戴瑤瑤, 范興良, 祝峻峰
上海中醫(yī)藥大學(xué)附屬市中醫(yī)醫(yī)院肝病科, 上海 201203
四氯化碳制備肝硬化腹水模型方案的分析與比較
戴瑤瑤, 范興良, 祝峻峰
上海中醫(yī)藥大學(xué)附屬市中醫(yī)醫(yī)院肝病科, 上海 201203
四氯化碳(CCl4)是制備肝硬化腹水模型的經(jīng)典造模方案。本文從不同給藥途徑和不同造模方案概述和評(píng)析以CCl4為主制備肝硬化腹水模型的方案,分析每種造模方案的優(yōu)劣勢,總結(jié)較優(yōu)制備模型方案,為實(shí)驗(yàn)研究提供參考,同時(shí)也為深入研究肝硬化腹水奠定基礎(chǔ)。
肝硬化腹水;四氯化碳;動(dòng)物模型
腹水是肝硬化最常見、最早發(fā)生的并發(fā)癥之一。研究[1]表明,代償期肝硬化患者10年內(nèi)約有50%進(jìn)展為腹水,與無腹水形成的肝硬化失代償期患者相比,有腹水形成的患者死亡率明顯升高,50%的腹水患者在5年內(nèi)死亡[2]。構(gòu)建能夠模擬人肝硬化腹水過程的理想動(dòng)物模型是探索疾病早期診斷、尋找及時(shí)有效治療、改善病情和預(yù)后的關(guān)鍵。目前有四氯化碳(CCl4)造模法、乙醇造模法及免疫造模法等肝硬化動(dòng)物模型制備方法[3]。CCl4造模法是經(jīng)典的肝硬化腹水制備模型方法,廣泛應(yīng)用于動(dòng)物模型肝毒性研究[4]。隨著研究的深入,CCl4制備肝硬化腹水模型的方案得到不斷優(yōu)化。綜合文獻(xiàn)報(bào)道,發(fā)現(xiàn)各造模方法比較集中的問題主要是給藥方式、藥物濃度、時(shí)間及造模后持續(xù)時(shí)間尚未確定,現(xiàn)將近年來以CCl4為主不同造模方法的優(yōu)缺點(diǎn)作一比較,并對該領(lǐng)域的前景作一概述。
CCl4制備肝硬化腹水模型的主要給藥途徑包括灌胃、皮下注射、腹腔注射、吸入等。實(shí)驗(yàn)人員通過長期探索研究,相互比較,對造模給藥途徑各有看法,概述如下。
腹腔注射具有操作簡便、動(dòng)物吸收快、肝藥物濃度高、成模時(shí)間短、毒副反應(yīng)降低等優(yōu)點(diǎn),死亡率為20%~35%[5]。崔承虎等[6]采用大鼠肝硬化疾病評(píng)分模型(SLCD)和拉埃內(nèi)克纖維化評(píng)分系統(tǒng)(LFSS)測得生化和組織形態(tài)學(xué)分值。結(jié)果顯示:腹腔注射給藥肝硬化模型效果優(yōu)于皮下注射和灌胃方法。大鼠死亡率腹腔注射、皮下注射、灌胃依次升高。但CCl4腹腔注射容易導(dǎo)致腹腔粘連而無法正確評(píng)估腹水[7]。皮下注射是經(jīng)典的造模給藥方式,可以縮短造模時(shí)間[8],但注射后很快被機(jī)體吸收進(jìn)入循環(huán)系統(tǒng),腦、腎毒性較大,并且注射部位容易發(fā)生浸潤性膿腫和潰瘍,死亡率為30%~40%[9]。吸入法可縮短造模時(shí)間,但呼吸道刺激大,動(dòng)物很難耐受,中樞毒性大。灌胃法CCl4可直接吸收入肝,但操作復(fù)雜,腸道反應(yīng)大[10]。
肝硬化腹水模型制備的給藥途徑無統(tǒng)一言論。不同給藥方式與動(dòng)物模型肝硬化嚴(yán)重程度及動(dòng)物死亡率存在一定相關(guān)性,造模給藥方式各有優(yōu)劣,具體選擇何種給藥途徑,實(shí)驗(yàn)人員應(yīng)根據(jù)具體情況酌情選擇。
2.1 單用CCl4制備法CCl4是一種有效的致肝壞死的肝毒素劑,廣泛用于動(dòng)物模型誘導(dǎo)的急性和慢性肝損傷[11]。CCl4導(dǎo)致實(shí)驗(yàn)動(dòng)物模型肝損傷的最主要原因是氧化應(yīng)激反應(yīng)。通過細(xì)胞色素P450介導(dǎo)活化引起的實(shí)驗(yàn)性肝損傷的自由基[12],如三氯甲基和三氯甲基過氧化氫,影響肝細(xì)胞的細(xì)胞膜導(dǎo)致結(jié)構(gòu)和功能發(fā)生改變[13],纖維結(jié)締組織明顯增生,形成肝纖維化,進(jìn)一步發(fā)展為肝硬化[14]。單純使用CCl4肝毒性劇烈,劑量不同直接影響動(dòng)物模型的死亡率。低劑量CCl4導(dǎo)致Ca2+釋放、膜損傷、凋亡、再生;中劑量則導(dǎo)致脂變、纖維化、硬化甚至癌變;高劑量則直接造成肝細(xì)胞壞死,出現(xiàn)肝衰竭;極限量CCl4將會(huì)對多種臟器損傷,出現(xiàn)中樞抑制、呼吸衰竭甚至死亡[15]。所以單純注射CCl4劑量把握很重要。同時(shí)單獨(dú)注射CCl4還存在給藥時(shí)間長、成模率低、死亡率高等問題,但是單純注射CCl4造模方法簡單,病變典型(見表1)。
表1 單用CCl4制備法
Tab 1 Single use CCl4in method of preparation
動(dòng)物品種動(dòng)物體質(zhì)量(g)造模方式 造模時(shí)間成模率(%)死亡率(%)參考文獻(xiàn)Wistar大鼠180~20050%的CCl4橄欖油溶液2ml/kg皮下注射(首次3ml/kg皮下注射)2次/周,共12周5050[16]SD大鼠180~20050%的CCl4橄欖油溶液3ml/kg皮下注射(首次6ml/kg皮下注射)2次/周,共12周48.151.9[17]SD大鼠180~22060%的CCl4橄欖油溶液3ml/g腹腔注射3次/周,共12周7227[18]SD大鼠180±2050%的CCl4橄欖油溶液3ml/g皮下注射2次/周,共16周52/[19]
表2 CCl4聯(lián)合苯巴比妥制備法
Tab 2 CCl4combined with Phenobarbital in method of preparation
動(dòng)物品種動(dòng)物體質(zhì)量(g)造模方式造模時(shí)間成模率(%)死亡率(%)參考文獻(xiàn)Wistar大鼠150~18035%苯巴比妥單獨(dú)為飲用水2周,后以80μlCCl4溶液灌胃,根據(jù)體質(zhì)量變化改變劑量。后繼以35%苯巴比妥飲用水和CCl4聯(lián)合管理直至腹水形成1次/周,共10~18周96.43.6[24]SD大鼠/35%苯巴比妥溶液為飲用水。初始劑量為20μlCCl4溶液灌胃,以后每次劑量變化根據(jù)48h內(nèi)動(dòng)物體質(zhì)量變化予以相應(yīng)調(diào)整,發(fā)展成腹水后劑量減小到40μl1次/周,共12周59.340.7[25]SD大鼠100~15035%苯巴比妥溶液作為飲用水2周,在乙醚麻醉下插胃管,起始劑量40%CCl4油溶液按40μl,按體質(zhì)量個(gè)體化增加至400μl1次/周,共10周78.626.3[26]SD大鼠200±2035%苯巴比妥溶液作為飲用水1周,按1ml/kg腹腔注射,首劑加倍,第2~3周10%CCl4油溶液,第4~5周12%CCl4油溶液,第6~7周14%CCl4油溶液,第8~9周給予16%CCl4油溶液,第10~11周給予18%CCl4油溶液,第12~14周給予20%CCl4油溶液2次/周,共14周90.010.0[27]
2.3 CCl4聯(lián)合乙醇制備法乙醇是酶的誘導(dǎo)劑,可以加強(qiáng)CCl4的毒性[28],乙醇代謝的主要場所在肝臟,乙醇在肝內(nèi)經(jīng)代謝產(chǎn)生乙醛,后者能與蛋白質(zhì)結(jié)合干擾正常的代謝從而產(chǎn)生直接細(xì)胞毒性作用。同時(shí)乙醇的氧化代謝影響細(xì)胞內(nèi)的信號(hào)傳導(dǎo)途徑,擾亂了一些基因的轉(zhuǎn)錄調(diào)控,導(dǎo)致脂肪堆積、纖維化、激活先天免疫和適應(yīng)性免疫[29]。長期的乙醇喂養(yǎng),使得脂肪組織極低密度脂蛋白受體(VLDLR)明顯衰減,從而使肝臟病變加重[30]。所以CCl4聯(lián)合乙醇制備模型,可以減少造模時(shí)間。但是由于動(dòng)物對乙醇飲用水的自然抵觸情緒,容易導(dǎo)致脫水、低血液酒精濃度和營養(yǎng)不足等一些弊端[31],致使部分大鼠因拒絕飲水而死亡。改良方案: CCl4和乙醇濃度逐步增加,使得動(dòng)物可以有耐受的過程,降低死亡率。實(shí)驗(yàn)數(shù)據(jù)表明用食用白酒代替乙醇也使動(dòng)物拒水的現(xiàn)象大大減少(見表3)。
表3 CCl4聯(lián)合乙醇制備法
Tab 3 CCl4combined with Ethanol in method of preparation
動(dòng)物品種動(dòng)物體質(zhì)量(g)造模方式造模時(shí)間成模率(%)死亡率(%)參考文獻(xiàn)Wistar大鼠240~26010%乙醇作為大鼠唯一用水,第1天3ml/kg皮下注射CCl4,后則予40%CCl4橄欖油溶液(1.5ml/kg)腹部皮下注射2次/周,共8周62.5/[32]Wistar大鼠150~20010%乙醇自來水溶液作為飲用水,50%CCl4橄欖油混合液(4ml/kg)腹腔注射。體質(zhì)量降低≥10g時(shí),暫停給藥,并改用自來水為飲用水源,直到體質(zhì)量恢復(fù)到<10g時(shí)繼續(xù)上述方案2次/周,共10周72.527.5[33]Wistar大鼠160~20010%乙醇作為大鼠唯一用水,40%CCl4橄欖油混合液(2ml/kg)腹腔注射2次/周,共12周7525[34]SD大鼠200±2010%乙醇作為大鼠唯一用水,皮下注射50%CCl4植物油溶液,第1天按5ml/kg,從第3天起劑量改為3ml/kg3次/周,共11周71/[35]
2.4 綜合方案制備法聯(lián)合乙醇、苯巴比妥或是飲食營養(yǎng)的改變誘導(dǎo)模型。限制食物加重CCl4毒性是通過CCl4代謝活化導(dǎo)致,從而引起更嚴(yán)重的肝損傷[36]。然而限制食物對肝毒性的影響是有爭議的,因?yàn)槭澄锵拗瓶梢允笴Cl4的藥物毒性在過氧化反應(yīng)中最小化[37]。苯巴比妥和乙醇同時(shí)作用下加速CCl4導(dǎo)致肝細(xì)胞壞死,縮短造模時(shí)間,同時(shí)CCl4的給藥劑量可以減少,從而使藥物的毒副作用降低,減少死亡率[38](見表4)。
表4 綜合方案制備法
Tab 4 Comprehensive method of preparation
動(dòng)物品種動(dòng)物體質(zhì)量(g)造模方式造模時(shí)間成模率(%)死亡率(%)參考文獻(xiàn)Wistar大鼠160~200飲水:第1~2周為30%苯巴比妥,第3周開始改為10%乙醇至實(shí)驗(yàn)結(jié)束。40%CCl4橄欖油混合液(2ml/kg)腹腔注射2次/周,共12周8020[34]Wistar大鼠250±20飲水:10%乙醇作為大鼠唯一用水,食物:79.5%玉米粉、20%豬油、0.5%膽固醇混合。注射40%CCl4植物油溶液,第1天按4ml/kg,從第3天起劑量改為2ml/kg2次/周,共10周86.713.3[39]SD大鼠240~260第1~6周飲水為10%乙醇,飲食為純玉米粉中加入20%的豬油及0.5%的膽固醇。首次按50%的CCl4大豆油溶液(5ml/kg)皮下注射,以后的注射劑量根據(jù)前1周體質(zhì)量增減幅度進(jìn)行調(diào)整2次/周,共8周8515[40]SD大鼠250~300飲水:0.035%苯巴比妥誘導(dǎo)1周,第1~4周為10%乙醇。第5~8周改為20%乙醇。飲食:玉米面等高糖低蛋白飲食。第1~4周按40%的CCl4油溶液(3ml/kg)皮下注射,首劑加倍;第5~8周按50%的CCl4油溶液(3ml/kg)皮下注射2次/周,共8周83.33/[41]
綜上所述,CCl4綜合造模方案優(yōu)于單純CCl4方案,死亡率降低,大大縮短了造模時(shí)間,模型的穩(wěn)定性更佳。仍存在如下問題:(1)肝硬化腹水的發(fā)生機(jī)制、疾病進(jìn)程、轉(zhuǎn)歸等方面動(dòng)物模型和人類有異。人類發(fā)病是一個(gè)復(fù)雜的病理過程,且具有種屬差異,CCl4誘導(dǎo)的肝硬化與人類的肝硬化相比有很多相似但也有許多重要的差異,很難復(fù)制出同樣的動(dòng)物模型。理想的動(dòng)物模型應(yīng)與人類肝硬化、門脈高壓的特征相同,但是目前尚無理想的動(dòng)物模型能夠滿足,有待進(jìn)一步實(shí)驗(yàn)研究[42]。(2)CCl4劑量難以掌握。動(dòng)物本身個(gè)體差異明顯,不同組別之間也具有差異,即使是近交系也存在此問題,1936年Cameron等[43]采用CCl4制備模型時(shí)就強(qiáng)調(diào),依賴CCl4造成反復(fù)肝損傷必須局限在一個(gè)狹窄的臨界范圍。因其具有可逆性,一方面導(dǎo)致肝衰竭,另一方面導(dǎo)致動(dòng)物死亡。解決此問題最有效的方法是監(jiān)測動(dòng)物體質(zhì)量,個(gè)體化給藥,在一定程度上可降低死亡率。(3)制備模型的實(shí)驗(yàn)方案在不斷優(yōu)化,但方案的進(jìn)步只是相對而言,尚無一種實(shí)驗(yàn)方案可以有效降低死亡率,縮短造模時(shí)間,且有良好的穩(wěn)定性、重復(fù)性,動(dòng)物大量死亡不符合動(dòng)物倫理學(xué)。CCl4具有揮發(fā)性,對人體有較大危害。因此,建立理想肝硬化腹水模型很困難,人和動(dòng)物在種屬、病因、生化及免疫性等方面的差異都應(yīng)在考慮范圍之內(nèi),實(shí)驗(yàn)者應(yīng)根據(jù)具體實(shí)驗(yàn)需要選擇造模方法。
[1]Sandhu BS,Sanyal AJ.Managemen to fascites in cirrhosis [J].Clin Liver Dis, 2005, 9(4): 715-732, viii.
[2]Planas R, Montoliu S, Ballesté B, et al. Natural historyof patients hospitalizedfor managementof cirrhotic ascites [J].Clin Gastroenterol Hepatol, 2006, 4(11): 1385-1394.
[3]馮英巧, 楊元生, 崔淑蘭, 等. 肝纖維化實(shí)驗(yàn)動(dòng)物模型造模方法及應(yīng)用研究進(jìn)展[J]. 廣東藥學(xué)院學(xué)報(bào), 2013, 29(5): 570-574. Feng YQ, Yang YS, Cui SL, et al. Advance in the development and application of experimental animal models of liver fibrosis [J]. Journal of Guangdong Pharmaceutical University, 2013, 29(5): 570-574.
[4]Sagor AT, Chowdhury MR, Tabassum N, et al. Supple mentation of fresh ucche (Momordica charantia L. var. muricata Willd) prevented oxidative stress, fibrosis and hepatic damage in CCl4treated rats [J]. BMC Complementary Altern Med, 2015, 15: 115.
[5]Henkel C, Roderfeld M, Weiskirchen R, et al.Changes of the hepatic proteomein murine models for toxically induced fibrogenesis and sclerosingcholangitis [J]. Proteomics, 2006, 6(24): 6538-6548.
[6]崔承虎, 金世柱, 韓明子, 等. 四氯化碳誘導(dǎo)肝硬化動(dòng)物模型的相關(guān)影響因素[J]. 醫(yī)學(xué)研究生學(xué)報(bào), 2015, 28(9): 910-914. Cui CH, Jin SZ, Han MZ, et al. Influencing factors in the establishment of the rat model of liver cirrhosis with carbon tetrachloride [J]. J Med Postgra, 2015, 28(9): 910-914.
[7]Domenicali M, Caracen P, Giannone F, et al. A novel model of CCl4induced cirrhosis with ascitesin themouse [J]. J Hepatol, 2009, 51(6): 991-999.
[8]田源, 鄧媛媛. 三種不同給藥途徑建立小鼠肝硬化模型的比較[J]. 山地農(nóng)業(yè)生物學(xué)報(bào), 2012, 31(5): 454-456. Tian Y, Deng YY. Establishment of mouse model for cirrhosis using three routes of administration [J]. Journal of Mountain Agricultural and Biological, 2012, 31(5): 454-456.
[9]張貴陽, 楊衛(wèi)平, 陳皓. 肝硬化動(dòng)物模型構(gòu)建的研究進(jìn)展[J]. 外科理論與實(shí)踐, 2008, 13(3): 266-269. Zhang GY, Yang WP, Chen H. Research progress on the construction of animal model of liver cirrhosis [J]. J Surg Concepts Pract, 2008, 13(3): 266-269.
[10]陳學(xué)新, 潘華, 鄭月梅, 等. 肝硬化動(dòng)物模型的研究進(jìn)展[J].寧夏醫(yī)科大學(xué)學(xué)報(bào), 2009, 31(5): 696-698. Chen XX, Pan H, Zheng YM, et al. Research progress on the model of animal with liver cirrhosis [J]. Journal of Ningxia Medical College, 2009, 31(5): 696-698.
[11]Ramasamy P, Subhapradha N, Shanmugam V, et al. Protective effect of chitosan from Sepiakobiensis, (Hoyle1885)cuttle bone against CCl4, induced hepatic injury [J]. Int J Biol Macromol, 2014, 65(5): 559-563.
[13]Khan RA, Khan MR, Sahreen S. CCl4-induced hepatotoxicity: protective effect of rutin on p53, CYP2E1 and the antioxidative status in rat [J].BMC Complement Altern Med, 2012, 12(1): 178.
[14]Lee GH, Bhandary B,Lee EM, et al. The roles of ER stress and P450 2E1 in CCl(4)-induced steatosis [J].Int J Biochem Cell Biol, 2011, 43(10): 1469-1482.
[15]許永樂, 蔡大勇, 唐朝樞.CCl4導(dǎo)致肝硬化和門脈高壓的機(jī)制[J].世界華人消化雜志, 2005, 13(2): 235-238. Xu YL, Cai DY, Tang CS.Mechanism of CCl4-induced hepatocirrhosis and portal hypertension [J].World Chin J Digestol, 2005, 13(2): 235-238.
[16]慕永平, 陳曉蓉, 陸云飛, 等. 消癥榮木散治療大鼠肝硬化的實(shí)驗(yàn)研究 [J].中國中西醫(yī)結(jié)合雜志, 2010, 30(10): 1078-1083. Mu YP, Chen XR, Lu YF, et al. Effect of Xiaozheng Rongmu Powder for the treatment of liver cirrhosis in rats [J]. CJITWM, 2010, 30(10): 1078-1083.
[17]Zhang S, Wang W, Ren W, et al. Effects of lactulose on intestinal endotoxin and bacterial translocation in cirrhotic rats [J]. Chin Med J(Engl), 2003, 116(5): 767-771.
[18]張?jiān)莆? 胡亞卓, 徐麗娟, 等. 四氯化碳法制備肝硬化大鼠模型中重要臟器的病理改變[J]. 世界華人消化雜志, 2014, 22(1): 74-79. Zhang YW, Hu YZ, Xu LJ, et al. Pathological changes in major organs of rats with carbon tetrachloride-induced liver cirrhosis [J]. World Chinese Journal of Digestion, 2014, 22(1): 74-79.
[19]劉建強(qiáng), 張志堅(jiān), 王雯,等. 膽汁酸對肝硬化大鼠腸道細(xì)菌移位和內(nèi)毒素血癥的影響[J]. 福建醫(yī)科大學(xué)學(xué)報(bào), 2016, 40(3): 231-233. Liu JQ, Zhang ZJ, Wang W, et al. Effects of bile acids on intestinal bacterial translocation and endotoxemia in cirrhotic rats[J].J Fujian Med Univ, 2006, 40(3): 231-233.
[20]Natarajan SK, Thomas S, Ramamoorthy P, et al. Oxidative stress in the development of liver cirrhosis: a comparison of two different experimental models [J]. J Gastroenterol Hepatol, 2006, 21(6): 947-957.
[21]McLean EK, McLean AE, Sutton PM. Instant cirrhosis. An improved method for producing cirrhosis of the liver in rats by simultaneous administration of carbon tetrachloride and phenobarbitone [J].Br J ExpPathol, 1969, 50(5): 502-506.
[23]Hashimoto M, Kothary PC, Raper SE.Phenobarbital in comparison with carbon tetrachloride and phenobarbital-induced cirrhosis in rat liver regeneration [J]. J Surg Res, 1999, 81(2): 164-169.
[24]Rozga J, Foss A, Alumets J, et al. Liver cirrhosis in rats: regeneration and assessment of the role of phenobarbital [J]. J Surg Res, 1991, 51(4): 329-335.
[25]Runyon BA, Squier S, Borzio M. Translocation of gut bacteria in rats with cirrhosis to mesenteric lymph nodes partially explains the pathogenesis of spontaneous bacterial peritonitis [J]. J Hepatol, 1994, 21(5): 792-796.
[26]Bengtsson F, Bugge M,Vagianos C, et al. Brain serotonin metabolism and behavior in rats with carbon tetrachloride-induced liver cirrhosis [J]. Res Exp Med (Berl), 1987, 187(6): 429-438.
[27]方慶, 王成業(yè), 姚瑤, 等. 苯巴比妥聯(lián)合CCl4法建立肝硬化腹水大鼠模型[J].安微醫(yī)藥, 2015, 19(2): 230-233. Fang Q, Wang CY, Yao Y, et al. To establish the model of cirrhotic rats with ascites phenobarbital combined with CCl4method [J].Anhui Medical and Pharmaceutical Journal, 2015, 19(2): 230-233.
[28]Li JP, Gao Y, Chu SF, et al. Nrf2 pathway activation contributes to anti-fibrosis effects of ginsenoside Rg1 in a rat model of alcohol-and CCl4-induced hepatic fibrosis[J]. Acta Pharmacol Sin, 2014, 35(8): 1031-1044.
[29]Ceni E, Mello T, Galli A. Pathogenesis of alcoholic liver disease: role of oxidative metabolism[J]. World J Gastroenterol, 2014, 20(47): 17756-17772.
[30]Wang Z, Dou X, Li S, et al. Nuclear factor (erythroid-derived 2)-like 2 activation-induced hepatic very-low-density lipoprote in receptor overexpression in response to oxidative stress contributes to alcoholic liver disease in mice [J]. Hepatology, 2014, 59(4): 1381-1392.
[31]Mathews S, Xu M, Wang H, et al. Animals models of gastrointestinalandliverdiseases.Animal models of alcohol-induced liver disease: pathophysiology, translational relevance,and challenges [J]. Am J Physiol Gastrointes Liver Physiol, 2014, 306(10): G819-G823.
[32]李嘉, 劉友章, 陳美仁, 等. 健脾活血袪濕方對肝硬化腹水大鼠肝功能及水通道蛋白9的影響[J]. 中藥新藥與臨床藥理, 2014, 25(4): 437-442. Li J, Liu YZ, Chen MR, et al.Effect of Jianpi Huoxue Qushi prescription on hepatic function aquaporin 9 expression in cirrhotic rats with ascites [J].Traditional Chinese Drug Research & Clinical Pharmacology, 2014, 25(4): 437-442.
[33]龍啟福, 沈國平, 朱德銳, 等.CCl4橄欖油溶液對肝硬化大鼠模型制備成功率的影響[J]. 微量元素與健康研究, 2012, 29(2): 1-3. Long QF, Shen GP, Zhu DR, et al. The liver cirrhosis modeling makeup was successfully improved by using oliver oil solution with CCl4[J]. Studies of Trace Elements and Health, 2012, 29(2): 1-3.
[34]Tang Q, Wang Z, Zhao X, et al. Improvement and optimization of CCl4induced liver cirrhosis rats model accompanied with ascites [J].J Int Pharm Res, 2012, 39(3): 220-222.
[35]郝建梅, 李幸倉, 孫守才, 等. 甲苓飲治療大鼠肝硬化腹水的試驗(yàn)研究[J]. 中國實(shí)驗(yàn)方劑學(xué)雜志, 2010, 16(9): 138-140. Hao JM, Li XC, Sun SC, et al. Experimental study on treatment of Jia Ling Yin rats liver cirrhosis ascites [J]. Chinese Journal of Experimental Traditional Medical Formulac, 2010, 16 (9): 138-140.
[36]Horn MM, Ramos AR, Winkelmann L, et al. Seminiferous epithelium of rats with food restriction and carbon tetrachloride-induced cirrhosis [J].Int Braz J Urol, 2006, 32(1): 94-99.
[37]Goldani HA, Matte US, Ramos AR, etal. The role of food restriction on CCl4-induced cirrhosis model in rats [J]. Exp Toxicol Path, 2007, 58(5): 331-337.
[38]Dalton SR, Lee SM, King RN, et al. Carbon tetrachloride-induced liver damage in asialoglyco protein receptor-deficient mice [J]. Biochem Pharmacol, 2009, 77(7): 1283-1290.
[39]Liu L, Zhang C, Hu Y, et al. Changes in gut toll-like receptor-4 and nod-like receptor family pyrin domain containing-3 innate pathways in liver cirrhosis rats with bacterial translocation [J]. Clin Res Hepatol Gastroenterol, 2016, 40(5): 575-583.
[40]王志斌, 黃智銘, 王金金, 等. 四氯化碳劑量個(gè)體化誘導(dǎo)制作肝硬化大鼠模型[J]. 中華肝臟病雜志, 2008, 16(3): 234-235. Wang ZB, Huang ZM, Wang JJ, et al. Inducing rat liver cirrhosis by adjusting the dosage of CCl4according to body weight changes [J]. Chin J Hepatol, 2008, 16 (3): 234-235.
[41]王滿倉. 不同途徑移植大鼠BMSCs對大鼠肝硬化治療作用的研究[D].山西醫(yī)科大學(xué), 2010. Wang MC. The study of transplant mesenchymal stem cells to liver cirrhosis rats via different transplantation path [D]. Shanxi Medical University, 2010.
[42]徐安書,文正榮,孫志為. 肝硬化實(shí)驗(yàn)動(dòng)物模型的研究現(xiàn)狀[J]. 醫(yī)學(xué)綜述, 2010, 16(7): 1046-1048. Xu AS, Wen ZR, Sun ZW. Research progress on animal models of hepatic cirrhosis [J]. Medical Recapitulate, 2010, 16 (7): 1046-1048.
[43]Cameron GR, Karunaratne WAE. Carbon tetrachloride cirrhosis in relation to liver regeneration [J].J Pathol Bacteriol, 2005, 42(1): 1-21.
(責(zé)任編輯:王全楚)
Analysis and comparison of the model of cirrhosis ascites induced by carbon tetrachloride
DAI Yaoyao, FAN Xingliang, ZHU Junfeng
Department of liver Disease, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai 201203, China
Carbon tetrachloride (CCl4) is the classic modeling scheme of preparation of liver cirrhosis ascites model. This paper reviewed the scheme of preparing liver cirrhosis ascites model mainly based on CCl4by different medicate on routes and modeling schemes, and analyzed the advantages and disadvantages of each modeling program. The better preparation modeling was summarized and reference for experimental research was provided, at the same time, the foundation for the further research of cirrhosis ascites was layed.
Liver cirrhosis ascites; Carbon tetrachloride; Animal models
上海市進(jìn)一步加快中醫(yī)藥事業(yè)三年發(fā)展行動(dòng)計(jì)劃項(xiàng)目(ZY3-JSFC-1-1017);海派基地建設(shè)(ZY3-CCCX-1-1001)
戴瑤瑤,在讀碩士研究生,研究方向:慢性肝病的中醫(yī)防治。E-mail: shzyydxdyy@163.com
祝峻峰,碩士,主任醫(yī)師,研究方向:中西醫(yī)結(jié)合治療慢性肝病。E-mail: zhujftongling@163.com
10.3969/j.issn.1006-5709.2017.01.002
R575.2
A
1006-5709(2017)01-0005-05
2016-05-30