高 娜,張玉龍,劉 玉,廖常健,吳漢卿,張玉玲,鄒洪濤,虞 娜
(沈陽(yáng)農(nóng)業(yè)大學(xué)土地與環(huán)境學(xué)院/發(fā)改委土肥資源高效利用國(guó)家工程實(shí)驗(yàn)室/農(nóng)業(yè)部東北耕地保育重點(diǎn)實(shí)驗(yàn)室 沈陽(yáng) 110866)
水氮調(diào)控對(duì)小油菜養(yǎng)分吸收、水氮利用效率及產(chǎn)量的影響*
高 娜,張玉龍,劉 玉,廖常健,吳漢卿,張玉玲,鄒洪濤,虞 娜**
(沈陽(yáng)農(nóng)業(yè)大學(xué)土地與環(huán)境學(xué)院/發(fā)改委土肥資源高效利用國(guó)家工程實(shí)驗(yàn)室/農(nóng)業(yè)部東北耕地保育重點(diǎn)實(shí)驗(yàn)室 沈陽(yáng) 110866)
合理的灌水、施氮量對(duì)提高小油菜養(yǎng)分利用率、控制面源污染具有重要意義。本文采用盆栽試驗(yàn),利用15N同位素示蹤技術(shù),研究不同灌水水平(W1:60%θf(wàn);W2:75%θf(wàn);W3:90%θf(wàn)。θf(wàn)為田間持水量)和施氮量(N0: 0 g?kg-1;N1:0.1 g?kg-1;N2:0.2 g?kg-1;N3:0.3 g?kg-1)對(duì)小油菜養(yǎng)分吸收、產(chǎn)量及水氮利用率的影響。結(jié)果表明:灌水水平與施氮量對(duì)小油菜根系與葉片氮、磷、鉀含量均有顯著影響,且葉片含磷量受水氮交互作用的顯著影響。葉片氮、鉀含量顯著大于根系。增加灌水,小油菜含磷量與根系含氮量增加,含鉀量及葉片含氮量降低;施氮能增加小油菜氮、鉀含量,降低含磷量。灌水與施氮對(duì)小油菜氮、磷、鉀吸收總量均有顯著影響,且磷、鉀吸收量受水氮交互作用的影響顯著,中水低氮處理(W2N1)各養(yǎng)分吸收量均最大。小油菜產(chǎn)量受灌水水平和施氮量的顯著影響,表現(xiàn)為隨灌水水平的提高而增加,隨施氮量的增加呈先增加后降低的趨勢(shì)。灌溉水分利用效率(IWUE)受施氮量及水氮互作的顯著影響,隨施氮量增加,IWUE變化與產(chǎn)量變化一致。灌水與施氮對(duì)15N肥料去向有顯著影響,且肥料利用率受水氮互作的顯著影響。隨灌水水平提高,肥料利用率呈增加趨勢(shì),中水處理肥料殘留率最低,損失率最高。隨施氮量增加,肥料利用率不斷降低,損失率呈增加的趨勢(shì)。本試驗(yàn)條件下,綜合考慮小油菜養(yǎng)分吸收、產(chǎn)量及水氮利用率,W3N1、W2N1組合為推薦水氮處理。
小油菜;水氮調(diào)控;養(yǎng)分吸收;水分利用效率;氮肥利用率
我國(guó)設(shè)施蔬菜面積和產(chǎn)量居世界第一位[1],蔬菜生產(chǎn)已成為我國(guó)經(jīng)濟(jì)發(fā)展的重要組成部分。然而生產(chǎn)中,不合理的水肥管理導(dǎo)致水分與養(yǎng)分資源利用率降低[2],品質(zhì)下降[3];氮素淋溶損失[4]及土壤面源污染[5]等問(wèn)題頻繁發(fā)生。水分與氮素之間存在耦合效應(yīng),共同影響作物的生長(zhǎng)發(fā)育、產(chǎn)量及氮肥利用效率[6-7]。因此,有效調(diào)控設(shè)施蔬菜水氮供應(yīng),發(fā)揮水氮協(xié)同效應(yīng)具有重要意義。國(guó)內(nèi)外學(xué)者就水分、氮素對(duì)作物養(yǎng)分吸收、產(chǎn)量及水氮利用效率的影響做了大量研究。適當(dāng)增加施氮量和灌水量有利于氮、磷、鉀等養(yǎng)分的吸收[8-10],且氮、磷、鉀的吸收量與作物干物質(zhì)積累及產(chǎn)量呈顯著正相關(guān)關(guān)系[11]。蔡樹(shù)美等[12]對(duì)水肥優(yōu)化耦合條件下設(shè)施青菜的研究表明,旺長(zhǎng)期青菜體內(nèi)氮磷鉀含量、吸收速率和積累量顯著大于幼苗期和成熟期。灌水量與施氮量對(duì)作物生產(chǎn)、產(chǎn)量均有顯著影響[13],在一定范圍內(nèi),產(chǎn)量與灌水量呈正相關(guān)關(guān)系,隨施氮量的增加呈先增加后降低的趨勢(shì)[14-15]。李靜等[16]研究表明,黃瓜(Cucumis sativus)干物質(zhì)積累量、灌溉水分利用效率、水分利用效率均受施氮量、灌水量及水氮交互作用(耦合效應(yīng))的顯著或極顯著影響。肖時(shí)運(yùn)等[17]對(duì)萵苣(Asparagus lettuce)的研究表明,隨施氮量的增加萵苣吸氮總量呈先增加后降低的趨勢(shì),氮肥利用率及氮肥殘留率逐漸降低,而氮肥損失率不斷增加。小油菜(Brassica campestris)是葉菜類(lèi)的代表,營(yíng)養(yǎng)豐富,復(fù)種指數(shù)高,有關(guān)水氮調(diào)控對(duì)其氮、磷、鉀養(yǎng)分吸收及水氮利用效率的綜合研究較少,其水氮耦合機(jī)制尚不明確。15N示蹤技術(shù)是研究肥料利用率及去向的重要手段[18-19]。因此,本試驗(yàn)以小油菜為試材,采用15N示蹤技術(shù),研究不同灌水和施氮量對(duì)小油菜養(yǎng)分吸收、產(chǎn)量及水氮利用效率的影響,以期為小油菜高效生產(chǎn)提供理論依據(jù)。
1.1 試驗(yàn)地點(diǎn)與材料
試驗(yàn)于2014年9月在沈陽(yáng)農(nóng)業(yè)大學(xué)試驗(yàn)基地的日光溫室內(nèi)進(jìn)行。選用上部?jī)?nèi)徑24 cm,底部?jī)?nèi)徑18 cm,高17 cm的盆缽進(jìn)行土培試驗(yàn),每盆裝過(guò)3 mm篩的風(fēng)干土4 kg。供試土壤類(lèi)型為棕壤,采自露地菜田,有機(jī)質(zhì)19.02 g?kg-1,pH 5.95,全氮0.97 g?kg-1,全磷0.41 g?kg-1,全鉀 22.24 g?kg-1,堿解氮 83.07 mg?kg-1,有效磷5.23 mg?kg-1,速效鉀80.36 mg?kg-1,田間持水量為30.5%。供試小油菜為‘青幫白菜型油菜’。
1.2 試驗(yàn)設(shè)計(jì)及管理
試驗(yàn)采用3個(gè)灌水水平[分別為控制灌水上限60%θf(wàn)(低水,W1)、75%θf(wàn)(中水,W2)和90%θf(wàn)(高水,W3),θf(wàn)為田間持水量]和4個(gè)施氮量[0 g?kg-1(無(wú)氮,N0)、0.1 g?kg-1(低氮,N1)、0.2 g?kg-1(中氮,N2)、0.3 g?kg-1(常規(guī)施氮量,N3]的完全隨機(jī)設(shè)計(jì),共12個(gè)處理,3次重復(fù)。各處理磷鉀用量相同,與土壤混合均勻后做基肥施入。磷肥為過(guò)磷酸鈣,施用量為0.2 g(P2O5)?kg-1,鉀肥為硫酸鉀,施用量為0.3 g(K2O)?kg-1。試驗(yàn)所用氮肥為穩(wěn)定性同位素15N標(biāo)記的尿素(豐度20.14%,上?;ぱ芯吭?,于播種前3 d以水溶液形式均勻施入土壤。小油菜于9月10日播種,9月17日出全苗后及時(shí)疏苗,長(zhǎng)出真葉后每盆留苗8株。定苗前各處理灌水量一致,定苗后用稱(chēng)重法控制土壤相對(duì)含水量,每天調(diào)節(jié)土壤含水量1次,記錄灌水量。
1.3 測(cè)定項(xiàng)目與方法
分別于小油菜4葉期(播種后28 d)與6葉期(播種后40 d)采收3棵和5棵。采下的植株立即將根系、葉片分開(kāi)裝入自封袋,帶回實(shí)驗(yàn)室用清水洗凈后用蒸餾水潤(rùn)洗2次,迅速用紗布擦干,以盆為單位迅速稱(chēng)重計(jì)產(chǎn),產(chǎn)量Y(g?pot-1)為兩次總鮮重。記產(chǎn)后立即將樣品于105℃下殺青30 min,在60℃下烘干粉碎。全氮和15N原子百分超用元素分析儀(VARIO ELⅢ, Germany)和穩(wěn)定性同位素比例質(zhì)譜儀(Isoprime 100, England)聯(lián)用測(cè)定。植株磷鉀含量用H2SO4-H2O2消煮后分別采用鉬銻抗比色法、原子吸收法測(cè)定。
15N肥料利用效率(%)、15N肥料殘留率(%)、15N肥料損失率(%)用以下公式計(jì)算[20-21]:
2.1 水氮調(diào)控對(duì)小油菜氮素吸收的影響
雙因素方差分析表明,葉片與根的含氮量均受灌水水平和施氮量單一效應(yīng)的顯著影響,且葉片含氮量大于根系(表1)。W1灌水水平葉片含氮量顯著大于W2和W3,W2與W3間差異不顯著;W3處理根系含氮量顯著高于其余2個(gè)處理,W1與W2差異不顯著。施氮能顯著提高小油菜葉片與根系含氮量,而各施氮處理間差異不顯著。
施氮量對(duì)小油菜葉片、根系及整株吸氮量均有顯著影響,均表現(xiàn)為N1、N2>N3>N0,即適量施氮有利于小油菜氮素吸收。灌水水平僅對(duì)小油菜根系吸氮量有顯著影響,表現(xiàn)為W3、W2>W1。
2.2 水氮調(diào)控對(duì)小油菜磷素吸收的影響
由表2可知,灌水量和施氮量對(duì)小油菜葉片與根系含磷量均有顯著影響,且葉片含磷量受水氮交互作用的顯著影響。小油菜葉片與根系含磷量隨灌水水平的提高而降低;不施氮處理葉片含磷量顯著高于施氮處理,而各施氮處理間差異不顯著;N3處理根含磷量最大,N2處理含磷量最小,二者差異達(dá)顯著水平。水氮交互作用下,W3灌水水平下的各施氮處理葉片含磷量差異達(dá)顯著水平,而W1、W2灌水水平下各施氮處理差異不顯著。
雙因素方差分析表明,灌水水平、施氮量及水氮互作對(duì)小油菜整株與葉片吸磷量均有顯著影響,表現(xiàn)為水分>水氮交互>施氮量。灌水對(duì)小油菜吸磷量的影響表現(xiàn)為W2>W1>W3;N1、N2處理小油菜吸磷量最大且差異不顯著,但均顯著大于N3處理。水氮交互作用下,W2N1處理吸磷量最大,其次為W1N2處理,W3N1與W3N3處理最小。
2.3 水氮調(diào)控對(duì)小油菜鉀素吸收的影響
由表3可知,小油菜葉片含鉀量約為根的2倍,且受灌水水平和施氮量的顯著影響。W1處理葉片與根含鉀量均顯著大于W2、W3處理,且W2與W3差異不顯著,即灌水量較低時(shí)小油菜含鉀量較大。隨施氮量增加,小油菜葉片與根中含鉀量均呈增加的趨勢(shì)。
雙因素方差分析表明,小油菜葉片、根及整株吸鉀量均受施氮量和水氮交互作用的顯著影響,灌水水平對(duì)小油菜吸鉀量影響不顯著。施氮量對(duì)小油菜葉片及整株吸鉀量的影響均表現(xiàn)為N1>N2>N3>N0,對(duì)根吸鉀量的影響表現(xiàn)為N2>N1>N0>N3,即適量施氮有利于小油菜對(duì)鉀的積累。水氮交互作用下, W2N1處理小油菜葉片及整株吸鉀量均為最大且顯著大于其他處理,W2N2處理根吸鉀量最大。
2.4 水氮調(diào)控對(duì)小油菜產(chǎn)量、灌溉水分利用效率及肥料去向的影響
方差分析可知,灌水水平與施氮量對(duì)小油菜產(chǎn)量的影響均達(dá)到極顯著水平,而水氮交互作用不顯
著(表4)。小油菜產(chǎn)量隨灌水水平的提高而增加,W2與W3差異不顯著;但隨施氮量的增加呈先增加后降低的趨勢(shì),N1與N2施氮量間差異不顯著。
表1 水氮調(diào)控對(duì)小油菜不同器官氮素吸收的影響Table 1 Regulation effects of different irrigation levels and nitrogen fertilization rates on nitrogen uptake of rape
表2 水氮調(diào)控對(duì)小油菜不同器官磷素吸收的影響Table 2 Regulation effects of different irrigation levels and nitrogen fertilization rates on phosphorus uptake of rape
表3 水氮調(diào)控對(duì)小油菜不同器官鉀素吸收的影響Table 3 Regulation effects of different irrigation levels and nitrogen fertilization rates on potassium uptake of rape
施氮量對(duì)小油菜灌溉水分利用效率(IWUE)具有極顯著影響,且水氮交互作用顯著(表4)。小油菜IWUE隨施氮量的增加呈先增加后降低的趨勢(shì),N1與N2差異不顯著。水氮交互作用下,W1N1處理IWUE最大,分別與W3N2、W1N2、W2N1、W2N2、W3N1、W2N3處理差異不顯著;W3N3處理IWUE最小,其次為W1N0和W2N0處理。
不同水氮處理下15N肥料在土壤-作物系統(tǒng)中的去向研究表明,水分與氮素對(duì)15N肥料去向有顯著影響。隨灌水水平的提高,15N肥料利用率呈增加的趨勢(shì),W2處理肥料殘留率最低,損失率最高。隨施氮量的增加,肥料利用率呈降低的趨勢(shì),而肥料損失率呈增加的趨勢(shì),殘留率變化不顯著。水氮互作對(duì)肥料利用率有顯著影響。W3N1處理氮肥利用率最大,為23.00%,其次為W2N1處理,為18.41%,W1N3處理最小,僅為5.30%。W3N1處理肥料利用率最高,損失率最低,而殘留率適中,考慮肥料利用情況為最佳水氮處理。此外,W2N1處理有較高的肥料利用率及較低的殘留率與損失率(表4)。
植物葉片與根系間養(yǎng)分含量靠濃度梯度在體內(nèi)運(yùn)輸[22],因而,根系與葉片養(yǎng)分含量有顯著相關(guān)性,但不同時(shí)期表現(xiàn)不同[23]。本試驗(yàn)中葉片氮、鉀含量顯著大于根系,這是由于采收時(shí)小油菜葉片光合作用旺盛,需要大量養(yǎng)分供應(yīng),因而養(yǎng)分更多地從根系轉(zhuǎn)移到葉片中[23]。此外,本試驗(yàn)表明不同水氮處理養(yǎng)分積累量與養(yǎng)分含量相關(guān)性不顯著,而與產(chǎn)量呈正相關(guān)關(guān)系(吸磷量除外),這與前人研究一致[11]。施氮能增加植株對(duì)氮、磷、鉀的吸收,而過(guò)量施氮吸收量反而降低,這在水稻(Oryza sativa)、玉米(Zea mays)、甜瓜(Cucumis melo)、棉花(Gossypiumsp.)等植株上已得到驗(yàn)證[9-10]。本試驗(yàn)中,施氮量超過(guò)0.1 g?kg-1(土),小油菜對(duì)氮、磷、鉀的吸收增加不顯著甚至有降低的趨勢(shì)。這是由于過(guò)高的氮肥會(huì)對(duì)作物產(chǎn)生毒害作用,抑制植株正常生長(zhǎng)及對(duì)養(yǎng)分的吸收[24]。灌水水平對(duì)磷的吸收也有顯著影響,W2處理磷吸收量最大,而對(duì)氮、鉀的吸收量影響不顯著。此外,水氮耦合效應(yīng)對(duì)磷、鉀的積累量有顯著影響。合理調(diào)控水氮供應(yīng)能提高小油菜養(yǎng)分吸收積累,W2N1處理(75%θf(wàn),0.1 g?kg-1)植株氮、磷、鉀養(yǎng)分吸收量均為最大。
表4 水氮調(diào)控對(duì)小油菜產(chǎn)量、灌溉水分利用效率及15N肥料在土壤-作物系統(tǒng)中去向的影響Table 4 Regulation effects of different irrigation levels and nitrogen fertilization rates on yield,irrigation water use efficiency and fate of15N-labelled fertilizer in soil and crop system
小油菜產(chǎn)量與水氮供應(yīng)及水氮利用效率密切相關(guān)。本試驗(yàn)中小油菜產(chǎn)量隨灌水水平的提高而增加,隨施氮量的增加呈先增加后降低的趨勢(shì),這與Badr等[15]的研究一致。此外,產(chǎn)量與IWUE及氮肥利用效率呈正相關(guān)關(guān)系(P<0.05,數(shù)據(jù)未列出),這是由于較高的水分、養(yǎng)分吸收能為葉片光合作用提供充足的原料,增加光合同化產(chǎn)物,促進(jìn)小油菜產(chǎn)量的提高。
灌水與施氮量均能影響作物IWUE,研究表明IWUE與灌水量呈顯著負(fù)相關(guān)關(guān)系,施用氮肥能提高IWUE[3,17]。本試驗(yàn)中不同灌溉水平IWUE差異不顯著,而灌水量對(duì)IWUE影響極顯著。這可能是由于低灌水量產(chǎn)生水分脅迫,抑制了小油菜生物量的生長(zhǎng),因而IWUE較低。適當(dāng)提高灌水量,能保證小油菜生長(zhǎng)所需水分,保持適當(dāng)?shù)耐寥揽紫抖?減少土壤表面水分蒸發(fā),提高灌溉水分利用率。這也與鄧忠等[25]、Cabello等[26]的研究結(jié)果一致。本試驗(yàn)中IWUE隨施氮量的增加呈先增加后降低的趨勢(shì),回歸分析得出,施氮量為0.16 g?kg-1時(shí)IWUE最大。設(shè)施菜地施入土壤中的肥料除部分被作物吸收和損失外,大部分殘留在土壤中,對(duì)環(huán)境構(gòu)成潛在威脅。本試驗(yàn)中不同水氮處理15N 肥料利用率為5.30%~23.00%,殘留率為56.22%~71.29%,損失率為13.17%~37.10%,這與設(shè)施蔬菜及露天菜地的研究結(jié)果相近[19,27-28],但低于谷類(lèi)作物[29]。一方面蔬菜較低的肥料利用率是由于蔬菜與谷類(lèi)作物相比植株較小,對(duì)肥料的吸收量也較少,而實(shí)際施肥量卻較高;另一方面本試驗(yàn)所用肥料為一次性基施,肥料利用率低于多次追施[30-32]。本試驗(yàn)中,小油菜15N肥料利用率隨灌水水平的提高而增加,隨施氮量的增加而降低,這與前人研究相一致[17,33]。
綜上所述,適當(dāng)增加灌水和適宜的施氮量能增加小油菜對(duì)氮、磷、鉀的吸收量,提高產(chǎn)量和水氮利用效率,本試驗(yàn)條件下W3N1與W2N1為推薦水氮處理。盡管盆栽試驗(yàn)與實(shí)際生產(chǎn)存在一定差異,本試驗(yàn)的研究結(jié)果對(duì)進(jìn)一步開(kāi)展田間試驗(yàn)及生產(chǎn)管理具有一定指導(dǎo)意義。
不同灌水水平、施氮量及水氮互作對(duì)小油菜氮、磷、鉀養(yǎng)分含量及吸收量影響各異,W2N1處理(75%θf(wàn),0.1 g?kg-1)小油菜對(duì)氮、磷、鉀養(yǎng)分吸收量均為最大。小油菜產(chǎn)量受灌水水平和施氮量的顯著影響,表現(xiàn)為隨灌水水平的提高而增加,隨施氮量的增加呈先增加后降低的趨勢(shì)。灌溉水分利用效率(IWUE)受施氮量及水氮互作的顯著影響,IWUE隨施氮量增加,其變化與產(chǎn)量變化一致。15N肥利用率隨施氮量增加而降低,隨灌水水平的提高而增大,W3N1處理(90%θf(wàn),0.1 g?kg-1)15N肥利用率最高,損失率最低。綜合考慮小油菜養(yǎng)分吸收、產(chǎn)量及肥料去向,W3N1、W2N1為推薦水氮處理。
References
[1]張志斌.我國(guó)設(shè)施蔬菜存在的問(wèn)題及發(fā)展重點(diǎn)[J].中國(guó)蔬菜,2008,1(5):1–3 Zhang Z B.Existing problemsand futuredevelopment keystones for greenhouse vegetable industry in China[J]. China Vegetables,2008,1(5):1–3
[2]Hamzei J.Seed,oil,and protein yields of canola under combinations of irrigation and nitrogen application[J]. Agronomy Journal,2011,103(4):1152–1158
[3]Erdem T,Ar?n L,Erdem Y,et al.Yield and quality response of drip irrigated broccoli(Brassica oleraceaL.var.italica) under different irrigation regimes,nitrogen applications and cultivation periods[J].Agricultural Water Management,2010, 97(5):681–688
[4]Zupanc V,?turm M,Lojen S,et al.Nitrate leaching under vegetable field above ashallow aquiferin Slovenia[J]. Agriculture,Ecosystem & Environment,2011,144(1): 167–174
[5]Shan L N,He Y F,Chen J,et al.Nitrogen surface runoff losses from a Chinese cabbage field under different nitrogen treatments in the Taihu Lake Basin,China[J].Agricultural Water Management,2015,159:255–263
[6]馮萌,于成,林麗果,等.灌溉和施氮對(duì)河西走廊紫花苜蓿生物量分配與水分利用效率的影響[J].中國(guó)生態(tài)農(nóng)業(yè)學(xué)報(bào), 2016,24(12):1623–1632 Feng M,Yu C,Lin L G,et al.Effects of water and nitrogen fertilizer on biomass distribution and water use efficiency of alfalfa (Medicagosativa)in HexiCorridor[J].Chinese Journal of Eco-Agriculture,2016,24(12):1623–1632
[7]王艷哲,劉秀位,孫宏勇,等.水氮調(diào)控對(duì)冬小麥根冠比和水分利用效率的影響研究[J].中國(guó)生態(tài)農(nóng)業(yè)學(xué)報(bào),2013, 21(3):282–289 Wang Y Z,Liu X W,Sun H Y,et al.Effects of water and nitrogen on root/shoot ratio and water use efficiency of winter wheat[J].Chinese Journal of Eco-Agriculture,2013,21(3): 282–289
[8]胡國(guó)智,馮炯鑫,張炎,等.不同施氮量對(duì)甜瓜養(yǎng)分吸收、分配、利用及產(chǎn)量的影響[J].植物營(yíng)養(yǎng)與肥料學(xué)報(bào),2013, 19(3):760–766 Hu G Z,Feng J X,Zhang Y,et al.Effects of nitrogen fertilization on nutrient uptake,assignment,utilization and yield of melon[J].Journal of Plant Nutrition and Fertilizer, 2013,19(3):760–766
[9]王克如,李少昆,曹連莆,等.新疆高產(chǎn)棉田氮、磷、鉀吸收動(dòng)態(tài)及模式初步研究[J].中國(guó)農(nóng)業(yè)科學(xué),2003,36(7): 775–780 Wang K R,Li S K,Cao L P,et al.A preliminary study on dynamics and models of N,P,K absorption in high yield cotton in Xinjiang[J].Scientia Agricultura Sinica,2003,36(7): 775–780
[10]徐菲,李建明,吳普特,等.亞低溫下水分對(duì)番茄幼苗干物質(zhì)積累與養(yǎng)分吸收的影響[J].中國(guó)農(nóng)業(yè)科學(xué),2013,46(15): 3293–3304 Xu F,Li J M,Wu P T,et al.Effects of water on dry matter accumulation and nutrition absorption of tomato seedling under sub-low temperature[J].Scientia Agricultura Sinica, 2013,46(15):3293–3304
[11]侯云鵬,韓立國(guó),孔麗麗,等.不同施氮水平下水稻的養(yǎng)分吸收、轉(zhuǎn)運(yùn)及土壤氮素平衡[J].植物營(yíng)養(yǎng)與肥料學(xué)報(bào),2015, 21(4):836–845 Hou Y P,Han L G,Kong L L,et al.Nutrient absorption, translocation in rice and soil nitrogen equilibrium under differentnitrogen application doses[J].JournalofPlant Nutrition and Fertilizer,2015,21(4):836–845
[12]蔡樹(shù)美,呂衛(wèi)光,田吉林,等.水肥優(yōu)化耦合下設(shè)施青菜的養(yǎng)分吸收和干物質(zhì)積累規(guī)律[J].生態(tài)與農(nóng)村環(huán)境學(xué)報(bào), 2015,31(3):385–389 Cai S M,Lv W G,Tian J L,et al.Nutrient absorption and dry matter accumulation of greenhouse vegetable under optimized coupling of water and fertilizer[J].Journal of Ecology and Rural Environment,2015,31(3):385–389
[13]高娜,張玉龍,曲晶,等.水氮聯(lián)合調(diào)控對(duì)小油菜生長(zhǎng)、產(chǎn)量及品質(zhì)的影響[J].中國(guó)土壤與肥料,2016,(4):84–89 Gao N,Zhang Y L,Qu J,et al.Regulation effects of differentirrigation and nitrogen fertilization on growth,yield and quality of rape[J].Soil and Fertilizer Sciences in China,2016, (4):84–89
[14]劉世全,曹紅霞,楊慧,等.水氮供應(yīng)與番茄產(chǎn)量和生長(zhǎng)性狀的關(guān)聯(lián)性分析[J].中國(guó)農(nóng)業(yè)科學(xué),2014,47(22): 4445–4452 Liu S Q,Cao H X,Yang H,et al.The Correlation analysis between tomato yield,growth charactersand water and nitrogen supply[J].Scientia Agricultura Sinica,2014,47(22): 4445–4452
[15]Badr M A,El-Tohamy W A,Zaghloul A M.Yield and water use efficiency of potato grown under different irrigation and nitrogen levelsin an arid region[J].AgriculturalWater Management,2012,110:9–15
[16]李靜,張富倉(cāng),方棟平,等.水氮供應(yīng)對(duì)滴灌施肥條件下黃瓜生長(zhǎng)及水分利用的影響[J].中國(guó)農(nóng)業(yè)科學(xué),2014,47(22): 4475–4487 Li J,Zhang F C,Fang D P,et al.Effects of water and nitrogen supply on the growth and water use efficiency of cucumber (Cucumis sativusL.)under fertigation[J].Scientia Agricultura Sinica,2014,47(22):4475–4487
[17]肖時(shí)運(yùn),劉強(qiáng),榮湘民,等.不同施氮水平對(duì)萵苣產(chǎn)量、品質(zhì)及氮肥利用率的影響[J].植物營(yíng)養(yǎng)與肥料學(xué)報(bào),2006, 12(6):913–917 Xiao S Y,Liu Q,Rong X M,et al.Effects of N applying rates on yield,quality ofAsparaguslettuceand the N use efficiency[J].Plant Nutrition and Fertilizer Science,2006, 12(6):913–917
[18]Zhang Q W,Yang Z L,Zhang H,et al.Recovery efficiency and loss of15N-labelled urea in a rice-soil system in the upper reaches of the Yellow River basin[J].Agriculture,Ecosystems& Environment,2012,158:118–126
[19]Ismaili K,Ismaili M,Ibijbijen J.The use of13C and15N based isotopic techniques for assessing soil C and N changes under conservation agriculture[J].European Journal of Agronomy, 2015,64:1–7
[20]?turm M,Kacjan-Mar?i? N,Zupanc V,et al.Effect of differentfertilisation and irrigation practices on yield, nitrogen uptake and fertiliser use efficiency of white cabbage (Brassica oleraceavar.capitataL.)[J].Scientia Horticulturae, 2010,125(2):103–109
[21]Malhi S S,Johnston A M,Gill K S,et al.Landscape position effects on the recovery of15N-labelled urea applied to wheat on two soils in Saskatchewan,Canada[J].Nutrient Cycling in Agroecosystems,2004,68(1):85–93
[22]Hendricks J J,Nadelhoffer K J,Aber J D.Assessing the role of fine roots in carbon and nutrient cycling[J].Trends in Ecology&Evolution,1993,8(5):174–178
[23]范志強(qiáng),王政權(quán),吳楚,等.不同供氮水平對(duì)水曲柳苗木生物量、氮分配及其季節(jié)變化的影響[J].應(yīng)用生態(tài)學(xué)報(bào),2004, 15(9):1497–1501 Fan Z Q,Wang Z Q,Wu C,et al.Effect of different nitrogen supply onFraxinusmandshuricaseedling’s biomass,N partitioning and their seasonal variation[J].Chinese Journal of Applied Ecology,2004,15(9):1497–1501
[24]Dobermann A,Krauss A,Isherwood K,et al.Nutrient use efficiency-measurement and management[M]//Krauss A, Isherwood K,Heffer P.Fertilizer Best Management Practices. Paris:IFA,2007:1–27
[25]鄧忠,白丹,翟國(guó)亮,等.膜下滴灌水氮調(diào)控對(duì)南疆棉花產(chǎn)量及水氮利用率的影響[J].應(yīng)用生態(tài)學(xué)報(bào),2013,24(9): 2525–2532 Deng Z,Bai D,Zhai G L,et al.Effects of water and nitrogen regulation on the yield and water and nitrogen use efficiency of cotton in south Xinjiang,Northwest China under plastic mulched drip irrigation[J].Chinese JournalofApplied Ecology,2013,24(9):2525–2532
[26]Cabello M J,Castellanos M T,Romojaro F,et al.Yield and quality of melon grown under different irrigation and nitrogen rates[J].Agricultural Water Management,2009,96(5): 866–874
[27]姜慧敏,張建峰,李玲玲,等.優(yōu)化施氮模式下設(shè)施菜地氮素的利用及去向[J].植物營(yíng)養(yǎng)與肥料學(xué)報(bào),2013,19(5): 1146–1154 Jiang H M,Zhang J F,Li L L,et al.Utilization and fate of nitrogen in greenhouse vegetable under optimized nitrogen fertilization[J].Journal of Plant Nutrition and Fertilizer,2013, 19(5):1146–1154
[28]杜會(huì)英,冀宏杰,徐愛(ài)國(guó),等.應(yīng)用15N示蹤研究設(shè)施蔬菜對(duì)氮肥的當(dāng)季利用[J].土壤通報(bào),2011,42(6):1446–1450 Du H Y,Ji H J,Xu A G,et al.Study on the utilization of nitrogen fertilizer under greenhouse vegetable by15N tracer[J]. Chinese Journal of Soil Science,2011,42(6):1446–1450
[29]Dong N M,Brandt K K,S?rensen J,et al.Effects of alternating wetting and drying versus continuous flooding on fertilizer nitrogen fate in rice fields in the Mekong Delta, Vietnam[J].SoilBiology and Biochemistry,2012,47: 166–174
[30]Qui?ones A,Martínez-Alcántara B,Legaz F.Influence of irrigation system and fertilization management on seasonal distribution of N in the soil profile and on N-uptake by citrus trees[J].Agriculture,Ecosystems & Environment,2007, 122(3):399–409
[31]Xu H G,Zhong G R,Lin J J,et al.Effect of nitrogen management during the panicle stage in rice on the nitrogen utilization of rice and succeeding wheat crops[J].European Journal of Agronomy,2015,70:41–47
[32]Farneselli M,Benincasa P,Tosti G,et al.High fertigation frequency improves nitrogen uptake and crop performance in processing tomato grown with high nitrogen and water supply[J].Agricultural Water Management,2015,154:52–58
[33]房祥吉,姜遠(yuǎn)茂,彭福田,等.灌水量對(duì)盆栽平邑甜茶生長(zhǎng)與15N吸收、利用和損失的影響[J].水土保持學(xué)報(bào),2010, 24(6):76–78 Fang X J,Jiang Y M,Peng F T,et al.Effect of irrigation amount on growth and15N absorption,utilization and loss of pottedMalus hupenhensis[J].Journal of Soil and Water Conservation,2010,24(6):76–78
Regulation effects of irrigation and nitrogen fertilization on nutrient absorption,water/nitrogen use efficiency and yield of rape*
GAO Na,ZHANG Yulong,LIU Yu,LIAO Changjian,WU Hanqing, ZHANG Yuling,ZOU Hongtao,YU Na**
(College of Land and Environment,Shenyang Agricultural University/National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resource/Northeast Key Laboratory of Conservation and Improvement of Cultivated Land,Ministry of Agriculture,Shenyang 110866,China)
Excessive fertilizer and irrigation are often used in greenhouse cultivation in order to ensure adequate and pro fi table yieldof vegetables.This has led to the pollution of agricultural environment that in turn hindered sustainable agricultural development. Reasonable application of irrigation and nitrogen is vital for enhancing nutrient use efficiency and controlling non-point source pollution.Using a stable isotope of15N-traced urea,a pot experiment was conducted to evaluate the effects of different irrigation and nitrogen applications on nutrient absorption,water/nitrogen utilization and yield of rape.The study included three irrigation levels [W1,60%θf(wàn)(field capacity);W2,75%θf(wàn);and W3,90%θf(wàn)]and four nitrogen rates(N0,0 g?kg-1;N1,0.1 g?kg-1;N2,0.2 g?kg-1;and N3,0.3 g?kg-1).The contents and absorptions of nitrogen,phosphorus and potassium by different parts of rape plant were determined along with water and nitrogen use efficiencies.The results suggested that both irrigation level and nitrogen application rate had significant effects on contents of N,P,K in the leaves and roots of rape plants.Besides,leaf P content was significantly affected by the interaction of irrigation and nitrogen.The contents of N and K in the leaves were much higher than those in the roots.While the content of P in the whole rape plant and N in the roots increased,the content of K in the whole plant and N in the leaf decreased with increasing irrigation.N application increased plant N and K contents,but reduced P content.There were significant effects of irrigation level and nitrogen rate on N,P and K uptake and the interaction effects were also prominent for P and K absorption.Medium irrigation level and low nitrogen rate(W2N1)had the highest nutrient uptake.The yield of rape was significantly affected by irrigation level and nitrogen rate.Yield increased with increasing irrigation level and a significant parabolic relationship was observed between nitrogen rate and yield.The application rate of nitrogen and the interaction of irrigation and nitrogen had a significant effect on irrigation water use efficiency(IWUE).Also the response of yield in terms of IWUE increased with increasing nitrogen application.Both irrigation and nitrogen fertilizer had significant effects on the utilization of fertilizer15N.Besides,a statistically significant interaction was noted between water and nitrogen in terms of nitrogen recovery rate. Fertilizer15N recovery rate increased with increasing irrigation level.The rates of15N residue and15N loss were respectively lowest and highest under medium irrigation level.With increasing nitrogen does,fertilizer recovery rate gradually decreased and the loss rate increased.It was concluded that for comprehensive nutrient uptake,yield output,and water and nitrogen utilization, W3N1and W2N1treatments were the best.
Rape;Water-nitrogen regulation;Nutrient absorption;Water use efficiency;Nitrogen use efficiency
Nov.12,2016;accepted Dec.29,2016
S634.3;S635
A
1671-3990(2017)06-0821-08
10.13930/j.cnki.cjea.161009
高娜,張玉龍,劉玉,廖常健,吳漢卿,張玉玲,鄒洪濤,虞娜.水氮調(diào)控對(duì)小油菜養(yǎng)分吸收、水氮利用效率及產(chǎn)量的影響[J].中國(guó)生態(tài)農(nóng)業(yè)學(xué)報(bào),2017,25(6):821-828
Gao N,Zhang Y L,Liu Y,Liao C J,Wu H Q,Zhang Y L,Zou H T,Yu N.Regulation effects of irrigation and nitrogen fertilization on nutrient absorption,water/nitrogen use efficiency and yield of rape[J].Chinese Journal of Eco-Agriculture, 2017,25(6):821-828
* 國(guó)家自然科學(xué)基金項(xiàng)目(41401322)、國(guó)家科技支撐計(jì)劃項(xiàng)目(2015BAD23B01-6)和農(nóng)業(yè)部東北耕地保育重點(diǎn)實(shí)驗(yàn)室開(kāi)放基金(2015NYBKFT-01)資助
**通訊作者:虞娜,主要從事土壤改良與農(nóng)業(yè)節(jié)水研究。E-mail:sausoilyn@163.com
高娜,主要從事土壤改良與農(nóng)業(yè)節(jié)水研究。E-mail:807844798@qq.com
2016-11-12 接受日期:2016-12-29
* The study was supported by the National Natural Science Foundation of China(41401322),the National Key Technology R&D Program of China(2015BAD23B01-6)and the Open Fund of Key Laboratory of Arable Land Conservation Foundation,Ministry of Agriculture of China (2015NYBKFT-01).
**Corresponding author,E-mail:sausoilyn@163.com