you give appropriate credit to the original author(s)and the source,provide a link to the Creative Commons license,and indicate if changes were made.

    Other papers from this open access journal are available free of charge from http://www.springer.com/journal/41095. To submit a manuscript,please go to https://www. editorialmanager.com/cvmj.

    ang

    his B.S.degree in computer science and technology from Shandong Jiaotong University, Jinan,China,in 2015.Currently,he is a master candidate in the School of Computer Science and Technology, Shandong University,Jinan,China. His research interests include computer graphics and image processing.

    1 School of Computer Science and Technology,Shandong University,Jinan,250101,China.E-mail:J.Zhang, 17865135006@163.com;X.Li,xmli@sdu.edu.cn().

    2 Earthquake Administration of Shandong Province, China.

    Manuscript received:2016-09-09;accepted:2016-12-22

    猜你喜歡
    耐鹽菌劑菌液
    多糖微生物菌液對(duì)油菜吸收養(yǎng)分和土壤氮磷淋失的影響
    有了這種合成酶 水稻可以耐鹽了
    復(fù)合微生物菌劑在農(nóng)業(yè)生產(chǎn)中的應(yīng)用
    Bonfire Night
    鼠傷寒沙門氏菌回復(fù)突變?cè)囼?yàn)中通過(guò)吸光度值測(cè)定菌液濃度的方法研究
    外生菌根真菌菌劑的制備及保存研究
    園林科技(2020年2期)2020-01-18 03:28:26
    新型液體菌劑研制成功
    “播可潤(rùn)”微生物菌劑在甜瓜上的應(yīng)用效果研究
    復(fù)合微生物菌液對(duì)黃瓜生長(zhǎng)和抗病蟲性效應(yīng)研究
    上海蔬菜(2015年2期)2015-12-26 05:03:40
    耐鹽保水劑的合成及其性能
    国产亚洲精品一区二区www| 夜夜夜夜夜久久久久| 亚洲成人中文字幕在线播放| 超碰成人久久| 特大巨黑吊av在线直播| 亚洲欧美日韩卡通动漫| 国产精品香港三级国产av潘金莲| 国产精品99久久99久久久不卡| 久久久久精品国产欧美久久久| 国产精品久久视频播放| 丰满人妻一区二区三区视频av | 亚洲精品久久国产高清桃花| 一区二区三区激情视频| 99久久精品一区二区三区| bbb黄色大片| 亚洲美女黄片视频| 亚洲精品在线美女| 亚洲无线观看免费| 国内精品久久久久久久电影| 制服丝袜大香蕉在线| 亚洲熟妇熟女久久| 色在线成人网| 亚洲av五月六月丁香网| 国内久久婷婷六月综合欲色啪| 免费观看的影片在线观看| 日韩三级视频一区二区三区| 大型黄色视频在线免费观看| 婷婷精品国产亚洲av| 国产久久久一区二区三区| 精品熟女少妇八av免费久了| 日韩欧美免费精品| 亚洲熟妇中文字幕五十中出| 在线观看一区二区三区| av在线蜜桃| 老司机深夜福利视频在线观看| 一本精品99久久精品77| 亚洲成av人片免费观看| 免费看美女性在线毛片视频| 男女床上黄色一级片免费看| 国产一区二区在线观看日韩 | 久久精品国产99精品国产亚洲性色| 又大又爽又粗| 久久久国产精品麻豆| 天堂动漫精品| 日本与韩国留学比较| 日韩欧美国产一区二区入口| 1000部很黄的大片| 搞女人的毛片| 精品国产乱子伦一区二区三区| 精品久久蜜臀av无| 麻豆成人午夜福利视频| 日韩高清综合在线| 男女视频在线观看网站免费| 中文字幕熟女人妻在线| 久久天堂一区二区三区四区| 美女大奶头视频| 好男人电影高清在线观看| 亚洲专区国产一区二区| 久久久久免费精品人妻一区二区| 一级毛片高清免费大全| 国内精品久久久久精免费| 久久草成人影院| 亚洲精华国产精华精| 两个人视频免费观看高清| 亚洲熟妇熟女久久| 亚洲美女视频黄频| 日本与韩国留学比较| 日本黄大片高清| 日韩精品中文字幕看吧| 国产成人av激情在线播放| 夜夜夜夜夜久久久久| 热99re8久久精品国产| tocl精华| 十八禁人妻一区二区| 亚洲色图 男人天堂 中文字幕| a在线观看视频网站| 国产97色在线日韩免费| 亚洲成av人片在线播放无| 久久久久久久久免费视频了| 动漫黄色视频在线观看| 天堂动漫精品| 免费观看的影片在线观看| 国内久久婷婷六月综合欲色啪| 一个人看视频在线观看www免费 | 在线观看免费午夜福利视频| 国产av麻豆久久久久久久| 欧美日韩黄片免| 亚洲av免费在线观看| 黄片大片在线免费观看| 午夜精品一区二区三区免费看| 国产极品精品免费视频能看的| 午夜免费观看网址| 美女cb高潮喷水在线观看 | 成人特级av手机在线观看| 亚洲成人久久爱视频| 国产精品电影一区二区三区| www.自偷自拍.com| 51午夜福利影视在线观看| 亚洲精品456在线播放app | 又大又爽又粗| 啦啦啦韩国在线观看视频| 我的老师免费观看完整版| 老汉色av国产亚洲站长工具| 99久久国产精品久久久| 日韩国内少妇激情av| 久久人人精品亚洲av| 偷拍熟女少妇极品色| 欧美黄色淫秽网站| 国产精品1区2区在线观看.| 国产蜜桃级精品一区二区三区| 欧美xxxx黑人xx丫x性爽| 伦理电影免费视频| 12—13女人毛片做爰片一| 九色成人免费人妻av| 日韩有码中文字幕| 日本熟妇午夜| 日韩欧美三级三区| 免费在线观看成人毛片| 色老头精品视频在线观看| 少妇丰满av| 国产精品久久视频播放| 国产探花在线观看一区二区| 无遮挡黄片免费观看| 51午夜福利影视在线观看| 精品99又大又爽又粗少妇毛片 | 国产美女午夜福利| 不卡av一区二区三区| 男人舔女人下体高潮全视频| tocl精华| 国产亚洲精品一区二区www| 久久久国产欧美日韩av| 一边摸一边抽搐一进一小说| 99久久精品一区二区三区| 国产三级中文精品| 免费搜索国产男女视频| 99热精品在线国产| 波多野结衣高清无吗| 99国产综合亚洲精品| 中出人妻视频一区二区| 亚洲国产高清在线一区二区三| 五月玫瑰六月丁香| 成年免费大片在线观看| 在线a可以看的网站| 在线免费观看的www视频| 久久久国产成人免费| 亚洲av中文字字幕乱码综合| 巨乳人妻的诱惑在线观看| 国产精品 国内视频| 国产又黄又爽又无遮挡在线| 人人妻人人澡欧美一区二区| 欧美成人一区二区免费高清观看 | 俄罗斯特黄特色一大片| 亚洲天堂国产精品一区在线| 亚洲av成人不卡在线观看播放网| 男女视频在线观看网站免费| 国产激情欧美一区二区| 一级a爱片免费观看的视频| 亚洲黑人精品在线| 99精品在免费线老司机午夜| 一级a爱片免费观看的视频| 久久天躁狠狠躁夜夜2o2o| 亚洲人成网站高清观看| 最好的美女福利视频网| 这个男人来自地球电影免费观看| 亚洲av片天天在线观看| 国产欧美日韩一区二区三| 精品欧美国产一区二区三| 成人精品一区二区免费| 久久婷婷人人爽人人干人人爱| 亚洲欧美一区二区三区黑人| 99热这里只有是精品50| 亚洲精品一区av在线观看| 国产高清有码在线观看视频| 日韩大尺度精品在线看网址| 精华霜和精华液先用哪个| 中亚洲国语对白在线视频| 亚洲欧美日韩高清在线视频| 国产真人三级小视频在线观看| 日韩高清综合在线| 国产伦一二天堂av在线观看| 久久久久久久久久黄片| 久久久国产成人精品二区| 日本成人三级电影网站| 黄色视频,在线免费观看| 亚洲av电影不卡..在线观看| 国产乱人视频| 国模一区二区三区四区视频 | 国产黄色小视频在线观看| 亚洲国产精品久久男人天堂| 久久久久亚洲av毛片大全| 51午夜福利影视在线观看| 国产成年人精品一区二区| 狂野欧美白嫩少妇大欣赏| 亚洲欧美日韩东京热| 久久久成人免费电影| 国产成人aa在线观看| 亚洲自偷自拍图片 自拍| 色综合亚洲欧美另类图片| 午夜激情欧美在线| 久久香蕉精品热| 精品久久久久久久毛片微露脸| 亚洲精品乱码久久久v下载方式 | 国产黄a三级三级三级人| 久久草成人影院| 熟女电影av网| 叶爱在线成人免费视频播放| 欧美一级a爱片免费观看看| 男女午夜视频在线观看| 欧美成狂野欧美在线观看| 好看av亚洲va欧美ⅴa在| 国产精品久久久久久精品电影| 在线观看免费午夜福利视频| 亚洲成人免费电影在线观看| 日日干狠狠操夜夜爽| 人妻丰满熟妇av一区二区三区| 村上凉子中文字幕在线| 国产成人aa在线观看| 亚洲av五月六月丁香网| 舔av片在线| 丰满人妻熟妇乱又伦精品不卡| 欧美+亚洲+日韩+国产| 亚洲国产精品成人综合色| 啦啦啦观看免费观看视频高清| 亚洲自拍偷在线| 桃红色精品国产亚洲av| 国内精品一区二区在线观看| 淫秽高清视频在线观看| 久久国产精品人妻蜜桃| 在线观看一区二区三区| 最新在线观看一区二区三区| 日韩免费av在线播放| 欧美激情在线99| 免费观看精品视频网站| 国产精品久久久人人做人人爽| 美女 人体艺术 gogo| 国产精品98久久久久久宅男小说| 少妇裸体淫交视频免费看高清| 亚洲天堂国产精品一区在线| 男人舔女人下体高潮全视频| 欧美黄色淫秽网站| 又粗又爽又猛毛片免费看| 国产精品久久视频播放| 岛国在线观看网站| 国产精品精品国产色婷婷| 久久国产精品人妻蜜桃| 久久精品国产亚洲av香蕉五月| bbb黄色大片| 一个人看的www免费观看视频| 国产亚洲欧美在线一区二区| 最近最新中文字幕大全电影3| 亚洲欧美日韩无卡精品| 后天国语完整版免费观看| 757午夜福利合集在线观看| 19禁男女啪啪无遮挡网站| 亚洲国产中文字幕在线视频| 色在线成人网| 久久久国产成人免费| 免费无遮挡裸体视频| 欧美日韩中文字幕国产精品一区二区三区| xxx96com| 久久久成人免费电影| av片东京热男人的天堂| 999久久久国产精品视频| 亚洲五月天丁香| 韩国av一区二区三区四区| 97超视频在线观看视频| 日本在线视频免费播放| 美女大奶头视频| 女警被强在线播放| 欧美日韩黄片免| 母亲3免费完整高清在线观看| 国产成人精品久久二区二区免费| 老汉色av国产亚洲站长工具| 久久国产精品人妻蜜桃| 丰满的人妻完整版| 亚洲avbb在线观看| 亚洲欧美日韩无卡精品| 亚洲成a人片在线一区二区| 国产亚洲精品久久久久久毛片| 亚洲欧美一区二区三区黑人| 久久精品亚洲精品国产色婷小说| 亚洲狠狠婷婷综合久久图片| 国产欧美日韩精品一区二区| 长腿黑丝高跟| 亚洲在线自拍视频| 色吧在线观看| 国产av一区在线观看免费| 久久人人精品亚洲av| 成人av在线播放网站| 免费av不卡在线播放| 国产精品女同一区二区软件 | 精品免费久久久久久久清纯| 黑人操中国人逼视频| 国产高清视频在线观看网站| 亚洲天堂国产精品一区在线| 国产免费av片在线观看野外av| 性欧美人与动物交配| 好男人电影高清在线观看| 十八禁人妻一区二区| 曰老女人黄片| 亚洲黑人精品在线| 曰老女人黄片| 亚洲欧美一区二区三区黑人| 国产免费男女视频| 国产精品av久久久久免费| 国产av麻豆久久久久久久| 欧美黄色片欧美黄色片| 久久人妻av系列| 最新中文字幕久久久久 | 久久久久久人人人人人| 久久午夜亚洲精品久久| 动漫黄色视频在线观看| 性色avwww在线观看| 欧美激情久久久久久爽电影| 搡老妇女老女人老熟妇| 国产伦一二天堂av在线观看| 91av网站免费观看| 熟妇人妻久久中文字幕3abv| 国产精品精品国产色婷婷| 看片在线看免费视频| 精品乱码久久久久久99久播| 国产 一区 欧美 日韩| 男女做爰动态图高潮gif福利片| 老司机午夜福利在线观看视频| 伊人久久大香线蕉亚洲五| 国产欧美日韩一区二区精品| 日本黄大片高清| 久久久久国内视频| 三级男女做爰猛烈吃奶摸视频| 欧美日韩乱码在线| 亚洲专区字幕在线| 我要搜黄色片| 亚洲专区字幕在线| 亚洲av第一区精品v没综合| 久久久久免费精品人妻一区二区| 叶爱在线成人免费视频播放| 国产免费男女视频| 国产高清有码在线观看视频| 日韩精品中文字幕看吧| 夜夜爽天天搞| 黄色日韩在线| 国产精品 国内视频| 亚洲午夜精品一区,二区,三区| 日本a在线网址| 久久精品亚洲精品国产色婷小说| 性色av乱码一区二区三区2| 亚洲成av人片在线播放无| 欧美一区二区国产精品久久精品| 色综合婷婷激情| 亚洲精品国产精品久久久不卡| 中文字幕久久专区| АⅤ资源中文在线天堂| 日日夜夜操网爽| 99精品欧美一区二区三区四区| 99久久成人亚洲精品观看| 男女下面进入的视频免费午夜| 特大巨黑吊av在线直播| 中文字幕人成人乱码亚洲影| 亚洲av电影不卡..在线观看| 婷婷六月久久综合丁香| 丰满人妻熟妇乱又伦精品不卡| 热99在线观看视频| 日本在线视频免费播放| 18禁国产床啪视频网站| 夜夜躁狠狠躁天天躁| 黄片小视频在线播放| 精品久久久久久久久久免费视频| 精品乱码久久久久久99久播| 高潮久久久久久久久久久不卡| 男女床上黄色一级片免费看| 国产激情欧美一区二区| 九九热线精品视视频播放| 一区二区三区国产精品乱码| 嫩草影院精品99| 国产成人精品久久二区二区免费| 叶爱在线成人免费视频播放| 亚洲av片天天在线观看| 我要搜黄色片| 激情在线观看视频在线高清| 日本 欧美在线| 国产乱人伦免费视频| 国产精品 国内视频| 黄色成人免费大全| a在线观看视频网站| 夜夜看夜夜爽夜夜摸| 给我免费播放毛片高清在线观看| 国内精品美女久久久久久| 久久久国产成人免费| 国产高潮美女av| 亚洲国产色片| 不卡一级毛片| 麻豆成人午夜福利视频| www.自偷自拍.com| 久久久国产成人精品二区| 91av网一区二区| 亚洲av电影不卡..在线观看| 精品国产美女av久久久久小说| www.精华液| 一进一出抽搐gif免费好疼| 亚洲国产精品成人综合色| 一卡2卡三卡四卡精品乱码亚洲| 色综合欧美亚洲国产小说| 又粗又爽又猛毛片免费看| 亚洲五月婷婷丁香| 午夜久久久久精精品| 丁香欧美五月| 日韩有码中文字幕| 全区人妻精品视频| 国产成人精品久久二区二区91| 久久国产精品人妻蜜桃| 久久精品国产亚洲av香蕉五月| 老司机午夜福利在线观看视频| 老司机深夜福利视频在线观看| 午夜福利免费观看在线| 久久久久久久久免费视频了| 久久中文看片网| 国产av一区在线观看免费| 最新中文字幕久久久久 | 国产1区2区3区精品| 午夜a级毛片| 亚洲精品456在线播放app | 国产午夜精品久久久久久| 高清在线国产一区| 日本 av在线| 成熟少妇高潮喷水视频| 美女免费视频网站| e午夜精品久久久久久久| 亚洲精品在线观看二区| 亚洲人与动物交配视频| 国内精品美女久久久久久| 免费观看的影片在线观看| 亚洲专区国产一区二区| 夜夜爽天天搞| 亚洲激情在线av| 欧美丝袜亚洲另类 | 床上黄色一级片| 国产精品久久电影中文字幕| 丁香六月欧美| 国产高清激情床上av| 老司机午夜十八禁免费视频| 日本黄大片高清| 色精品久久人妻99蜜桃| 国产熟女xx| 淫秽高清视频在线观看| 亚洲欧美日韩高清在线视频| 男女床上黄色一级片免费看| 久久人妻av系列| 18禁国产床啪视频网站| 色尼玛亚洲综合影院| 91av网一区二区| 美女 人体艺术 gogo| 日韩人妻高清精品专区| 香蕉国产在线看| 中文亚洲av片在线观看爽| 桃红色精品国产亚洲av| 国产亚洲精品久久久久久毛片| 男女视频在线观看网站免费| 国产毛片a区久久久久| 国产高清有码在线观看视频| 又黄又爽又免费观看的视频| 91在线精品国自产拍蜜月 | 99久久久亚洲精品蜜臀av| 欧美成人一区二区免费高清观看 | 免费看十八禁软件| 一二三四在线观看免费中文在| 最近最新免费中文字幕在线| 国产黄片美女视频| 中文字幕熟女人妻在线| 一区二区三区国产精品乱码| 亚洲av美国av| 国产 一区 欧美 日韩| 午夜影院日韩av| 欧美在线一区亚洲| 国产精品一区二区精品视频观看| 18禁美女被吸乳视频| 欧美精品啪啪一区二区三区| 久久久精品欧美日韩精品| 99精品在免费线老司机午夜| 日韩欧美一区二区三区在线观看| 精品99又大又爽又粗少妇毛片 | 精品一区二区三区视频在线观看免费| 毛片女人毛片| 精品一区二区三区视频在线观看免费| 国产成人影院久久av| 成年版毛片免费区| 叶爱在线成人免费视频播放| 国产午夜精品论理片| 香蕉丝袜av| 国产精品乱码一区二三区的特点| 亚洲精品中文字幕一二三四区| 在线十欧美十亚洲十日本专区| 香蕉丝袜av| 免费在线观看视频国产中文字幕亚洲| 俄罗斯特黄特色一大片| netflix在线观看网站| 久久中文字幕人妻熟女| 久久久久免费精品人妻一区二区| 嫩草影院精品99| 国产精品亚洲美女久久久| 九九热线精品视视频播放| 国内精品一区二区在线观看| 在线观看午夜福利视频| 神马国产精品三级电影在线观看| 色尼玛亚洲综合影院| 美女高潮喷水抽搐中文字幕| 一本精品99久久精品77| 午夜免费观看网址| 国内久久婷婷六月综合欲色啪| 亚洲国产看品久久| 欧美极品一区二区三区四区| 亚洲美女黄片视频| 欧美3d第一页| 男女午夜视频在线观看| 在线观看日韩欧美| 国产高清视频在线播放一区| av女优亚洲男人天堂 | 老鸭窝网址在线观看| 又黄又粗又硬又大视频| 成年女人永久免费观看视频| 亚洲人成网站高清观看| 欧美午夜高清在线| 日本三级黄在线观看| 国产精品香港三级国产av潘金莲| 人妻久久中文字幕网| 88av欧美| 欧美乱色亚洲激情| 久久午夜亚洲精品久久| 美女免费视频网站| av黄色大香蕉| 国产精华一区二区三区| 亚洲国产高清在线一区二区三| 高清毛片免费观看视频网站| 久久国产精品影院| 禁无遮挡网站| 麻豆久久精品国产亚洲av| 日本一二三区视频观看| 亚洲欧美精品综合一区二区三区| 中亚洲国语对白在线视频| 国产视频一区二区在线看| 一本一本综合久久| 日韩免费av在线播放| 在线看三级毛片| av国产免费在线观看| 亚洲国产精品久久男人天堂| 久久天堂一区二区三区四区| 国产精品永久免费网站| 国产主播在线观看一区二区| 午夜福利成人在线免费观看| 中文字幕人成人乱码亚洲影| 色尼玛亚洲综合影院| 1024香蕉在线观看| 精品久久久久久久久久久久久| 丰满的人妻完整版| 久久午夜综合久久蜜桃| 十八禁网站免费在线| 啦啦啦观看免费观看视频高清| 日本精品一区二区三区蜜桃| 久久热在线av| 亚洲熟妇熟女久久| 成人一区二区视频在线观看| 欧美性猛交黑人性爽| 麻豆成人av在线观看| 国产亚洲欧美98| 国产成年人精品一区二区| 亚洲欧美日韩东京热| 欧美日韩一级在线毛片| 久久精品国产亚洲av香蕉五月| 9191精品国产免费久久| 俺也久久电影网| 久久人人精品亚洲av| 国内精品久久久久精免费| 99国产精品一区二区蜜桃av| 午夜福利高清视频| 伦理电影免费视频| 观看美女的网站| 日本黄色视频三级网站网址| 性欧美人与动物交配| 国产高清视频在线观看网站| 亚洲午夜精品一区,二区,三区| 国产成人一区二区三区免费视频网站| 在线永久观看黄色视频| 国产熟女xx| 国产欧美日韩一区二区精品| 国产主播在线观看一区二区| 国产亚洲精品av在线| 午夜福利视频1000在线观看| 在线国产一区二区在线| 欧美日韩乱码在线| 午夜福利高清视频| 天堂影院成人在线观看| 国产黄色小视频在线观看| 老熟妇仑乱视频hdxx| 国内久久婷婷六月综合欲色啪| 亚洲九九香蕉| 国内精品美女久久久久久| 法律面前人人平等表现在哪些方面| 久久久精品欧美日韩精品| 亚洲中文字幕一区二区三区有码在线看 | 国产精华一区二区三区| www日本黄色视频网| 久久久久久久久中文| 欧美午夜高清在线| 在线观看舔阴道视频| 国产欧美日韩一区二区精品| 黄色女人牲交| 国产成+人综合+亚洲专区| 精品熟女少妇八av免费久了| 色噜噜av男人的天堂激情| 亚洲成av人片在线播放无| 精品欧美国产一区二区三| 久久婷婷人人爽人人干人人爱| 无限看片的www在线观看| 99在线视频只有这里精品首页| 色综合亚洲欧美另类图片| 亚洲va日本ⅴa欧美va伊人久久|