胡振琪,龍精華,張瑞婭,肖 武,趙艷玲
·土地整理工程·
中國(guó)東北多煤層老礦區(qū)采煤沉陷地?fù)p毀特征與復(fù)墾規(guī)劃
胡振琪,龍精華,張瑞婭,肖 武,趙艷玲
(中國(guó)礦業(yè)大學(xué)(北京)土地復(fù)墾與生態(tài)重建研究所,北京100083)
多煤層老礦區(qū)開(kāi)采時(shí)間長(zhǎng),土地?fù)p毀程度嚴(yán)重,沉陷地再利用情況復(fù)雜。該文通過(guò)實(shí)地調(diào)查和搜集各煤礦地質(zhì)地形圖、采掘圖、儲(chǔ)量圖和采礦歷史等資料,借助礦區(qū)沉陷預(yù)計(jì)軟件(MSPS),運(yùn)用概率積分法對(duì)鶴崗礦區(qū)沉陷地近期(2014-2020年)和遠(yuǎn)景(2021年-閉礦)2個(gè)階段進(jìn)行沉陷預(yù)測(cè),并采用ArcGIS軟件對(duì)數(shù)據(jù)進(jìn)行統(tǒng)計(jì)分析。根據(jù)有關(guān)規(guī)程中各地類沉陷地?fù)p毀程度判定標(biāo)準(zhǔn)對(duì)鶴崗采煤沉陷地?fù)p毀程度進(jìn)行劃分?;邡Q崗采煤沉陷地?fù)p毀特征,提出鶴崗礦區(qū)沉陷地時(shí)空復(fù)墾的規(guī)劃模式。結(jié)果表明:隨著煤炭不斷開(kāi)采,多煤層老礦區(qū)沉陷范圍不斷擴(kuò)大,土地?fù)p毀程度加重,地表最大下沉深度達(dá)39.4 m;沉陷地在進(jìn)行再利用過(guò)程中存在階段性變化特征,可根據(jù)特定階段沉陷地?fù)p毀特征制定土地用途。沉陷地區(qū)域穩(wěn)定性特征和損毀程度是進(jìn)行沉陷地時(shí)空復(fù)墾規(guī)劃的重要依據(jù)。從時(shí)間安排看,應(yīng)以閉礦沉陷地?fù)p毀程度為著眼點(diǎn),全面考慮,確定各區(qū)域穩(wěn)沉?xí)r序,鶴崗采煤沉陷劃分為優(yōu)先永久治理區(qū)、優(yōu)先臨時(shí)治理區(qū)、動(dòng)態(tài)治理區(qū)和未來(lái)治理區(qū);從空間布局看,前3個(gè)治理區(qū)功能定位依次為接續(xù)替代產(chǎn)業(yè)用地、短期工業(yè)用地和農(nóng)業(yè)用地。
煤礦;沉陷地;復(fù)墾;規(guī)劃;采煤沉陷;損毀
煤炭開(kāi)采在為國(guó)家經(jīng)濟(jì)發(fā)展做出巨大貢獻(xiàn)的同時(shí),也造成了嚴(yán)重的土地與環(huán)境問(wèn)題[1],給當(dāng)?shù)氐墓まr(nóng)業(yè)生產(chǎn)、設(shè)施建設(shè)以及群眾生活帶來(lái)了嚴(yán)重的影響。多煤層老礦區(qū)開(kāi)采歷史悠久,礦井服務(wù)年限長(zhǎng),重復(fù)采動(dòng)使土地?fù)p毀程度更加嚴(yán)重,其對(duì)社會(huì)、經(jīng)濟(jì)和環(huán)境產(chǎn)生的影響更大。當(dāng)前,對(duì)多煤層礦區(qū)研究主要集中在多煤層上方覆巖變化方面,包括地表移動(dòng)變形規(guī)律及開(kāi)采深度、采出率、層間距、層間巖性、采寬、上下煤柱空間位置關(guān)系等因素對(duì)地表移動(dòng)變形規(guī)律的影響[2-5],以及多煤層條帶開(kāi)采地表移動(dòng)預(yù)計(jì)參數(shù)分析等方面[6]。沉陷地是多煤層礦區(qū)產(chǎn)生的最主要的土地?fù)p毀形式之一。至2012年底,中國(guó)采煤沉陷地面積約156 hm2[7]。采煤沉陷地研究主要集中在開(kāi)采沉陷對(duì)土壤理化性質(zhì)、土壤水分和植被的影響等方面[8-13],對(duì)多煤層礦區(qū)沉陷地區(qū)域尺度上損毀特征及復(fù)墾規(guī)劃研究較少,且研究區(qū)域多集中在西北風(fēng)沙區(qū)[14-15]和東部高潛水位區(qū)[16-19],而對(duì)中國(guó)東北部礦區(qū)的研究較少。該區(qū)域礦區(qū)有著自己的特點(diǎn),比如多分布在丘陵地帶、沉陷深度大且無(wú)積水等。對(duì)中國(guó)東北部多煤層老礦區(qū)沉陷地進(jìn)行合理的復(fù)墾規(guī)劃有利于促進(jìn)中國(guó)東北部老礦區(qū)經(jīng)濟(jì)發(fā)展、改善區(qū)域生態(tài)環(huán)境。
鶴崗礦區(qū)開(kāi)發(fā)始于1917年,是中國(guó)東北地區(qū)一座典型的多煤層近百年的礦區(qū),主要由9大井工煤礦組成,
由北向南依次為興山、益新、振興、鳥(niǎo)山、南山、新陸、富力、興安和峻德煤礦。其中,振興煤礦煤層數(shù)量最少,為13層;益新煤礦最多,為36層。至今,9大煤礦中可開(kāi)采剩余煤層數(shù)在6~34之間,剩余服務(wù)年限平均在48.9 a,最長(zhǎng)剩余服務(wù)年限可達(dá)到128.9 a。礦區(qū)總面積9 933.68 hm2,至2013年,沉陷面積達(dá)7 932.12 hm2,嚴(yán)重制約著鶴崗城市經(jīng)濟(jì)的發(fā)展。土地復(fù)墾規(guī)劃是土地復(fù)墾工作的重要內(nèi)容[20]。該文基于已有的相關(guān)研究和鶴崗礦區(qū)實(shí)踐,試圖闡明多煤層老礦區(qū)沉陷地?fù)p毀特征,并提出鶴崗礦區(qū)沉陷地復(fù)墾規(guī)劃模式,為我國(guó)類似多煤層老礦區(qū)復(fù)墾規(guī)劃提供借鑒。
1.1 研究區(qū)概況
鶴崗是一座“因煤而興,緣煤而建”的城市。鶴崗市位于黑龍江省東北部,地處黑龍江、松花江與小興安嶺交匯的三江平原金三角地帶,面積1.47萬(wàn)km2。地勢(shì)西北高東南低,是三江平原向小興安嶺山地過(guò)渡的明顯上升地段。氣候?qū)僦袦貛Т箨懶约撅L(fēng)氣候,冬季干燥寒冷、夏季溫暖多雨,年平均氣溫2.8 ℃,平均降水量約640 mm。無(wú)霜期約150 d,全年日照時(shí)間2 300~2 700 h。年平均風(fēng)速2~5 m/s。土壤分7個(gè)土類、17個(gè)亞類。7個(gè)土類依次是暗棕壤土、白漿土、黑土、草甸土、沼澤土、泥炭土和水稻土,黑土壤及暗棕壤為農(nóng)業(yè)及林業(yè)生產(chǎn)的主要土壤。
鶴崗礦區(qū)位于鶴崗市轄區(qū)的南部,9大井工煤礦(興山、益新、振興、鳥(niǎo)山、南山、新陸、富力、興安和峻德煤礦)由北向南依次分布在興山區(qū)、東山區(qū)、向陽(yáng)區(qū)、南山區(qū)和興安區(qū)。鳥(niǎo)山煤礦為新開(kāi)發(fā)的煤礦,預(yù)計(jì)2016 年正式投產(chǎn)。鳥(niǎo)山煤礦投產(chǎn)后,鶴崗礦區(qū)的煤炭產(chǎn)量將達(dá)到1 266萬(wàn)t/a。各礦煤層層數(shù)不一,可采或局部可采13~36層,可采煤層總厚度38.55~85.8 m,含煤系數(shù)為4.3%~9.3%,地層走向N E 25°,傾角一般17°~23°,為傾向南東的單斜,煤層埋藏不深,存在近距離開(kāi)采情況。在礦山地質(zhì)環(huán)境治理方面,鶴崗礦區(qū)自2004-2012年,共實(shí)施28個(gè)礦山地質(zhì)環(huán)境治理項(xiàng)目,治理總面積374.65 hm2。
1.2 研究方法
1.2.1 采煤沉陷現(xiàn)狀
根據(jù)各礦2002、2013年地質(zhì)地形圖,利用ArcGIS軟件提取各點(diǎn)高程,分別生成2002和2013年不規(guī)則三角網(wǎng)(triangulated irregular network)圖像,分別轉(zhuǎn)成2002和2013年的數(shù)字高程模型(digital terrain model)數(shù)據(jù),簡(jiǎn)稱DEM;2002年DEM與2013年相減,各點(diǎn)差值即為鶴崗采煤沉陷地相應(yīng)點(diǎn)的下沉值,以下沉10mm作為采煤沉陷地定界線。將二者相減結(jié)果轉(zhuǎn)為面圖層,并以各煤層采空區(qū)實(shí)際情況為重要依據(jù),確保各點(diǎn)下沉值的準(zhǔn)確性,并獲得鶴崗采煤沉陷地2013年沉陷情況。
1.2.2 多煤層采煤沉陷預(yù)測(cè)
根據(jù)9大井工煤礦剩余可開(kāi)采煤層數(shù)(6~34層)、剩余服務(wù)年限(9~128.9 a)將沉陷地劃分為近期(2014-2020年)和遠(yuǎn)景(2021年-閉礦)2個(gè)階段進(jìn)行沉陷預(yù)測(cè)分析?;谠搮^(qū)域多年礦區(qū)研究經(jīng)驗(yàn),且鶴崗各煤礦煤層傾角都小于40°,確定采用概率積分法[21],該法是中國(guó)目前應(yīng)用最廣泛的沉陷預(yù)計(jì)方法[22],具有較好的理論基礎(chǔ),參數(shù)易確定、實(shí)用性強(qiáng)等優(yōu)點(diǎn)[23-25]。該文根據(jù)各礦采掘圖和儲(chǔ)量圖,了解近期和遠(yuǎn)景2個(gè)階段內(nèi)各個(gè)煤層開(kāi)采情況和工作面布設(shè)情況,提取各階段內(nèi)各煤礦每個(gè)煤層已開(kāi)采或計(jì)劃開(kāi)采的各個(gè)工作面拐點(diǎn)的X、Y坐標(biāo)和Z(采深)值,以及確定該工作面的序列號(hào)、角點(diǎn)個(gè)數(shù)、煤層開(kāi)采厚度、下沉系數(shù)、主要影響角正切、水平移動(dòng)系數(shù)、影響傳播角和傾向方位角這些參數(shù),一個(gè)階段內(nèi)所有煤層的工作面參數(shù)信息整理到一個(gè)txt格式文本文檔中,各工作面進(jìn)行統(tǒng)一編號(hào),每個(gè)工作面對(duì)應(yīng)一組該工作面的參數(shù)信息,將txt文檔添加到MSPS(開(kāi)采沉陷預(yù)計(jì)系統(tǒng))并進(jìn)行該階段的采煤沉陷預(yù)測(cè)。
鶴崗礦區(qū)采煤沉陷預(yù)測(cè)采用概率積分法,預(yù)計(jì)參數(shù)的確定依據(jù)國(guó)家煤炭工業(yè)局制定的《建筑物、水體、鐵路及主要井巷煤柱留設(shè)與壓煤開(kāi)采規(guī)程》[26]中規(guī)定的下沉系數(shù)、主要影響角正切、水平移動(dòng)系數(shù)、拐點(diǎn)偏移系數(shù)和開(kāi)采影響傳播角沉陷預(yù)計(jì)參數(shù),結(jié)合龍煤集團(tuán)公司鶴崗分公司9大煤礦的地質(zhì)報(bào)告、建井報(bào)告、土地復(fù)墾方案及相關(guān)資料,重點(diǎn)參照各礦實(shí)測(cè)地表移動(dòng)數(shù)據(jù),確定了沉陷預(yù)計(jì)參數(shù),如表1所示。
表1 鶴崗礦區(qū)概率積分法預(yù)計(jì)參數(shù)Table1 Predictive parameters of probability-integral method in Hegang mine area
利用以上各階段各煤礦的txt文本文檔,利用MSPS軟件分礦山、分階段進(jìn)行沉陷預(yù)測(cè)。在各階段中興安煤礦沉陷面積最大,因此該文以2014-2020年興安礦為例說(shuō)明沉陷預(yù)測(cè)具體操作步驟。首先,打開(kāi)MSPS軟件,加載數(shù)據(jù)文件,點(diǎn)擊“添加”按鈕,選中興安礦txt預(yù)計(jì)文件并打開(kāi);其次,設(shè)置地表網(wǎng)格間距和采區(qū)細(xì)分程度參數(shù),點(diǎn)擊“嵌入”;再次,確定預(yù)計(jì)方向,在預(yù)計(jì)選項(xiàng)中選擇“大地坐標(biāo)方向”;最后,點(diǎn)擊“預(yù)計(jì)計(jì)算”。預(yù)計(jì)結(jié)果輸出時(shí),點(diǎn)擊“地表變形分析”,分別點(diǎn)擊數(shù)據(jù)準(zhǔn)備欄中“下沉”、“傾斜”、“曲率”、“水平移動(dòng)”和“水平變形”按鈕,得出最大下沉值、最小和最大傾斜值、曲率、水平移動(dòng)值和水平變形值,同時(shí)預(yù)測(cè)出興安礦地表移動(dòng)和變形各參數(shù)的等值線圖(圖1),包括地表下沉等值線圖(圖1a)、0°和90°方向傾斜變形等值線圖(圖1b、c)和水平變形等值線圖(圖1d、e)。并在ArcGIS軟件中統(tǒng)計(jì)各階段沉陷面積。在預(yù)測(cè)過(guò)程中主要考慮了防水、煤柱、工業(yè)廣場(chǎng)、礦井邊界等的保護(hù)煤柱,沒(méi)有考慮壓煤村莊、文物保護(hù)的保護(hù)煤柱。
1.2.3 采煤沉陷地?fù)p毀程度界定
鶴崗未來(lái)采煤沉陷土地?fù)p毀程度主要取決于裂縫的寬度和密度、沉陷的深度,而裂縫的寬度和密度與地表水平變形值和深厚比值關(guān)系密切[27]。因此鶴崗采煤沉陷地?fù)p毀程度主要考慮下沉值、水平/傾斜變形、曲率變形、土地生產(chǎn)力水平等因素。根據(jù)《土地復(fù)墾方案編制規(guī)程》[28]以及《建筑物、水體、鐵路及主要井巷煤柱留設(shè)與壓煤開(kāi)采規(guī)程》[26]中關(guān)于各地類及建筑物損毀等級(jí)標(biāo)準(zhǔn)劃定。任何一項(xiàng)指標(biāo)達(dá)到相應(yīng)標(biāo)準(zhǔn)即認(rèn)為土地?fù)p毀達(dá)到該損毀等級(jí)。采煤沉陷地的損毀程度分為重度、中度和輕度3級(jí):重度損毀表現(xiàn)為地表沉陷嚴(yán)重,植被生長(zhǎng)受到嚴(yán)重影響,農(nóng)作物絕產(chǎn),建筑物不能正常使用,需拆除;中度損毀表現(xiàn)為地表沉陷較嚴(yán)重,植被生長(zhǎng)受到一定影響,農(nóng)作物減產(chǎn),建筑物需經(jīng)適當(dāng)維修后,才能正常使用;輕度損毀表現(xiàn)為地表出現(xiàn)輕微的變形,基本不影響植被生長(zhǎng),建筑物可正常使用。
圖1 興安煤礦預(yù)計(jì)2020年各地表移動(dòng)與變形參數(shù)的等值線Fig.1 Predicted isoline of surface move and distortion parameters in Xingan coal mine by 2020
2.1 沉陷面積持續(xù)擴(kuò)大,損毀程度不斷增加
鶴崗礦區(qū)開(kāi)發(fā)始于1917年,至今仍在開(kāi)采,具有煤層多、開(kāi)采時(shí)間長(zhǎng)等特點(diǎn)。隨著采煤工作面由西向東的持續(xù)推進(jìn),由圖2可以看出,鶴崗多煤層老礦區(qū)沉陷面積持續(xù)擴(kuò)大,損毀程度不斷加深。據(jù)統(tǒng)計(jì)分析,截止2013 年,鶴崗市境內(nèi)采煤沉陷地共計(jì)7 932.12 hm2,下沉深度多集中在0.01~10 m,占沉陷總面積的96.87%,最大下沉深度36 m,位于興安礦。其中興安區(qū)的損毀面積最大,為3 328.97 hm2,占沉陷總面積的41.97%。損毀地類主要為旱地和城市用地,其中,旱地?fù)p毀面積2 364.24 hm2,占沉陷總面積的29.81%;城市損毀面積4 333.03 hm2,占沉陷總面積的54.63%,其他地類(有林地、其他草地、村莊等)損毀面積1 234.85 hm2,占沉陷總面積的15.56%。隨著煤炭開(kāi)采向東部行進(jìn),沉陷面積也向東部擴(kuò)張。據(jù)預(yù)測(cè),鶴崗市到2020年采煤沉陷地將達(dá)到9 400.31 hm2,沉陷面積增加1 468.19 hm2,增加的區(qū)域基本為旱地。旱地?fù)p毀面積達(dá)到3 465.92 hm2,采煤沉陷對(duì)鶴崗農(nóng)業(yè)影響越來(lái)越大。2014-2020 年沉陷總面積4 925.57 hm2,以輕度損毀為主,面積2 856.44 hm2,占總損毀面積的57.99%;重度損毀面積相對(duì)很小,為411.37 hm2,占總損毀面積的8.35%。到閉礦,沉陷地面積將達(dá)到11 803.47 hm2,沉陷面積增加3 871.35 hm2,沉陷范圍繼續(xù)向東部擴(kuò)展。旱地?fù)p毀面積達(dá)到最大,首次超過(guò)城市用地,占損毀總面積的42.45%。2021年-閉礦沉陷總面積10 410.85 hm2,最大下沉39.4 m,位于益新礦內(nèi);重度損毀比例急劇增加,達(dá)5 865.7 hm2,占總損毀面積的56.34%。開(kāi)采煤層越多,沉陷深度越大,地表移動(dòng)與變形值也會(huì)相對(duì)較大,損毀程度就會(huì)越嚴(yán)重[29-31]。
2.2 對(duì)土地利用影響的階段變化性
單煤層礦區(qū)煤炭開(kāi)采完畢,可準(zhǔn)確判斷出煤炭開(kāi)采的影響范圍和損毀程度,損毀土地可根據(jù)損毀程度進(jìn)行復(fù)墾及規(guī)劃建設(shè)。而多煤層老礦區(qū)土地沉陷范圍和損毀程度隨著煤炭的開(kāi)采在不斷變化,土地進(jìn)行再利用具有階段變化性。
2.2.1 對(duì)工業(yè)園區(qū)規(guī)劃的影響
多煤層老礦區(qū)沉陷地在不同時(shí)期損毀程度不同,因此對(duì)土地利用規(guī)劃的影響也不相同。2014-2020年間,南山再就業(yè)產(chǎn)業(yè)聚集區(qū)工業(yè)園區(qū)(簡(jiǎn)稱南山工業(yè)園)和東山區(qū)產(chǎn)業(yè)轉(zhuǎn)型承接區(qū)(簡(jiǎn)稱東山工業(yè)園)會(huì)受到采煤沉陷影響。南山再就業(yè)產(chǎn)業(yè)聚集區(qū)受影響面積302.98 hm2,占其整個(gè)工業(yè)園區(qū)的42.28%,損毀程度以中度損毀為主;東山區(qū)產(chǎn)業(yè)轉(zhuǎn)型承接區(qū)受影響面積110.88 hm2,占其整個(gè)面積的31.83%,損毀程度以輕度損毀為主(見(jiàn)圖3)。
圖2 鶴崗礦區(qū)采煤沉陷地?fù)p毀情況時(shí)空變化Fig.2 Spatial-temporal variation of damage characteristics in Hegang coal- mining subsidence land
圖3 工業(yè)園受影響區(qū)域(2014-2020年)Fig.3 Affected area in industrial park (2014-2020)
2021年-閉礦,南山工業(yè)園、煤化工業(yè)園和東山工業(yè)園3個(gè)工業(yè)園區(qū)會(huì)受到采煤沉陷影響。南山工業(yè)園受影響面積將達(dá)到670.58hm2,占該工業(yè)園的93.57%,損毀程度以中度和重度損毀為主;煤化工業(yè)園受影響范圍很小,受影響面積2.71hm2,占該工業(yè)園區(qū)的0.10%,損毀程度以輕度為主。東山工業(yè)園受影響面積將達(dá)到237.89hm2,占東山區(qū)產(chǎn)業(yè)轉(zhuǎn)型承接區(qū)的68.29%,損毀程度以重度損毀為主(見(jiàn)圖4)。
圖4 工業(yè)園受影響區(qū)域(2021年-閉礦)Fig.4 Affected area in industrial park (2021-mine closure)
2.2.2 對(duì)棚戶區(qū)規(guī)劃的影響
由圖5可以看出,鶴崗市受采煤沉陷影響的棚戶區(qū)有26片,總面積1 226.14 hm2?!耳Q崗市城市棚戶區(qū)改造規(guī)劃》中明確規(guī)定:對(duì)棚戶區(qū)進(jìn)行改造,將新建16個(gè)住宅小區(qū),占地454.04 hm2,其中原址新建13個(gè),異地新建3個(gè)。2013年,鶴崗市26片棚戶區(qū)中,16片位于現(xiàn)狀的沉陷區(qū)范圍內(nèi)。2014-2020年,新建小區(qū)不會(huì)受到沉陷影響。2021年-閉礦,2個(gè)新建小區(qū)局部將會(huì)受到后續(xù)采煤影響。興東小區(qū)總面積46.71 hm2,受影響面積9.75 hm2,占總面積的20.87%;濱河南小區(qū)面積52.13 hm2,受影響面積37.95 hm2,占總面積的72.80%。
圖5 采煤沉陷對(duì)棚戶區(qū)規(guī)劃的影響Fig.5 Influence of mining subsidence on shanty town planning
2.3 鶴崗采煤沉陷地穩(wěn)定性特征
將鶴崗礦區(qū)不同階段的沉陷區(qū)域疊加,不同的子區(qū)域穩(wěn)定性不同,此穩(wěn)定性具有時(shí)間性,與截止采煤的時(shí)間點(diǎn)有關(guān)。
將2013年下沉區(qū)域、2014-2020年下沉區(qū)域和2021年-閉礦下沉區(qū)域疊加,可獲得鶴崗市采煤沉陷地穩(wěn)定性特征分布圖,見(jiàn)圖6a。2013年-閉礦,沉陷地最西部帶狀區(qū)域均不會(huì)受到采煤沉陷的影響,當(dāng)前此區(qū)域已完全穩(wěn)沉,屬穩(wěn)沉區(qū);而沉陷地最東部帶狀區(qū)域在2020年之后才會(huì)受到采煤沉陷的影響,目前此部分無(wú)沉陷,屬未來(lái)沉陷區(qū)。
圖6 鶴崗市采煤沉陷地穩(wěn)定性特征分布圖Fig.6 Stability of Hegang coal- mining subsidence land
將2013年下沉區(qū)域與2014-2020年下沉區(qū)域疊加,去掉圖6a中的穩(wěn)沉區(qū),到2020年,采煤沉陷區(qū)域如圖6b所示,考慮到閉礦沉陷預(yù)測(cè)情況,屬非穩(wěn)沉區(qū)。其中,非穩(wěn)沉區(qū)包括持續(xù)下沉區(qū)域和臨時(shí)穩(wěn)沉區(qū)域。持續(xù)下沉區(qū)域指2014-2020年均會(huì)受到采煤沉陷影響的區(qū)域;臨時(shí)穩(wěn)沉區(qū)是指2014-2020年間均不會(huì)受到采煤沉陷的影響,而2020年之后由于煤炭開(kāi)采會(huì)繼續(xù)受到影響的區(qū)域。
3.1 鶴崗采煤沉陷地治理分區(qū)
鶴崗采煤沉陷地治理分區(qū),以2014-2020年間沉陷地復(fù)墾規(guī)劃為例。以閉礦為時(shí)間節(jié)點(diǎn),首先確定永久穩(wěn)沉區(qū)和特定規(guī)劃期內(nèi)穩(wěn)沉區(qū)(優(yōu)先復(fù)墾區(qū)域),其次確定特定規(guī)劃期內(nèi)非穩(wěn)沉區(qū)和特定規(guī)劃期后將要穩(wěn)沉區(qū)。基于這一思路和鶴崗采煤塌陷地2013年、近期(2014-2020年)和遠(yuǎn)景(2021年-閉礦)3個(gè)時(shí)期的沉陷特點(diǎn),將鶴崗沉陷區(qū)分為4區(qū),即:優(yōu)先永久治理區(qū)、優(yōu)先臨時(shí)治理區(qū)、動(dòng)態(tài)治理區(qū)和未來(lái)治理區(qū)。
優(yōu)先永久治理區(qū)指穩(wěn)沉區(qū),直到閉礦均不會(huì)再下沉的區(qū)域;優(yōu)先臨時(shí)治理區(qū)指2013年已經(jīng)沉陷的區(qū)域,
2014-2020 年不會(huì)下沉、2020 年后會(huì)繼續(xù)下沉的區(qū)域;“動(dòng)態(tài)治理區(qū)”指2014-2020年持續(xù)下沉的區(qū)域;“未來(lái)治理區(qū)”指2021年到閉礦因受采煤影響而會(huì)繼續(xù)下沉的區(qū)域。
復(fù)墾必須根據(jù)當(dāng)?shù)貙?shí)際情況和土地?fù)p毀程度進(jìn)行[32]。針對(duì)鶴崗優(yōu)先永久治理區(qū),可綜合考慮區(qū)域現(xiàn)狀及土地規(guī)劃等資料,確定該區(qū)土地利用方向,采取相應(yīng)的復(fù)墾措施,進(jìn)行沉陷地復(fù)墾。對(duì)優(yōu)先臨時(shí)治理區(qū),因?yàn)?020年后還要繼續(xù)受到采煤沉陷的影響,且損毀程度嚴(yán)重,因此應(yīng)采取簡(jiǎn)單復(fù)墾措施,減少?gòu)?fù)墾成本。對(duì)動(dòng)態(tài)治理區(qū),可邊沉陷邊修復(fù),保證土地的正常使用。未來(lái)治理區(qū)的復(fù)墾應(yīng)根據(jù)2020年后的實(shí)際損毀情況再做考慮。鶴崗地下水位較低,地表下沉30多米仍無(wú)積水現(xiàn)象,因此主要采取挖方填方,土地平整等復(fù)墾措施[33]。
3.2 鶴崗采煤沉陷地規(guī)劃模式
依據(jù)鶴崗采煤沉陷地沉陷時(shí)序特征和損毀程度情況,基于“經(jīng)濟(jì)引擎、民生保障和城市綠肺”服務(wù)理念,結(jié)合鶴崗市社會(huì)經(jīng)濟(jì)發(fā)展需要,對(duì)每個(gè)治理分區(qū)進(jìn)行合理的功能定位。優(yōu)先永久治理區(qū)功能定位為接續(xù)替代產(chǎn)業(yè)用地,利用采煤沉陷地已穩(wěn)沉優(yōu)勢(shì),根據(jù)《市發(fā)改委關(guān)于鶴崗市城區(qū)老工業(yè)區(qū)和獨(dú)立工礦區(qū)改造工程爭(zhēng)取國(guó)家支持項(xiàng)目前期謀劃責(zé)任分工的意見(jiàn)》,將這部分穩(wěn)沉地作為鶴崗接續(xù)替代產(chǎn)業(yè)發(fā)展平臺(tái),促進(jìn)當(dāng)?shù)亟?jīng)濟(jì)發(fā)展。優(yōu)先臨時(shí)治理區(qū)功能定位為短期(2014-2020年)建設(shè)用地,發(fā)展工業(yè),此區(qū)域,可以搭建簡(jiǎn)易房、臨時(shí)房屋等,發(fā)展短期性質(zhì)的工業(yè),促進(jìn)鶴崗經(jīng)濟(jì)發(fā)展。動(dòng)態(tài)治理區(qū)功能定位為高效生態(tài)農(nóng)業(yè),生態(tài)綠地。此區(qū)域不宜作為建設(shè)用地,可復(fù)墾為農(nóng)業(yè)用地。應(yīng)遵循“耕地優(yōu)先”的原則,能復(fù)墾為耕地的要盡可能恢復(fù)為耕地,不能復(fù)墾為耕地的區(qū)域,應(yīng)做好生態(tài)環(huán)境治理工作[34-35]。未來(lái)治理區(qū),目前并未沉陷,規(guī)劃用途可以后考慮。
3.3 鶴崗采煤沉陷地治理分區(qū)與規(guī)劃模式實(shí)例分析
基于鶴崗沉陷地治理分區(qū)和規(guī)劃模式,提出鶴崗沉陷地具體復(fù)墾規(guī)劃(見(jiàn)圖7)。
圖7 鶴崗礦區(qū)采煤沉陷地時(shí)空治理規(guī)劃圖Fig.7 Spatial-temporal management planning for Hegang coal-mining subsidence land
優(yōu)先永久治理區(qū),屬永久穩(wěn)沉區(qū),位于鶴崗礦區(qū)的最西部,呈帶狀分布,該區(qū)損毀地類主要是城市用地(工礦廠房、煤堆及煤矸石堆),涉及到8個(gè)煤礦、5個(gè)行政區(qū),發(fā)展接續(xù)替代產(chǎn)業(yè)??紤]該區(qū)損毀地類和復(fù)墾后用途,該區(qū)主要采取清理工程,挖方填方和平整工程等復(fù)墾措施。其中,清理工程主要包括地面建筑物的拆除、清理和刨基整平等工作;挖、填方主要指挖高墊低;平整工程主要是場(chǎng)地平整工作,可通過(guò)人工與機(jī)械相結(jié)合來(lái)進(jìn)行推松、平整。
優(yōu)先臨時(shí)治理區(qū),屬臨時(shí)穩(wěn)沉區(qū)(2014-2020年),緊鄰優(yōu)先永久治理區(qū),其他地類、分布情況與優(yōu)先治理區(qū)相同,發(fā)展短期工業(yè)。該區(qū)采取的主要復(fù)墾措施同上??紤]到該區(qū)2020年后還會(huì)持續(xù)受到采煤沉陷的影響,可主要進(jìn)行清除工程和平整工程,適當(dāng)降低復(fù)墾成本。
動(dòng)態(tài)治理區(qū),屬2014-2020年規(guī)劃期內(nèi)持續(xù)下沉的區(qū)域,位于鶴崗礦區(qū)中部,該項(xiàng)目區(qū)損毀地類主要是農(nóng)業(yè)用地。由于該區(qū)2014-2020年期間一直處于下沉狀態(tài),且到閉礦,損毀程度嚴(yán)重。因此,該區(qū)定位為高效農(nóng)業(yè)和生態(tài)綠地,主要采取土壤重構(gòu)措施、植被恢復(fù)措施、配套工程措施及監(jiān)測(cè)與監(jiān)護(hù)措施,邊塌邊修,確保耕地質(zhì)量。其中,土壤重構(gòu)措施主要指通過(guò)表土工程、平整工程和清理工程進(jìn)行土壤重新構(gòu)造,增加農(nóng)用地面積;植被恢復(fù)措施主要指種草、種樹(shù)或種植糧食作物;配套工程措施主要考慮修建溝渠和公路;監(jiān)測(cè)與監(jiān)護(hù)措施,在生產(chǎn)期間應(yīng)加強(qiáng)地表移動(dòng)變形觀測(cè)工作,也并為今后開(kāi)采提供更準(zhǔn)確的參數(shù)和經(jīng)驗(yàn)。
未來(lái)治理區(qū),屬2020年后受采煤影響的區(qū)域,位于鶴崗礦區(qū)東部,損毀地類主要為農(nóng)業(yè)用地(旱地),損毀程度以輕度為主,目前暫不做考慮。
多煤層老礦區(qū)土地?fù)p毀程度嚴(yán)重,每個(gè)階段損毀程度不同,進(jìn)行再利用情況復(fù)雜。多煤層老礦區(qū)沉陷地進(jìn)行復(fù)墾規(guī)劃,要依據(jù)特定階段內(nèi)沉陷地的損毀特征,使其復(fù)墾在時(shí)間上安排有序,明確先復(fù)墾區(qū)域、后復(fù)墾區(qū)域,使其規(guī)劃在空間上布局合理,明確建設(shè)用地區(qū)、農(nóng)業(yè)用地區(qū)等,達(dá)到在時(shí)空上的一個(gè)合理的復(fù)墾時(shí)序與規(guī)劃布局的模式。
1)鶴崗礦區(qū)隨著煤炭的開(kāi)采沉陷面積不斷擴(kuò)大,損毀程度不斷加深。與2013年相比,2020年沉陷面積增加1 468.19 hm2,重度損毀面積相對(duì)較小,為411.37 hm2,占總損毀面積的8.35%;到閉礦,沉陷面積增加3 871.35 hm2,最大下沉達(dá)39.4 m,重度損毀比例急劇增加,達(dá)5 865.7 hm2,占總損毀面積的56.34%。
2)鶴崗采煤沉陷地再利用具有階段變化性。2020年,受采煤沉陷影響的鶴崗工業(yè)園區(qū)有2個(gè),損毀程度以輕、中度為主。新建的小區(qū)不會(huì)受到采煤沉陷的影響;至閉礦,受采煤沉陷影響的工業(yè)園區(qū)數(shù)量達(dá)到3個(gè),損毀程度以中度和重度為主;2個(gè)新建小區(qū)也會(huì)受到采煤沉陷的影響。
3)鶴崗采煤沉陷地應(yīng)依據(jù)沉陷地?fù)p毀特征和穩(wěn)沉?xí)r序進(jìn)行復(fù)墾規(guī)劃。從時(shí)間安排看,應(yīng)從長(zhǎng)遠(yuǎn)、全局角度出發(fā),依照穩(wěn)沉?xí)r序,以閉礦時(shí)土地?fù)p毀程度為著眼點(diǎn),先穩(wěn)沉的應(yīng)優(yōu)先治理利用。就鶴崗采煤沉陷地而言,通過(guò)綜合考慮2013年、2014-2020年及2021年-閉礦3個(gè)階段的采煤沉陷地沉陷特征,優(yōu)先治理穩(wěn)沉區(qū)域,再臨時(shí)穩(wěn)沉區(qū)域,最后動(dòng)態(tài)區(qū)域。從空間布局看,依據(jù)穩(wěn)沉?xí)r序特點(diǎn)和損毀程度、地類等情況,結(jié)合該地區(qū)社會(huì)經(jīng)濟(jì)發(fā)展需要,安排相應(yīng)的功能用地。就鶴崗采煤沉陷地而言,優(yōu)先永久治理區(qū)和優(yōu)先臨時(shí)治理區(qū)可根據(jù)鶴崗市經(jīng)濟(jì)發(fā)展需要安排成接續(xù)替代產(chǎn)業(yè)和短期工業(yè)用地,而動(dòng)態(tài)治理區(qū)地類多為旱地、且土地?fù)p毀程度嚴(yán)重,此區(qū)域可復(fù)墾為高效農(nóng)業(yè)或生態(tài)綠地,保障鶴崗人民糧食安全與良好的生態(tài)環(huán)境。
[1] 胡振琪,趙艷玲,王鳳嬌. 我國(guó)煤礦區(qū)土地復(fù)墾的現(xiàn)狀與展望[C]//中國(guó)煤炭工業(yè)協(xié)會(huì).第七次煤炭科學(xué)技術(shù)大會(huì)文集(下冊(cè)).北京:煤炭工業(yè)出版社,2011:1075-1079.
[2] 余斌. 多煤層上覆破斷頂板群結(jié)構(gòu)演化及其對(duì)下煤層開(kāi)采的影響[J]. 煤炭學(xué)報(bào),2015,40(2):261-266.
Yu Bin. Structural evolution of breaking roof group of multiple coal seams and its influence on lower coal seam mining[J]. Journal of China Coal Society, 2015, 40(2): 261-266. (in Chinese with English abstract)
[3] 張立亞,鄧喀中. 多煤層條帶開(kāi)采地表移動(dòng)規(guī)律[J]. 煤炭學(xué)報(bào),2008,33(1):28-32.
Zhang Liya, Deng Kazhong. The law of surface movement for multi-coal seam strip mining [J]. Journal of China Coal Society, 2008, 33(1): 28-32. (in Chinese with English abstract)
[4] 張俊英. 多煤層條帶開(kāi)采模擬理論研究[J]. 煤炭學(xué)報(bào),2000,25(增刊):67-70.
Zhang Junying. Theoretic study by simulation method on the strip mining of multiple coal seams[J]. Journal of China Coal Society, 2000, 25(Supp.): 67-70. (in Chinese with English abstract)
[5] 沈永炬,黃遠(yuǎn). 不同間距多煤層開(kāi)采覆巖破壞特征的數(shù)值模擬[J]. 中國(guó)礦業(yè),2012,21(7):73-75.
Shen Yongju, Huang Yuan. Numerical simulation of the overburden failure characteristics of different spacing-coal mining[J]. China Mining Magazine, 2012, 21(7): 73-75. (in Chinese with English abstract)
[6] 陳紹杰,范洪冬,譚志祥,等. 多煤層條帶開(kāi)采地表移動(dòng)預(yù)測(cè)參數(shù)分析[J]. 煤炭工程,2010(12):64-66.
Chen Shaojie, Fan Hongdong, Tan Zhixiang, et al. Analysis on predicted parameters of surface ground movement caused by underground mine strip mining in multi seam[J]. Coal Engineering, 2010(12): 64-66. (in Chinese with English abstract)
[7] 李樹(shù)志. 我國(guó)采煤沉陷土地?fù)p毀及其復(fù)墾技術(shù)現(xiàn)狀與展望[J].煤炭科學(xué)技術(shù),2014,42(1):93-97.
Li Shuzhi. Present status and outlook on land damage and reclamation technology of mining subsidence area in China[J]. Coal Science and Technology, 2014, 42(1): 93-97. (in Chinese with English abstract)
[8] 陳士超,胡春元,高永,等. 風(fēng)沙土采煤沉陷區(qū)復(fù)墾土壤培肥技術(shù)初探:以神東礦區(qū)活雞兔、補(bǔ)連塔采煤沉陷區(qū)為例[J]. 內(nèi)蒙古農(nóng)業(yè)大學(xué)學(xué)報(bào):自然科學(xué)版,2015,36(3):61-69.
Chen Shichao, Hu Chunyuan, Gao Yong, et al. Preliminary study on soil cultivation technology on regional reclamation at the excavated soal pits with sandy soil:A case study of Huojitu and Bulianta excavated coal pits of Shengdong diggings[J]. Journal of Inner Mongolia Agricultural University: Natural Science Edition, 2015, 36(3): 61-69. (in Chinese with English abstract)
[9] 許傳陽(yáng),馬守臣,張合兵,等. 煤礦沉陷區(qū)沉陷裂縫對(duì)土壤特性和作物生長(zhǎng)的影響[J].中國(guó)生態(tài)農(nóng)業(yè)學(xué)報(bào),2015,23(5):597-604.
Xu Chuanyang, Ma Shouchen, Zhang Hebing, et al. Effect of cracks on soil characteristics and srop growth in subsidence coal mining areas[J]. Chinese Journal of Eco-Agriculture, 2015, 23(5): 597-604. (in Chinese with English abstract)
[10] 程靜霞,聶小軍,劉昌華. 煤炭開(kāi)采沉陷區(qū)土壤有機(jī)碳空間變化[J]. 煤炭學(xué)報(bào),2014,39(12):2495-2500.
Cheng Jingxia, NieXiaojun, Liu Changhua. Spatial variation of soil organic carbon in coal-mining subsidence areas[J]. Journal of China Coal Society, 2014, 39(12): 2495-2500. (in Chinese with English abstract)
[11] 畢銀麗,鄒慧,彭超,等. 采煤沉陷對(duì)沙地土壤水分運(yùn)移的影響[J]. 煤炭學(xué)報(bào),2014,39(增刊2):490-496.
Bi Yinli, Zou Hui, Peng Chao, et al. Effects of mining subsidence on soil water movement in sandy area[J]. Journal of China Coal Society, 2014, 39(Supp.2): 490-496. (in Chinese with English abstract)
[12] 鄒慧,畢銀麗,朱郴韋,等. 采煤沉陷對(duì)沙地土壤水分分布的影響[J]. 中國(guó)礦業(yè)大學(xué)學(xué)報(bào),2014,43(3):496-501.
Zou Hui, Bi Yinli, Zhu Chenwei, et al. Effects of mining subsidence on soil moisturedynamic changes of sandy area[J]. Journal of China University of Mining & Technology, 2014, 43(3): 496-501. (in Chinese with English abstract)
[13] Yang Dejun, Bian Zhengfu, Lei Shaogang. Impact on soil physical qualities by the subsidence of coal mining: a case study in Western China[J]. Environmental Earth Sciences, 2016, 75(8): 1-14.
[14] 胡振琪,龍精華,王新靜.論煤礦區(qū)生態(tài)環(huán)境的自修復(fù)、自然修復(fù)和人工修復(fù)[J]. 煤炭學(xué)報(bào),2014,39(8):1751-1757.
Hu Zhenqi, Long Jinghua, Wang Xinjing. Self-healing, natural restoration and artificial restoration of ecological environment for coal mining[J]. Journal of China Coal Society, 2014, 39(8): 1751-1757. (in Chinese with English abstract)
[15] 臺(tái)曉麗,胡振琪,陳超. 西部風(fēng)沙區(qū)不同采煤沉陷區(qū)位土壤水分中子儀監(jiān)測(cè)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(15):225-231.
Tai Xiaoli, Hu Zhenqi, Chen Chao. Monitoring soil moisture at different subsidence areas of mining in western windy and sandy region with neutron instrument[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2016, 32(15): 225-231. (in Chinese with English abstract)
[16] 肖武,李素萃,王崢,等. 高潛水位煤礦區(qū)生態(tài)風(fēng)險(xiǎn)識(shí)別與評(píng)價(jià)[J]. 生態(tài)學(xué)報(bào),2016,36(17):5611-5619.
Xiao Wu, Li Sucui, Wang Zheng, et al. Ecological risk identification and assessment for a coal mine with a high groundwater table[J]. Acta ecologica Sinica, 2016, 36(17): 5611-5619. (in Chinese with English abstract)
[17] 李晶,劉喜韜,胡振琪,等. 高潛水位平原采煤沉陷區(qū)耕地?fù)p毀程度評(píng)價(jià)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(10):209-216.
Li Jing, Liu Xitao, Hu Zhenqi, et al. Evaluation on farmland damage by underground coal-mining in plain area with high ground-water level[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2014, 36(10): 209-216. (in Chinese with English abstract)
[18] 卞正富,張燕平. 徐州煤礦區(qū)土地利用格局演變分析[J].地理學(xué)報(bào),2006,61(4):349-358.
Bian Zhengfu, Zhang Yanping. Land use changes in Xuzhou coal mining area[J]. Acta Geographica Sinica, 2006, 61(4): 349-358. (in Chinese with English abstract)
[19] 李樹(shù)志,刁乃勤. 礦業(yè)城市生態(tài)建設(shè)規(guī)劃與沉陷區(qū)濕地構(gòu)建技術(shù)研究及應(yīng)用[J]. 礦山測(cè)量,2016,44(3):65-69.
Li Shuzhi, Diao Naiqin. Research and application of ecological construction in mining industrial cities and wetlands construction in mining subsidence areas[J]. Mine Surveying, 2016, 44(3): 65-69. (in Chinese with English abstract)
[20] 胡振琪,劉海濱,劉祁,等. 試論開(kāi)采沉陷地土地復(fù)墾規(guī)劃設(shè)計(jì)[J]. 礦山測(cè)量,1994,(2):32-34.
Hu Zhenqi, Liu Haibin, Liu Qi, et al. Discussion on the land reclamation planning and design of mining subsidence land[J]. Mine Surveying,1994, (2): 32-34. (in Chinese with English abstract)
[21] 何國(guó)清,楊倫,凌賡娣,等. 礦山開(kāi)采沉陷學(xué)[M]. 徐州:中國(guó)礦業(yè)大學(xué)出版社,1994:6.
[22] 崔希民,鄧喀中. 煤礦開(kāi)采沉陷預(yù)計(jì)理論與方法研究評(píng)述[J].煤炭科學(xué)技術(shù),2017,45(1):160-169.
Cui Ximin, Deng Kazhong. Research review of predicting theory and method for coal mining subsidence[J]. Coal Science and Technology, 2017, 45(1): 160-169. (in Chinese with English abstract)
[23] 王寧,吳凱,秦志峰. 基于松散層厚影響的概率積分法開(kāi)采沉陷預(yù)計(jì)模型[J]. 煤炭科學(xué)技術(shù),2012,40(7):10-16.
Wang Ning, Wu Kai, Qin Zhifeng. Prediction model of mining subsidence with probability integration method based on thickness influences of loose layer[J]. Coal Science and Technology, 2012, 40(7): 10-16. (in Chinese with English abstract)
[24] Zhang Bin, Zhang Lianze, Yang Honglei et al. Subsidence prediction and susceptibility zonation for collapse above goal with thick alluvial cover: a case study of the Yongcheng coalfield, Henan Province, China[J]. Bull Eng Geol Environ, 2016, 75(3): 1117-1132.
[25] 肖武,胡振琪,李太啟,等. 采區(qū)地表動(dòng)態(tài)沉陷模擬與復(fù)墾耕地率分析[J]. 煤炭科學(xué)技術(shù),2013,41(8):126-128.
Xiao Wu, Hu Zhenqi, Li Taiqi, et al. Dynamic Subsidence Simulation and land reclamation efficiency analysis of surface ground above mining block[J]. Coal Science and Technology, 2013, 41(8): 126-128. (in Chinese with English abstract)
[26] 國(guó)家煤炭工業(yè)局. 建筑物、水體、鐵路及主要井巷煤柱留設(shè)與壓煤開(kāi)采規(guī)程[M]. 北京:煤炭工業(yè)出版社,2000.
[27] 趙艷玲,黃琴煥,薛靜,等. 礦區(qū)土地復(fù)墾方案編制中土地破壞程度評(píng)價(jià)研究[J]. 金屬礦山,2009(5):161-163,167. Zhao Yanling, Huang Huanqin, Xue Jing, et al. Study on the assessment of land destroy degree in mine land reclamation design[J]. Metal Mine, 2009(5): 161-163, 167. (in Chinese with English abstract)
[28] 國(guó)土資源部土地整理中心. 土地復(fù)墾方案編制實(shí)務(wù)(下冊(cè))[M]. 北京:中國(guó)大地出版社,2011.
[29] 夏筱紅,隋旺華,楊偉峰. 多煤層開(kāi)采覆巖破斷過(guò)程的模型試驗(yàn)與數(shù)值模擬[J]. 工程地質(zhì)學(xué)報(bào),2008,16(4):528-532.
Xia Xiaohong, Sui Wanghua, Yang Weifeng. Model test and numerical simulation of overburden failure process in multi-coal seam mining[J]. Journal of Engineering Geology, 2008, 16(4): 528-532. (in Chinese with English abstract)
[30] 張志祥,張永波,趙志懷,等. 多煤層開(kāi)采覆巖移動(dòng)及地表變形規(guī)律的相似模擬實(shí)驗(yàn)研究[J]. 水文地質(zhì)工程地質(zhì),2011,38(4):130-134.
Zhang Zhixiang, Zhang Yongbo, Zhao Zhihuai, et al. Similar simulation of overlying rock movement and surface deformation behavior with multi-coal seam mining[J]. Hydrogeology & Engineering Geology, 2011, 38(4): 130-134. (in Chinese with English abstract)
[31] 張曦沐. 采煤沉陷區(qū)穩(wěn)定性區(qū)劃與人居環(huán)境適宜性研究[D].北京:中國(guó)礦業(yè)大學(xué)(北京),2011.
Zhang Ximu. Research of Stability Division in Mining Subsidence and Suitability for Human Settlements[D].Beijing: China University of Mining & Technology, Beijing, 2011. (in Chinese with English abstract)
[32] 吳鋼,魏東,周鄭達(dá),等. 我國(guó)大型煤炭基地的生態(tài)恢復(fù)技術(shù)研究綜述[J]. 生態(tài)學(xué)報(bào),2014,34(11):2812-2820.
Wu Gang, Wei Dong, Zhou Zhengda, et al. A summary of study on ecological restoration technology of large coal bases construction in China [J]. Acta Ecologica Sinica, 2014, 34(11): 2812-2820. (in Chinese with English abstract)
[33] 胡振琪. 土地復(fù)墾與生態(tài)重建[M]. 徐州:中國(guó)礦業(yè)大學(xué)出版社,2008.
[34] 胡振琪,趙艷玲,程玲玲. 中國(guó)土地復(fù)墾目標(biāo)與內(nèi)涵擴(kuò)展[J].中國(guó)土地科學(xué),2004,18(3):3-8.
Hu Zhenqi, Zhao Yanling, Cheng Lingling. Extension of goal and meaning of land reclamation in China[J]. China Land Science, 2004, 18(3): 3-8. (in Chinese with English abstract)
[35] 肖武,胡振琪,許獻(xiàn)磊,等. 煤礦區(qū)土地復(fù)墾成本確定方法[J]. 煤炭學(xué)報(bào). 2010,35(增刊):175-179.
Xiao Wu, Hu Zhenqi, Xu Xianlei, et al. Cost definite method of land reclamation in coal mining area [J]. Journal of China Coal Society, 2010, 35(Supp.): 175-179. (in Chinese with English abstract)
Damage characteristics and reclamation planning for coal-mining subsidence in old multiple seam mining area in northeast China
Hu Zhenqi, Long Jinghua, Zhang Ruiya, Xiao Wu, Zhao Yanling
(Institute of Land Reclamation and Ecological Restoration, China University of Mining and Technology (Beijing), Beijing 10083, China)
The long history of exploitation in an old multiple-seam mining area has caused severe land destruction, and the reuse of subsidence land needs to consider many different aspects. The geological topographic map and mining historical data (excavating, reserves, and so on) from the Hegang coal mine (Heilongjiang Province, Northeast China) were collected and investigated. The objective of this study was to analyze the current damage situation, predict the future subsidence, and put forward a land reclamation model for coal-mining subsidence. ArcGIS was used for statistical data analysis. Mine Subsidence Predictive Soft (MSPS) and the Probability Integral method were used for both short-term (2014-2020) and long-term prediction (from 2021 to mine closure) of subsidence. The degree of damage of the Hegang coal-mining subsidence was evaluated according to the predicted results and relevant regulations. The results showed that the subsiding area extended continuously. It increased by 1 468.19 hm2from 2013 to 2020. The severe damage area reached 411.37 hm2in 2020. By mine closure, the subsiding area increased by 3 871.35 hm2, and the maximum sinking value reached up to 39.4 m in the Yixin mine. The area of severe damage reached 5 865.7 hm2, which was 56.34% of the area of the total damage. The reuse of subsidence land showed a temporal variation, and land use plans should be made in accordance to this variation. In the period of 2013-2020, 2 industrial parks were affected by coal mining mildly or moderately. From 2021 to mine closure, 3 industrial parks and 2 new residential areas were affected with moderate or severe damage. According to the stability characteristics of subsidence land, Hegang coal mining subsidence could be divided into 4 areas: a stable region, a temporarily stable region, a dynamic region and a future subsidence area. The subsidence land in the temporarily stable region had different stability characteristics in each period, and it was stable from 2014 to 2020 and continuously sank after 2020. The regional stability characteristics and damage gradation of the subsidence land were basic information for the spatio-temporal reclamation planning of subsidence land. Over time, reclamation planning should be based on fully considering the damage gradation by the time the coal mine would be closed and the stability of the subsidence area. The design of the planning process should follow the principles that the stable region would first be reclaimed, followed by the temporarily stable region, the dynamic region and finally the future subsidence area. Therefore, the Hegang coal-mining subsidence was divided into a priority permanent reclamation area, a priority temporary reclamation area, a dynamic reclamation area and a future reclamation area. The spatial layout should determine the utilization of land in accordance to the timing of stable subsidence, damage gradation, land type and the economic development of Hegang City. The functional orientation of the priority permanent reclamation area was alternative industrial land due to the land stability, which could promote the economic development of Hegang City. The functional orientation of priority temporary reclamation area was temporary industrial land where short-term industries could operate for about 7 or 8 years. Lastly, the functional orientation of dynamic reclamation area was farm land because of the large areas of dry land and the severe damage gradation. This could guarantee the food security in the area.
coal mines; subsidence; reclamation; planning; coal-mining subsidence; damage
10.11975/j.issn.1002-6819.2017.05.035
TD88
A
1002-6819(2017)-05-0238-10
胡振琪,龍精華,張瑞婭,肖 武,趙艷玲. 中國(guó)東北多煤層老礦區(qū)采煤沉陷地?fù)p毀特征與復(fù)墾規(guī)劃[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(5):238-247.
10.11975/j.issn.1002-6819.2017.05.035 http://www.tcsae.org
Hu Zhenqi, Long Jinghua, Zhang Ruiya, Xiao Wu, Zhao Yanling. Damage characteristics and reclamation planning for coal-mining subsidence in old multiple seam mining area in northeast China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(5): 238-247. (in Chinese with English abstract)
doi:10.11975/j.issn.1002-6819.2017.05.035 http://www.tcsae.org
2016-07-25
2017-02-17
國(guó)土資源部公益性行業(yè)科研專項(xiàng)資助項(xiàng)目(200911015-03)
胡振琪,男,安徽五河人,教授,博士生導(dǎo)師。主要從事土地復(fù)墾與生態(tài)修復(fù)研究。北京 中國(guó)礦業(yè)大學(xué)(北京)土地復(fù)墾與生態(tài)重建研究所,100083。Email:huzq@cumtb.edu.cn