
1: 狗牙根Cynodon dactylon(Linn.)Pers. 2: 棒頭草 Polypogon fugax Nees ex Steud. 3: 大畫眉草Eragrostis cilianensis (All.) Link ex Vignolo-Lutati. 5: 看麥娘 Alopecurus aequalis Sobol. 6: 菵草Beckmannia syzigachne(Steud.)Fern. 7: 刺蓼Polygonum senticosum (Meisn.) Franch. et Sav. 10: 小飛蓬 Conyza canadensis (L.) Cronq. 11: 鼠麯 Gnaphalium affine D. Don. 13: 苣荬菜 Sonchus arvensis L. 16: 積雪草Centella asiatica (L.) Urban. 19: 水蓼Polygonum hydropiper. 21: 空心蓮子草 Alternanthera Philoxeroides(Mart.)Griseb. 22: 刺莧 Amaranthus spinosus. 24: 毒芹 Cicuta virosa L. 26: 毛豆 Glycine max. 27: 陰石蕨 Humata repens (L. f.) Diels. 28: 毛茛 Ranunculus japonicus Thunb. 29: 通泉草 Mazus japonicus (Thunb.) O. Kuntze. 35: 雪見草 Salvia plebeia R. Br. 36: 旋覆花 Inula japonica Thunb. 37: 假稻 Leersia japonica (Makino) Honda. 38: 鴨跖草 Commelina communis. 40: 野老鶴草 Geranium carolinianum L. 41: 黃鵪菜Youngia japonica. 43: 簇生卷耳Cerastium caespitosum Gilib. The same below. ButtElev:Elevation factor; Shapindx:Shape coefficient; HydrChar:Hydrological characteristics; HygrCoef:Soil moisture absorption coefficient; Distance:Distance away from the water. 圖2 物種與環(huán)境因子的RDA貢獻率雙序圖Fig.2 RDA double sequence diagram of species and environmental factors
3.2.2 植被分布對灘地相對水面高差因子變化的響應(yīng)關(guān)系 灘地相對水面高差因子是影響植被分布最顯著的因子,以靈山港上游溪口四橋灘地(L1)、中游周村灘地(L6)、下游高鐵橋灘地(L9)以及衢江口彩虹橋灘地(L10)為例,說明不同區(qū)段灘地內(nèi),相對水面高差因子對植被分布的影響。4個灘地內(nèi),植被分布的相對水平面高差云圖見圖3~圖6。

圖3 上游區(qū)段植被空間分布Fig.3 Spatial distribution of vegetation in the upper reaches

圖4 中游區(qū)段植被空間分布Fig.4 Spatial distribution of vegetation in the middle reaches

圖5 下游區(qū)段植被空間分布Fig.5 Spatial distribution of vegetation in the lower reaches

圖6 河口植被空間分布Fig.6 Spatial distribution of vegetation in the estuary
可見,I、II、IV、VI、VIII、IX類植被主要生長在高差較大的灘地內(nèi)部,滿足其排水和向陽條件,III、V、VII類植被主要生長在高差較小的臨水邊,滿足其水分需求較高的特點。各類植被的分布特點也存在一定的差異。I類植被(通泉草、牛毛氈、鼠麯、小飛蓬和狗牙根等)廣泛分布于高差0.25~1.2 m內(nèi),且易形成大片群落。主要是因為該區(qū)間內(nèi),土壤受水流作用,土層松動,沙性明顯,水分條件及排水較好,適宜I類植被生長。II類植被(小花糖芥、細(xì)風(fēng)輪菜和旋覆花等)分布范圍較廣,主要分布在高差>1.8 m的位置。IV類植被(艾草、野豌豆和北美車前等)大多分布于高差1.8~2.1 m內(nèi),少部分會出現(xiàn)在臨水邊0.36~0.54 m處。V和VII類植被(沿階草、積雪草、水蓼等)主要分布于高差<0.9 m的臨水邊,主要是因為積雪草葉片中的機械組織不發(fā)達,抗旱能力極差,是陰生濕生植物,而蓼科和莎草科等陽生濕生植被,根系不發(fā)達,沒有根毛,但根與莖之間有通氣的組織,以保證取得充足的氧氣,生活在陽光充足、土壤水分飽和的沼澤地區(qū)或湖邊。III類植被(棒頭草、假稻、鴨跖草和酸模葉蓼等)會與V和VII類植被集群分布。VI類植被(刺蓼、陰石蕨和野菊等)主要分布于高差0.4~1.25 m(刺蓼、山大顏和毒芹)、1.8~2.4 m(陰石蕨和野菊)的位置。VIII和IX類植被主要分布于高差1.8~2.0 m的位置,在灘地內(nèi)緣有少量出現(xiàn)。
由圖7和圖8可知,灘地植被從外緣到內(nèi)緣(高差從小到大),生物量在逐漸增大,且植被多樣性隨著灘地相對水面高度的增加而增加,對應(yīng)的植被擴散斑塊(圓域面積)大小在逐漸擴增。總體而言,地形高度的差異,可以作為植被種類的分界線,灘地植被從灘地外緣到灘地內(nèi)部的分布規(guī)律為:耐水性由強到弱,豐富性由低到高,生物量由小到大。

圖7 灘地外緣至內(nèi)緣植被生物量變化Fig.7 Biomass variation from outer to inner edge of floodplain

圖8 不同相對水面高度下的植被多樣性Fig.8 Vegetation Shannon-Wiener under different relative elevation of water
3.2.3 植被分布對形態(tài)系數(shù)的響應(yīng)關(guān)系 灘地總體形態(tài)變遷是影響植被多樣性的另一個重要因素,穩(wěn)定的灘地生境是植被分布特征優(yōu)化,以及發(fā)揮生態(tài)效益最大化的重要保障。由圖9可知,隨著灘地Pe/Pa指數(shù)的增大,植被覆蓋率也隨之增大。從圖3~6亦可看出,短寬和窄長灘地對等高線分布及灘地斷面植被容納量有明顯的影響。選擇灘地邊緣線發(fā)育系數(shù)SDI(即Richardson所提出的緊湊度C0的倒數(shù),SDI=1時,灘地形態(tài)近似圓形)和灘地橫縱徑(短長軸)比值Pe/Pa(避免SDI較大時,灘地出現(xiàn)過分窄長的情況),來反映灘地形態(tài)的彎曲和狹長。Pe/Pa和SDI與植被多樣性響應(yīng)關(guān)系分別見圖9和圖10。

圖9 Pe/Pa與植被覆蓋度和多樣性的響應(yīng)關(guān)系Fig.9 Response of coverage and Shannon-Wiener to Pe/Pa

圖10 SDI與植被多樣性的響應(yīng)關(guān)系Fig.10 Response of Shannon-Wiener to SDI
由圖10可知,靈山港灘地SDI系數(shù)>2的占灘地總數(shù)的70%,說明灘地緊湊度不大,岸線幾何形狀較為復(fù)雜。在自然情況下,灘地植被多樣性隨著SDI系數(shù)的變化而變化,兩者呈現(xiàn)同樣的趨勢效應(yīng),節(jié)點變化同一性極高。當(dāng)SDI值處于2.0~4.0之間時,灘地平均植被多樣性>1出現(xiàn)的頻率占全局60%以上。圖9顯示,灘地植被多樣性隨著Pe/Pa的增大而減小;由Q-Q檢測可知,各點分布于直線附近,且K-S檢驗的漸近顯著性系數(shù)為0.580>0.05。因此,靈山港灘地的形態(tài)特征服從正態(tài)分布規(guī)律,灘地整體形態(tài)穩(wěn)定性較好,而且,當(dāng)Pe/Pa值在0.12~0.3之間時,植被多樣性維持在1.03~1.96之間的次數(shù)出現(xiàn)6次占60%。即至少有60%的保證率使得SDI系數(shù)處于2.0~4.0之間,且灘地狹長指數(shù)Pe/Pa值在0.12~0.3之間時,灘地植被多樣性較高。
3.2.4 植被分布對水文特性的響應(yīng)關(guān)系 從植被空間變異特征(圖11)可知,距離水邊10 m以內(nèi),指數(shù)的平均差異性Δr(h)約為0.100,空間變異幅度較小,這主要是由于灘地臨水邊緣小區(qū)域受水流影響較大,植被物種差異性不明顯,多為喜濕耐沖型植被,將這一區(qū)域稱為低變幅區(qū)。距離水邊10~25 m時,指數(shù)的平均差異性Δr(h)達0.206,空間變異幅度較大,這主要是由于微地貌的變化,使得灘地淹沒所需水流深度增加,這一因素的限制,在平水位情況下,水力沖蝕削弱,主要生長中生型植被,植被種類豐富,將這一區(qū)域稱為高變幅區(qū)。距離水邊>25 m時,指數(shù)的平均差異性Δr(h)僅為0.052左右,無明顯的空間變異性(寺下、上揚村受人為干擾,變異性依舊較大),此時結(jié)構(gòu)因子正在逐漸替代水文特性成為主導(dǎo)因子,且由表3可知,變程值a均>25 m;因此,將這一區(qū)域稱為平穩(wěn)區(qū),主要為喬灌草結(jié)構(gòu)。

圖11 植被空間相關(guān)性曲線Fig.11 Vegetation spatial correlation curve
將低變幅區(qū)與高變幅區(qū),即離水邊緣25 m以內(nèi)的植被帶,作為植被分布對水文特性響應(yīng)關(guān)系的研究區(qū)域。各區(qū)段灘地外緣植被帶土壤性質(zhì)、植被多樣性和生物量的變化見表4。
由表4可知,同一灘地低變幅區(qū)土壤中砂粒質(zhì)量分?jǐn)?shù)比高變幅區(qū)的大,且低變幅區(qū)的土壤質(zhì)地類別中,壤質(zhì)砂土出現(xiàn)頻率極高,達到80%。究其原因,土壤顆粒組成受水文特性的影響極大,水流沖刷和淘蝕灘地岸線,土壤中的粉粒和黏粒等細(xì)粒物質(zhì)大量流失,越靠近河流的淹沒帶,越容易受到其影響,致使粉黏粒質(zhì)量分?jǐn)?shù)下降,砂粒質(zhì)量分?jǐn)?shù)增加。水流作用改變了植物根系與土壤之間物質(zhì)交換屬性,使得植被的空間分布也存在異質(zhì)性。

表4 植被分布對水文特性的響應(yīng)
從植被形態(tài)可塑性角度看,為了適應(yīng)高流速、大紊動的水流條件,灘地外緣植被的葉片和桿莖均為輕柔和狹長,能夠順?biāo)鞣较騼A伏,以克服水流的拖拽力及紊動卷攜,從而保持在該條件下的生存能力。表現(xiàn)為在灘地外緣25 m帶寬范圍內(nèi),蓼科和棒頭草出現(xiàn)的頻率均占40%,菵草和狗牙根出現(xiàn)的頻率均占30%,沿階草出現(xiàn)的頻率占10%,均為喜濕耐沖型植被,與內(nèi)緣植被差異性較高。從植被生長屬性角度看,靈山港灘地基本呈現(xiàn)上、下游區(qū)段植被多樣性較高,生物量較低,而中游區(qū)段植被多樣性較低,生物量較高的現(xiàn)象。這是由于上、下游水流適度的擾動及短期水位變動,為低多樣性集群物種的存活率創(chuàng)造了條件,在主要植被類型基礎(chǔ)上,新增細(xì)風(fēng)輪菜、通泉草、小飛蓬、鼠麯、小花糖芥、鴨跖草和積雪草等植被物種,使得植被帶寬內(nèi)多樣性指數(shù)較大;但由于物種莖稈及根系較小,生物量相對較低。而中游在集中的木本植被阻流緩沖和局地小氣候效應(yīng)影響下,植被帶寬內(nèi)水文效應(yīng)薄弱,灘地生境穩(wěn)定,種類單一化明顯,多為陰石蕨、沿階草和毒芹等,使得植被多樣性較?。坏捎邶嫶蟮男K根及高含水量,使得生物量較大。
4 結(jié)論
1)由植被空間關(guān)聯(lián)性分析,將靈山港灘地分為低變幅區(qū)、高變幅區(qū)和平穩(wěn)區(qū)3個區(qū)域。其中,植被分布受隨機因子與結(jié)構(gòu)因子的共同影響,在灘地外緣至岸邊,植被類型表現(xiàn)為喜濕耐沖型植被、中生植被、中生植被+喬木+灌木的過渡。
2)山丘區(qū)河道灘地植被分布的關(guān)鍵驅(qū)動因子為灘地相對水面高差因子、灘地形態(tài)系數(shù)和水文特性。從整體范圍上看,植被分布對關(guān)鍵驅(qū)動因子敏感性大小依次為灘地相對水面高差因子>灘地形態(tài)系數(shù)>水文特性。
3)地形高度的差異可以作為植被種類的分界線,灘地植被的分布從灘地外緣到灘地內(nèi)部,耐水性由強到弱,豐富性由低到高,生物量由小到大。
4)灘地不可能無限發(fā)育,有其自身的極限展長與極限展寬。當(dāng)SDI系數(shù)處于2.0~4.0之間,且灘地狹長指數(shù)Pe/Pa值在0.12~0.3之間時,至少有60%的保證率,使得灘地植被多樣性能維持在較高水平。
5)河道水文特性會從不同程度影響植被的空間關(guān)聯(lián)性,如植被形態(tài)特征與生境條件。水文特性作用下,常表現(xiàn)為灘地外圍植被帶砂粒質(zhì)量分?jǐn)?shù)隨離水距離增大而減少。外圍植被帶中,蓼科、棒頭草、菵草、狗牙根和沿階草等,對水文環(huán)境適應(yīng)能力極佳,可用于生態(tài)修復(fù)建設(shè)過程中優(yōu)先選擇的對象。
[1] 廖建華,李丹勛,王興奎,等. 長江上游植被覆蓋的時空分異季節(jié)變化及其驅(qū)動因子研究[J].環(huán)境科學(xué)學(xué)報,2009,29(5): 1103. LIAO Jianhua, LI Danxun, WANG Xingkui, et al. The spatial-temporal distribution of seasonal vegetation changes and their driving forces in the upper reaches of the Yangtze River[J]. Acta Scientiae Circumstantiae, 2009, 29(5):1103.
[2] 郭二輝,孫然好,陳利頂. 河岸植被緩沖帶主要生態(tài)服務(wù)功能研究的現(xiàn)狀與展望[J].生態(tài)學(xué)雜志,2011,30(8):1830. GUO Erhui, SUN Ranhao, CHEN Liding. Main ecological service functions in riparian vegetation buffer zone: research progress and prospects[J]. Chinese Journal of Ecology, 2011, 30(8):1830.
[3] 孫彭成,高建恩,王顯文,等. 柳枝稷植被過濾帶攔污增效試驗初步研究[J].農(nóng)業(yè)環(huán)境科學(xué)學(xué)報,2016,35(2):314. SUN Pengcheng, GAO Jianen, WANG Xianwen, et al. Effectiveness of switchgrass vegetative filter strip in intercepting pollutants and promoting plant biomass[J]. Journal of Agro- Environment Science, 2016, 35(2):314.
[4] 林俊強,嚴(yán)忠民,夏繼紅. 微彎河岸沿線擾動壓強分布特性試驗[J].水科學(xué)進展,2013,24(6):855. LIN Junqiang, YAN Zhongmin, Xia Jihong. Laboratory experiments on pressure distribution along sinuous riverbanks[J]. Advances in Water Science, 2013, 24(6):855.
[5] 夏繼紅,陳永明,王為木,等. 河岸帶潛流層動態(tài)過程與生態(tài)修復(fù)[J].水科學(xué)進展,2013,24(4):589. XIA Jihong, CHEN Yongmin, WANG Weimu, et al. Dynamic processes and ecological restoration of hyporheic layer in riparian zone[J]. Advances in Water Science, 2013, 24(4):589.
[6] 夏繼紅,林俊強,姚莉,等. 河岸帶的邊緣結(jié)構(gòu)特征與邊緣效應(yīng)[J].河海大學(xué)學(xué)報(自然科學(xué)版),2010,38(2):215. XIA Jihong, LIN Junqiang, YAO Li, et al. Edge structure and edge effect of riparian zones[J]. Journal of Hohai University(Natural Sciences),2010,38(2):215.
[7] 高敏,槐文信,趙明登. 灘地植被化的順直復(fù)式河道漫灘水流計算[J].節(jié)水灌溉,2008(6):21. GAO Min, HUAI Wenxin, ZHAO Mingdeng. Overbank flow calculation for straight compound channel with vegetated floodplain[J].Water Saving Irrigation,2008(6):21.
[8] 王月容,周志翔,周金星,等. 長江灘地植被緩沖帶類型及功能與生態(tài)重建[J].湖北林業(yè)科技, 2010(4):5. WANG Yuerong, ZHOU Zhixiang, ZHOU Jinxing, et al. Type,function and ecological reconstruction of vegetated buffer strips in Yangtze River Beach[J]. Hubei Forestry Science and Technology, 2010(4):5.
[9] 閆靜,唐洪武,田志軍,等. 植物對明渠流速分布影響的試驗研究[J].水利水運工程學(xué)報,2011(4):138. YAN Jing, TANG Hongwu, TIAN Zhijun, et al. Experimental study on the influence of vegetation on the velocity distribution of open channel flows[J]. Hydro-Science and Engineering, 2011(4):138.
[10] 陳正兵,江春波.灘地植被對河道水流影響[J].清華大學(xué)學(xué)報(自然科學(xué)版), 2012,52(6):804. CHEN Zhengbing, JIANG Chunbo. Effect of floodplain vegetation on river hydrodynamics [J].Journal of Tsinghua University (Science and Technology), 2012,52(6):804.
[11] DWIRE K A, KAUFFMAN J B, BROOKSHIRE E N J, et al. Plant biomass and species composition along an environmental gradient in montane riparian meadows[J]. Oecologia, 2004, 139(2):309.
[12] BURTON M L, SAMUELSON L J. Influence of urbanization on riparian forest diversity and structure in the Georgia Piedmont, US[J]. Plant Ecology, 2008, 195(1):99.
[13] MOFFATT S F, MCLACHLAN S M, KENKEL N C. Impacts of land use on riparian forest along an urban-rural gradient in southern Manitoba[J]. Plant Ecology, 2004, 174(174):119.
[14] 李悅,馬溪平,李法云,等.細(xì)河河岸帶植物多樣性研究[J].廣東農(nóng)業(yè)科學(xué),2011(19):131. LI Yue, MA Xiping, LI Fayun, et al. Study on plant species diversity of riparian zone along Xi river[J].Guangdong Agricultural Sciences,2011(19):131.
[15] 孟偉,張遠,渠曉東等.河流生態(tài)調(diào)查技術(shù)方法[M].北京:科學(xué)出版社,2011:65. MENG Wei, ZHANG Yuan, QU Xiaodong, et al.Technical methods of river ecological investigation[M]. Beijing: Science Press, 2011:65.
[16] 惠剛盈,胡艷波,趙中華. 基于相鄰木關(guān)系的樹種分隔程度空間測度方法[J].北京林業(yè)大學(xué)學(xué)報,2008,30(4):131. HUI Gangying, HU Yanbo, ZHAO Zhonghua. Evaluating tree species segregation based on neighborhood spatial relationships[J]. Journal of Beijing Forestry University, 2008, 30(4):131.
[17] 惠剛盈,Gadow K V,胡艷波.林分空間結(jié)構(gòu)參數(shù)角尺度的標(biāo)準(zhǔn)角選擇[J].林業(yè)科學(xué)研究,2004,17(6):687. HUI Gangying, Gadow K V, HU Yanbo. Theoptimum standard angle of the uniform angle index[J]. Forest Research, 2004, 17(6):687.
[18] 麻雪艷,周廣勝. 春玉米最大葉面積指數(shù)的確定方法及其應(yīng)用[J].生態(tài)學(xué)報,2013,33(8):2596. MA Xueyan, ZHOU Guangsheng. Method of determining the maximum leaf area index of spring maize and its application[J]. Acta Ecologica Sinica, 2013, 33(8):2596.
[19] 李斌.青藏高原植被時空分布規(guī)律及其影響因素研究[D]北京:中國地質(zhì)大學(xué)出版社,2016:62. LI Bin. Study of vegetation’s spatial and temporal distribution and influencing factors on the Tibetan Plateau[D]. Beijing: China University of Geosciences,2016:62.
Vegetation distribution and its driven-forces on the floodplains of small and medium rivers in hilly area
YU Genting1, XIA Jihong1, BI Lidong1, WANG Yingjun2, LIN Lihuai1, CAO Weijie1, YI Zihan1
(1.College of Water Conservancy and Hydropower, Hohai University, 210098, Nanjing, China; 2.Water Conservancy Bureau, 324400, Longyou, Zhejiang, China)
[Background] Vegetation in riparian zone is an important buffer to sustain the health of a river system. It is a typical ecotone characterized as edge effect, and plays a significant role in the conservation of river system health. Therefore, it is vital to know how the vegetation in floodplain distributes and what the driven-forces of the distribution are. [Methods] Taking the Lingshan River, in Longyou County, Zhejiang Province, as a typical example of small and medium rivers in hilly area, the characteristics of the vegetation distribution and its driven-forces were studied. After investigating the vegetation species in the quadrat sampling, the data was calculated and analyzed using the Clustering Analysis (CA) in SPSS software, and the Redundancy Analysis (RDA) in Canoco5 software and through which the composition and cluster numbers of vegetation species, the cosine of the angle at the origin of the two vectors, the contribution rate of driven-forces were calculated. On the basis of GPS site survey and the maps downloaded from Google Earth, the elevation and shape coefficient were analyzed by Digital Elevation Model (DEM) in Surfer software. Then combined with the regression analysis, the relationship between the vegetation and driven-forces were obtained. [Results] In the floodplain of Lingshan River, there were 62 vegetation species (61 kinds ofAngiospermaesand one kind ofPteridophyta) and the vegetation community structure was mainly divided into 9 classes. The major three driven-forces of the vegetation distribution were elevation factor (ButtElev), shape coefficient (Shapindx) and hydrological characteristics (HydrChar), and their contribution rates were 37.50%, 27.50%, 16.82%, respectively. Particularly, under the influence of ButtElev, from outer to inner edge of floodplain, the moisture capacity varied from strong to weak, the diversity varied from low to high, and the biomass varied from small to large. There was at least 60 percent of the guarantee rate making the vegetation diversity between 1.03 and 1.96 when the SDI coefficient was between 2.0 and 4.0, and the Pe/Pa was between 0.12 and 0.3. The hydrological characteristics affected the morphological plasticity of vegetation and the habitat conditions of the floodplain. The sand content in the outer zone of the floodplain decreased with the increase of the distance from the water, and the anti-scour ability and moisture capacity of the vegetation decreased from strong to weak. [Conclusions] The elevation factor, shape coefficient and hydrological characteristics are the key driven-forces of vegetation distribution in small and medium rivers in hilly area. When we design ecological restoration projects, the three factors should be focused on, and the suitable measures should be employed in order to control and optimize the three factors.
hilly area; small and medium rivers; floodplain; vegetation distribution; driven-forces
2016-09-19
2017-03-23
項目名稱: 國家自然科學(xué)基金“蜿蜒型河岸帶潛流層水動力學(xué)機制及溶質(zhì)運移規(guī)律研究”(41471069);浙江省水利科技項目“龍游縣中小河流灘地時空演化機理及生態(tài)修復(fù)技術(shù)研究”(RC1527)
余根聽(1992—),男,碩士研究生。主要研究方向:河岸帶生態(tài)機理。E-mail: yugenting@hhu.edu.cn
?通信作者簡介: 夏繼紅(1970—),男,教授,博士生導(dǎo)師。主要研究方向:河岸帶生態(tài)機理。E-mail: syjhxia@hhu.edu.cn
X171
A
2096-2673(2017)02-0051-11
10.16843/j.sswc.2017.02.007