李 君,薛坤鵬,楊 洲※,洪添勝,張倩倩,許堅(jiān)聰
果園貨運(yùn)鏈索風(fēng)致振動(dòng)非線性動(dòng)力學(xué)分析
李 君1,2,薛坤鵬1,2,楊 洲1,2※,洪添勝1,2,張倩倩1,2,許堅(jiān)聰1
(1. 華南農(nóng)業(yè)大學(xué)工程學(xué)院,廣州 510642;2. 華南農(nóng)業(yè)大學(xué)南方農(nóng)業(yè)機(jī)械與裝備關(guān)鍵技術(shù)教育部重點(diǎn)實(shí)驗(yàn)室,廣州 510642)
為解析風(fēng)荷載持續(xù)激勵(lì)對果園貨運(yùn)系統(tǒng)工作穩(wěn)定性的影響,研究了行進(jìn)鏈索在不同風(fēng)荷載條件下的風(fēng)致振動(dòng)響應(yīng)。基于Hamilton原理推導(dǎo)了風(fēng)荷載作用下行進(jìn)鏈索橫向振動(dòng)的動(dòng)力學(xué)微分方程,采用Crank-Nicolson半顯示數(shù)值離散方法對方程進(jìn)行離散求解,仿真分析了行進(jìn)鏈索在不同平均風(fēng)速作用下的橫向振動(dòng)特性。設(shè)計(jì)了鏈索貨運(yùn)系統(tǒng)的風(fēng)荷載試驗(yàn)平臺,采用LabWindows/CVI對采集視頻分幀后的圖像進(jìn)行處理,試驗(yàn)對比研究了不同平均風(fēng)速風(fēng)荷載激勵(lì)的鏈索橫向振動(dòng)。研究結(jié)果表明,平均風(fēng)速在0~10 m/s范圍內(nèi)變化的低速風(fēng)荷載起到了一定的氣動(dòng)阻尼作用,行進(jìn)鏈索的橫向振動(dòng)幅值減小并呈收斂趨勢。該文為風(fēng)荷載作用下軸向行進(jìn)鏈索橫向振動(dòng)控制研究提供了理論參考。
農(nóng)業(yè)機(jī)械;運(yùn)輸;模型;風(fēng)荷載;行進(jìn)鏈索;橫向振動(dòng);果園;數(shù)值解
為解決丘陵山地果品和農(nóng)資的機(jī)械化運(yùn)送問題[1-2],華南農(nóng)業(yè)大學(xué)國家柑橘產(chǎn)業(yè)技術(shù)體系機(jī)械研究室研制并推廣應(yīng)用果園鏈索循環(huán)貨運(yùn)系統(tǒng)[3-5],有效解放勞動(dòng)力,提高了生產(chǎn)率。鏈索貨運(yùn)系統(tǒng)的牽引鏈索由水平鏈環(huán)與垂直鏈環(huán)交錯(cuò)連接而成,相鄰鏈環(huán)分別用來傳動(dòng)和連接掛鉤。與承載式貨運(yùn)系統(tǒng)[6-8]和牽引式單軌貨運(yùn)系統(tǒng)[9-13]相比,鏈索循環(huán)貨運(yùn)系統(tǒng)鋪設(shè)隨意,對地形的適應(yīng)性更強(qiáng),但牽引鏈索在軸向行進(jìn)過程中處于非穩(wěn)態(tài),會(huì)不可避免地產(chǎn)生橫向周期性激振,風(fēng)荷載作用會(huì)使激振運(yùn)動(dòng)更趨復(fù)雜。直接研究證據(jù)表明,風(fēng)荷載激勵(lì)會(huì)引起架空索道懸索的垂向結(jié)構(gòu)平衡構(gòu)形的失穩(wěn),并產(chǎn)生持續(xù)的激振運(yùn)動(dòng)[14]。貨運(yùn)鏈索的橫向振動(dòng)可能造成果品和農(nóng)資脫鉤、系統(tǒng)部件機(jī)械損傷和撞擊加劇等現(xiàn)象。為抑制風(fēng)荷載作用下鏈索的橫向振動(dòng),獲取風(fēng)荷載作用下鏈索的振動(dòng)特性具有重要的研究意義。
國內(nèi)外學(xué)者對柔性行進(jìn)弦線類結(jié)構(gòu)的振動(dòng)特性與控制技術(shù)的研究開展較早。Mahalingam[15]早在1956年就展開了傳動(dòng)鏈的橫向振動(dòng)研究。Miranker[16]研究了磁帶在2個(gè)導(dǎo)向輪之間的橫向振動(dòng),并從能量的角度分析了運(yùn)動(dòng)弦線與靜止弦線的差異。Luo等[17-18]對任意構(gòu)型并具有集中載荷的運(yùn)動(dòng)弦線進(jìn)行了模型的構(gòu)建。Yang等[19-20]對行進(jìn)鏈索邊界條件對橫向振動(dòng)的影響進(jìn)行了分析,并采用根軌跡法對鋼索牽引貨運(yùn)系統(tǒng)負(fù)載縱向穩(wěn)定性控制進(jìn)行了研究。李君等[21]研究了張緊力、集中載荷以及索道貨運(yùn)速度對果園貨運(yùn)鏈索振動(dòng)頻率的影響。針對斜拉索的風(fēng)致振動(dòng),參數(shù)自激振動(dòng)、風(fēng)致渦激振動(dòng)、風(fēng)雨激振和尾流馳振等多種形式的振動(dòng)數(shù)學(xué)模型相繼被提出[22-25]。丁博涵[26]利用頻域法和風(fēng)荷載模時(shí)程法對張弦梁結(jié)構(gòu)在平均風(fēng)和脈動(dòng)風(fēng)作用下的風(fēng)振響應(yīng)進(jìn)行了分析計(jì)算。李壽英等[27]采用強(qiáng)迫振動(dòng)裝置對粘貼水線的拉索進(jìn)行了測壓風(fēng)洞試驗(yàn)。呂樂豐[28]研究了風(fēng)荷載作用下軸向行進(jìn)弦線的橫向非線性振動(dòng)問題,揭示了弦線風(fēng)致同步運(yùn)動(dòng)的振動(dòng)機(jī)理及行進(jìn)速度、激勵(lì)幅值和頻率等參數(shù)對同步運(yùn)動(dòng)的影響。
與斜拉索的風(fēng)致振動(dòng)響應(yīng)和控制研究工作相比,有關(guān)運(yùn)動(dòng)懸索系統(tǒng)的風(fēng)致振動(dòng)控制問題并沒有得到重視。鏈索貨運(yùn)系統(tǒng)具有類似柔性行進(jìn)弦線的結(jié)構(gòu)特征,交錯(cuò)鏈環(huán)在軸向運(yùn)動(dòng)過程中與行進(jìn)弦線的激勵(lì)條件存在區(qū)別,受鏈環(huán)之間互激勵(lì)效應(yīng)以及多邊形效應(yīng)的耦合影響,風(fēng)荷載作用使鏈索振動(dòng)特性更趨復(fù)雜。為有效抑制果園鏈索貨運(yùn)系統(tǒng)在風(fēng)荷載作用下的橫向振動(dòng),需要獲得系統(tǒng)蘊(yùn)含的動(dòng)力學(xué)行為,并在考慮風(fēng)荷載影響的前提條件下,進(jìn)行行進(jìn)鏈索的橫向振動(dòng)特性分析。本文構(gòu)建適用于鏈索貨運(yùn)系統(tǒng)的風(fēng)荷載試驗(yàn)平臺,運(yùn)用Hamilton原理推導(dǎo)出行進(jìn)鏈索橫向振動(dòng)的微分方程,并利用數(shù)值仿真以及樣機(jī)試驗(yàn)的方法對鏈索在不同速度脈動(dòng)風(fēng)作用下的鏈索振動(dòng)特性進(jìn)行研究,以期為風(fēng)荷載作用下軸向行進(jìn)鏈索的橫向振動(dòng)控制提供理論參考。
假設(shè)鏈?zhǔn)截涍\(yùn)系統(tǒng)按等間距跨度布置且托索機(jī)構(gòu)高度相同,忽略鏈環(huán)之間的黏性阻尼和彎曲剛度,行進(jìn)鏈環(huán)只有豎直方向的橫向振動(dòng),邊界條件和外部擾動(dòng)為零,考慮貨物集中質(zhì)量和鏈索自重均勻分布特性的影響,以及行進(jìn)鏈索始終處于橫向位移相比于跨度要小很多的多邊形效應(yīng)微振動(dòng)狀態(tài),因此可以將鏈索理想化為均質(zhì)弦線和集中載荷所組成的軸向行進(jìn)索模型[29-30],其單個(gè)跨度內(nèi)模型如圖1所示。
圖1 風(fēng)荷載作用下鏈索貨運(yùn)系統(tǒng)動(dòng)力學(xué)模型Fig.1 Dynamic model of chain ropeway under wind excitation
假設(shè)貨運(yùn)鏈索的軸向行進(jìn)速度v恒定不變,兩邊托索機(jī)構(gòu)固定不動(dòng)。U(x,t)是鏈索的橫向振動(dòng)位移,其中t為時(shí)間,s;x為距離左邊界的位置,m。為表達(dá)方便,U(x,t)對t和x的偏微分表示為:
鏈索在x位置豎直方向的速度為:
式中ρ為當(dāng)量線密度,kg/m,其表達(dá)式為:
根據(jù)虛功原理,可得鏈索的動(dòng)能:
式中ρ0為鏈索線密度,kg/m;L為跨度,m;Mk為第k個(gè)集中質(zhì)量,kg;δ(x–xk)為狄克拉函數(shù);xk表示第k個(gè)集中質(zhì)量與左托索輪的距離,m;m為集中載荷的數(shù)量。
設(shè)鏈索張力為P,則鏈索的勢能為:
按照空氣動(dòng)力學(xué)的基本理論,當(dāng)處在微振狀態(tài)的細(xì)長鏈索在水平方向受到橫向風(fēng)荷載作用時(shí),鏈索的橫截面會(huì)改變風(fēng)流場的分布,從而會(huì)受到一個(gè)垂直向上的氣動(dòng)載荷[27]:
式中Fw為單位長度鏈索受到的風(fēng)荷載,N;ρa(bǔ)為空氣的密度,kg/m3;vw為風(fēng)速,m/s;D為鏈索斷面的特征高度,m;a1、a3為多項(xiàng)式系數(shù),可由試驗(yàn)擬合測得。
風(fēng)荷載及空氣阻尼作用到鏈索上引起的虛功為:
式中c為鏈索的黏性阻尼系數(shù),N·s/m。
根據(jù)Hamilton原理,由式(3)~式(7)可得:
對式(8)進(jìn)行分部積分得:
化簡式(9)可得鏈索的動(dòng)力學(xué)方程:
鏈索多邊形效應(yīng)的邊界條件和初始條件為:
式中A為邊界激勵(lì)幅值,m;ω0為角頻率,rad/s;ψ、φ分別為支撐邊界兩端的相位角,rad;lc為鏈節(jié)長度,m;d為單跨鏈索最大垂度,m。
動(dòng)力學(xué)微分方程求解的方法有解析解和數(shù)值解2種。解析解可以直觀反映出各物理參數(shù)之間的關(guān)系,但是多數(shù)問題的物理模型微分方程比較復(fù)雜,不易甚至不能得到其解析解,而數(shù)值解在復(fù)雜問題求解方面具有解析解不可比擬的優(yōu)勢。
由于貨運(yùn)鏈索的動(dòng)力學(xué)微分方程式涉及到2個(gè)自變量的混合偏微分,解析法求解較為復(fù)雜,因此本文采用Crank-Nicolson法對方程進(jìn)行數(shù)值離散和求解。
令x=j·hx,t=i·ht,其中j=1、2、3…m,i=1、2、3…n,m和n分別為x和t的離散點(diǎn)數(shù),hx和ht為x和t的離散步長。
為便于表達(dá),定義:
根據(jù)差分公式及Crank-Nicolson方法,可知:
由式(13)~式(16)求得:
聯(lián)立式(11)、式(14)和式(17),即可求得貨運(yùn)鏈索動(dòng)力學(xué)微分方程的數(shù)值解。
為探究不同風(fēng)荷載對鏈索貨運(yùn)系統(tǒng)振動(dòng)特性的影響,根據(jù)華南農(nóng)業(yè)大學(xué)工程學(xué)院鏈索貨運(yùn)樣機(jī)系統(tǒng)的實(shí)際參數(shù)進(jìn)行數(shù)值求解計(jì)算。相關(guān)參數(shù)取值:L=6 m、d=0.2、ρ0=0.79 kg/m、M=3 kg、k=1、T= 400N、v=0.55 m/s、ρa(bǔ)= 1.29 kg/m3、D=0.02 m、a1=0.2992、a3= –0.2766、c=0.08 N·s/m。
與風(fēng)速由平均風(fēng)速和脈動(dòng)風(fēng)速組成相對應(yīng),結(jié)構(gòu)上的風(fēng)荷載包括平均風(fēng)荷載、脈動(dòng)風(fēng)荷載背景分量和脈動(dòng)風(fēng)荷載共振分量[31-32]。將脈動(dòng)風(fēng)速看成平穩(wěn)高斯隨機(jī)過程,利用諧波疊加法和Davenport脈動(dòng)風(fēng)速譜模擬生成不同的脈動(dòng)風(fēng)速時(shí)程,再將平均風(fēng)速和脈動(dòng)風(fēng)速疊加得到風(fēng)荷載的風(fēng)速時(shí)程。為模擬不同的平均風(fēng)荷載對行進(jìn)鏈索振動(dòng)的影響,平均風(fēng)速vmw分別取5、10、15 m/s和式(18)。
計(jì)算得到行進(jìn)鏈索跨度中點(diǎn)的振動(dòng)位移值如圖2所示。
圖2 不同平均風(fēng)速作用下跨度中點(diǎn)風(fēng)致振動(dòng)仿真結(jié)果Fig.2 Simulation results of wind-induced vibration at mid-point of span for different mean wind speeds
由圖2a~圖2d可知,平均風(fēng)速在0~10 m/s范圍內(nèi)變化的低速風(fēng)荷載起到了一定的氣動(dòng)阻尼的作用,行進(jìn)鏈索橫向振動(dòng)的幅值減小并呈收斂趨勢。如圖2e和圖2f所示,風(fēng)荷載平均風(fēng)速增加到15 m/s以后,容易產(chǎn)生負(fù)阻尼現(xiàn)象,會(huì)引起行進(jìn)鏈索振動(dòng)幅值的發(fā)散并導(dǎo)致失穩(wěn)。風(fēng)荷載的平均風(fēng)速大小決定了鏈索橫向振動(dòng)受影響的程度,與平均風(fēng)速的變化形式無顯著關(guān)聯(lián),見圖2g和圖2h。
根據(jù)果園鏈索貨運(yùn)試驗(yàn)系統(tǒng)的特點(diǎn)及風(fēng)荷載振動(dòng)試驗(yàn)的需求,設(shè)計(jì)了風(fēng)荷載試驗(yàn)臺[33],如圖3所示。
該試驗(yàn)臺由風(fēng)機(jī)、風(fēng)箱、氣動(dòng)系統(tǒng)、擋風(fēng)板以及控制系統(tǒng)組成,可以模擬不同條件的自然風(fēng)。實(shí)驗(yàn)臺進(jìn)風(fēng)側(cè)的風(fēng)機(jī)為1380型負(fù)壓風(fēng)機(jī)(英禾通風(fēng)設(shè)備有限公司),風(fēng)箱引導(dǎo)并加強(qiáng)風(fēng)機(jī)輸出的風(fēng),出風(fēng)口寬度為3 m。氣動(dòng)系統(tǒng)包括氣泵(奧突斯550-8L)、氣源三聯(lián)件(亞德客BC2000)、三位五通氣動(dòng)換向閥(天工TG3522C)和氣缸(亞德客MAL20×500),氣缸帶動(dòng)擋風(fēng)板沿導(dǎo)軌上下移動(dòng)。控制系統(tǒng)包括變頻器(普傳PI9130A)、風(fēng)速計(jì)(泰盛WD-4120,精度1%FS)和STC80C51單片機(jī)控制板,安裝在出風(fēng)口位置風(fēng)速計(jì)用于將采集到的風(fēng)速信號發(fā)送給單片機(jī)控制板,單片機(jī)控制板通過調(diào)整變頻器的輸出頻率來改變風(fēng)機(jī)的輸出風(fēng)速,擋風(fēng)板控制由控制板的繼電器驅(qū)動(dòng)三位五通氣動(dòng)換向閥動(dòng)作來實(shí)現(xiàn)。
當(dāng)需要的風(fēng)速不同時(shí),單片機(jī)通過變頻器控制風(fēng)機(jī)工作,并根據(jù)風(fēng)速傳感器反饋的實(shí)時(shí)風(fēng)速值控制風(fēng)機(jī)進(jìn)行風(fēng)速補(bǔ)償,使出風(fēng)口輸出的風(fēng)速達(dá)到要求;當(dāng)需要沖擊干擾的陣風(fēng)時(shí),單片機(jī)控制開啟擋風(fēng)板并在出風(fēng)口風(fēng)速達(dá)到要求后關(guān)閉擋風(fēng)板,從而使出風(fēng)口輸出沖擊干擾的陣風(fēng)。
圖3 風(fēng)荷載試驗(yàn)臺Fig.3 Experiment set-up for wind excitation
本文采用速度為150幀每秒的攝像頭(大影數(shù)字工業(yè)相機(jī)M30A,圖像分辨率為640×480像素)對貨運(yùn)鏈索跨度中點(diǎn)位置的橫向振動(dòng)進(jìn)行視頻錄取,并利用視頻軟件對采集視頻進(jìn)行分幀處理。如圖4所示,基于LabWindows/CVI5.0軟件對每一幀圖像按設(shè)定閥值進(jìn)行二值化,提取每一幀圖像中觀測點(diǎn)的位置信息,從而繪制出觀測點(diǎn)橫向振動(dòng)的圖像。為取得高質(zhì)量的圖像處理效果,錄制時(shí)鏈索的背景保持純白色。
圖4 圖像處理界面Fig.4 Image processing windows
受風(fēng)荷載試驗(yàn)臺出風(fēng)口寬度的限制,對樣機(jī)系統(tǒng)的跨度進(jìn)行調(diào)整,風(fēng)荷載試驗(yàn)的參數(shù)選取為L=3 m、d=0.1、ρ0=0.79 kg/m、M=3 kg、k=1、T=400 N、v=0.55 m/s。考慮低速風(fēng)荷載的氣動(dòng)阻尼效應(yīng),試驗(yàn)采用的平均風(fēng)速分別取5、10 m/s和式(18)。不同風(fēng)速的風(fēng)荷載作用下,跨度中點(diǎn)位置的振動(dòng)位移如圖5所示。
由圖5可知,在不同風(fēng)速的激勵(lì)條件下,氣動(dòng)正阻尼效應(yīng)隨風(fēng)速的增加而變小。當(dāng)貨運(yùn)鏈索中有集中載荷通過時(shí),在改變鏈索垂度的同時(shí)也減弱了鏈索的橫向振動(dòng)幅值與頻率。試驗(yàn)數(shù)據(jù)所得出的風(fēng)荷載對行進(jìn)鏈索橫向振動(dòng)的影響規(guī)律與數(shù)值仿真分析結(jié)果一致,驗(yàn)證了所提出風(fēng)荷載鏈索橫向振動(dòng)動(dòng)力學(xué)微分方程的正確性。風(fēng)荷載試驗(yàn)時(shí)鏈索跨度比仿真時(shí)取值要小,導(dǎo)致鏈索跨度中點(diǎn)的橫向振動(dòng)幅值有較明顯的削弱??紤]到風(fēng)荷載平均風(fēng)速的增加會(huì)加劇鏈環(huán)多邊形效應(yīng)引起的附加振動(dòng),進(jìn)而容易導(dǎo)致行進(jìn)鏈索的平衡構(gòu)形失穩(wěn),因此實(shí)際生產(chǎn)中可以通過減小鏈索貨運(yùn)系統(tǒng)的跨度、增加運(yùn)輸載重量以及選取大型號鏈條來抑制不良的風(fēng)致振動(dòng)效應(yīng),有利于改善貨運(yùn)系統(tǒng)工作時(shí)的穩(wěn)定性。
圖5 不同平均風(fēng)速作用下跨度中點(diǎn)風(fēng)致振動(dòng)試驗(yàn)結(jié)果Fig.5 Experimental results of wind-induced vibration at mid-point of span for different mean wind speeds
1)根據(jù)山地果園貨運(yùn)系統(tǒng)的動(dòng)力學(xué)模型推導(dǎo)了行進(jìn)鏈索的數(shù)學(xué)模型,并利用Crank-Nicolson法對方程進(jìn)行了數(shù)值求解。通過MATLAB數(shù)值仿真,表明了該數(shù)值離散方法對復(fù)雜鏈索振動(dòng)微分方程的求解切實(shí)有效。
2)仿真和試驗(yàn)研究的結(jié)果表明:平均風(fēng)速在0~10 m/s范圍內(nèi)變化的低速風(fēng)荷載起到了一定的氣動(dòng)阻尼作用,行進(jìn)鏈索橫向振動(dòng)的幅值減小并呈收斂趨勢。風(fēng)荷載平均風(fēng)速增加到15 m/s以后,容易產(chǎn)生負(fù)阻尼現(xiàn)象,會(huì)引起行進(jìn)鏈索振動(dòng)幅值的發(fā)散并導(dǎo)致失穩(wěn)。
3)設(shè)計(jì)的風(fēng)荷載試驗(yàn)臺能模擬不同條件的自然風(fēng),可用于研究風(fēng)荷載作用下行進(jìn)鏈索的振動(dòng)特性,并為行進(jìn)鏈索的振動(dòng)控制研究提供了可行的試驗(yàn)條件。
[1] 李君,楊洲,汪劉一,等. 香蕉生產(chǎn)機(jī)械化研究與應(yīng)用[J].安徽農(nóng)業(yè)科學(xué),2011,39(3):1836-1838.
Li Jun, Yang Zhou, Wang Liuyi, et al. Research and application for mechanization of banana production[J]. Journal of Anhui Agricultural Sciences, 2011, 39(3): 1836-1838. (in Chinese with English abstract)
[2] 洪添勝,楊洲,宋淑然,等. 柑橘生產(chǎn)機(jī)械化研究[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2010,41(12):105-110.
Hong Tiansheng, Yang Zhou, Song Shuran, et al. Mechanization of citrus production[J]. Transactions of the Chinese Society for Agricultural Machinery, 2010, 41(12): 105-110. (in Chinese with English abstract)
[3] 李震,盧加納,洪添勝,等. 山地果園鋼絲繩牽引貨運(yùn)機(jī)超聲波避障系統(tǒng)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2011,42(10):116-120.
Li Zhen, Lu Jiana, Hong Tiansheng, et al. Obstacle avoiding system of mountain orchard steel wire rope traction cargo vehicle based on ultra-sonic sensing[J]. Transactions of the Chinese Society for Agricultural Machinery, 2011, 42(10): 116-120. (in Chinese with English abstract)
[4] 洪添勝,蘇建,朱余清,等. 山地橘園鏈?zhǔn)窖h(huán)貨運(yùn)索道設(shè)計(jì)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2011,42(6):108-111.
Hong Tiansheng, Su Jian, Zhu Yuqing, et al. Circular chain ropeway for cargo transportation in mountain citrus orchard[J]. Transactions of the Chinese Society for Agricultural Machinery, 2011, 42(6): 108-111. (in Chinese with English abstract)
[5] 文韜,洪添勝,朱余清,等. 山地果園索道張緊調(diào)節(jié)自動(dòng)控制裝置的設(shè)計(jì)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2011,27(6):128-131.
Wen Tao, Hong Tiansheng, Zhu Yuqing, et al. Design of automatic control device for ropeway tension adjustment in hilly orchard[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 27(6): 128-131. (in Chinese with English abstract)
[6] 李善軍,邢軍軍,張衍林,等. 7YGS-45型自走式雙軌道山地果園運(yùn)輸機(jī)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2011,42(8):85-88.
Li Shanjun, Xing Junjun, Zhang Yanlin, et al. 7YGS-45 type self-propelled dual-track mountain orchard transport[J]. Transactions of the Chinese Society for Agricultural Machinery, 2011, 42(8): 85-88. (in Chinese with English abstract)
[7] 陳銀清,洪添勝,孫同彪. 山地果園單軌貨運(yùn)機(jī)的最小轉(zhuǎn)彎半徑及最大承載量分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2012,28(增刊1):50-56.
Chen Yinqing, Hong Tiansheng, Sun Tongbiao. Analysis on minimum turning radius and maximum carrying capacity of monorail vehicles for mountain orchard[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(Supp.1): 50-56. (in Chinese with English abstract)
[8] 張俊峰,李敬亞,張衍林,等. 山地果園遙控單軌運(yùn)輸機(jī)設(shè)計(jì)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2012,43(2):90-95.
Zhang Junfeng, Li Jingya, Zhang Yanlin, et al. Design of remote control monorail transporter for mountainous orchard[J]. Transactions of the Chinese Society for Agricultural Machinery, 2012, 43(2): 90-95. (in Chinese with English abstract)
[9] 楊洲,李雪平,李君,等. 果園鋼索牽引懸掛式貨運(yùn)系統(tǒng)關(guān)鍵部件設(shè)計(jì)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(7):18-24.
Yang Zhou, Li Xueping, Li Jun, et al. Design on key parts of cable-driven hanging transportation system for orchard[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(7): 18-24. (in Chinese with English abstract)
[10] 李偉,楊洲,李君,等. 基于極點(diǎn)配置法的香蕉索道防搖控制器設(shè)計(jì)[J]. 農(nóng)機(jī)化研究,2014,5(1):119-123.
Li Wei, Yang Zhou, Li Jun, et al. The banana ropeway anti-sway controller design based on pole placement method[J]. Journal of Agricultural Mechanization Research, 2014, 5(1): 119-123. (in Chinese with English abstract)
[11] 楊洲,李君,王慰祖,等. 一種電動(dòng)香蕉運(yùn)送系統(tǒng):
ZL201110333965.9[P]. 2013-12-04.
[12] 李君,楊洲,陸華忠,等. 香蕉園電動(dòng)滑車式索道運(yùn)送系統(tǒng)動(dòng)力學(xué)研究[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2013,44(1):211-216.
Li Jun, Yang Zhou, Lu Huazhong, et al. Dynamics of electric pulley conveying cableway system in banana plantation[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(1): 211-216. (in Chinese with English abstract)
[13] 李君,楊洲,莊櫓,等. 一種山地果園鋼絲繩牽引軌道懸掛運(yùn)送裝置及方法:ZL201210152915.5[P]. 2012-09-26.
[14] 吳茂田. 懸索結(jié)構(gòu)的風(fēng)致動(dòng)力效應(yīng)分析[D]. 重慶:重慶大學(xué),2010.
Wu Maotian. Research on the Wind-induced Vibration of Cable Structure[D]. Chongqing: Chongqing University, 2010.
[15] Mahalingam S. Transverse vibrations of power transmission chains[J]. British Journal of Applied Physics, 1957, 8(4): 145.
[16] Miranker W L. The wave equation in a medium in motion[J]. IBM Journal of Research and Development, 1960, 4(1): 36-42.
[17] Luo A C J, Mote C D Jr. Equilibrium solutions and existence for traveling, arbitrarily sagged elastic cables[J]. Journal of applied mechanics, 2000, 67(1): 148-154.
[18] Luo A C J, Mote C D Jr. An exact, closed-form solution for equilibrium of traveling, sagged, elastic cables under uniformly distributed loading[J]. Communications in Nonlinear Science and Numerical Simulation, 2000, 5(1): 6-11.
[19] Yang Zhou, Li Xueping, Li Jun, et al. Transversal vibration of chain ropeway system having support boundary conditions with polygonal action[J]. Journal of Sound and Vibration, 2015(3): 1-9.
[20] 楊洲,李偉,李君,等. 果園鋼索牽引貨運(yùn)系統(tǒng)負(fù)載縱向穩(wěn)定性控制[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(1):64-70.
Yang Zhou, Li Wei, Li Jun, Li Xuepeing, et al. Longitudinal stability control of orchard cable-driven hanging transport system[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(1): 64-70. (in Chinese with English abstract)
[21] 李君,李雪平,楊洲,等. 果園鏈索系統(tǒng)橫向運(yùn)動(dòng)共振條件及頻率分析(英文)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(23):50-57.
Li Jun, Li Xueping, Yang Zhou, et al. Transversal vibration analysis of resonance condition and frequency for orchard chain ropeway system[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(23): 50-57. (in English with Chinese abstract)
[22] 王修勇,陳政清,倪一清,等. 環(huán)境激勵(lì)下斜拉橋拉索的振動(dòng)觀測研究[J]. 振動(dòng)與沖擊,2006,25(2):138-144.
Wang Xiuyong, Chen Zhengqing, Ni Yiqing, et al. Response characteristics of stay cable under ambient excitation[J]. Journal of Vibration and Shock, 2006, 25(2): 138-144. (in Chinese with English abstract)
[23] Burton D, Cao D Q, et al. On the stability of stay cables under light wind and rain conditions[J]. Journal of Sound and Vibration, 2005, 279(1/2): 89-117.
[24] Seidel C, Dinkler D. Rain-wind induced vibrationsphenomenology, mechanical modelling and numerical analysis[J]. Computers and Structures, 2006, 84(24/25): 1584-1595.
[25] Zhan S, Xu Y L, Zhou H J, et al. Experimental study of wind–rain-induced cable vibration[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2008, 96: 2438-2451.
[26] 丁博涵. 張弦梁結(jié)構(gòu)的靜力、抗震和抗風(fēng)性能研究[D]. 杭州:浙江大學(xué),2005.
Ding Bohan. Study on Static, Aseismic and Wind-resistant Behaviors of Beam String Structures[D]. Hangzhou: Zhejiang University, 2005. (in Chinese with English abstract)
[27] 李壽英,孫文峰,陳政清. 基于強(qiáng)迫振動(dòng)裝置的拉索和水線氣動(dòng)力試驗(yàn)[J]. 中國公路學(xué)報(bào),2013,26(2):85-93.
Li Shouying, Sun Wenfeng, Chen Zhengqing. Experiment investigation on aerodynamic forces on stay cable and rivulet by using forced vibration system[J]. China Journal of Highway and Transport, 2013, 26(2): 85-93. (in Chinese with English abstract)
[28] 呂樂豐. 軸向行進(jìn)弦及索的非線性振動(dòng)和穩(wěn)定性分析[D].大連:大連理工大學(xué),2010.
Lü Lefeng. Nonlinear Vibration and Stability Aanalysis of Axially Moving Strings/cables[D]. Dalian: Dalian University of Technology, 2010. (in Chinese with English abstract)
[29] Il’in R F, Karyachenko N V. Dynamics of rope transportation systems that carry moving distributed and concentrated inertial loads[J]. International Applied Mechanics, 2007, 43 (1): 101-115.
[30] Fuglede N, Thomsen J J. Kinematic and dynamic modeling and approximate analysis of a roller chain drive [J]. Journal of Sound and Vibration, 2016, 366: 447–470.
[31] 喬帥斌,汪汛,王子通,等. 大跨度張弦桁架雨棚結(jié)構(gòu)等效靜風(fēng)荷載數(shù)值模擬[J]. 上海交通大學(xué)學(xué)報(bào),2016,50(1):59-64.
Qiao Shuaibin, Wang Xun, Wang Zitong, et al. Equivalent static wind load of a long-span truss string structure[J]. Journal of Shanghai Jiao Tong Universtity, 2016, 50(1): 59-64. (in Chinese with English abstract)
[32] Klaus H. Oscillation effects of ropeways caused by cross-wind and other influences[J]. FME Transactions, 2009, 37(4): 175-184.
[33] 李君,李雪平,薛坤鵬,等. 一種組合風(fēng)場的產(chǎn)生裝置和方法:ZL201510019391.6[P]. 2015-05-06.
Nonlinear dynamics analysis for wind-induced vibration of orchard chain ropeway system
Li Jun1,2, Xue Kunpeng1,2, Yang zhou1,2※, Hong Tiansheng1,2, Zhang Qianqian1,2, Xu Jiancong1
(1. College of Engineering, South China Agricultural University, Guangzhou 510642, China; 2. Key Laboratory of Key Technology on Agricultural Machine and Equipment, Ministry of Education, South China Agricultural University, Guangzhou 510642, China)
The purpose of this paper is to study the effect of lateral wind excitation on the transversal vibration of orchard chain ropeway system. The proposed chain system has been proved to be flexible and efficient, which can meet the demands of cargo transportation in mountainous orchards. The axially moving chains always work in a non-steady state and inevitably produce periodic transversal vibrations. The wind excitation exerted on the moving chain makes the transversal vibrations more complex. The transversal vibrations affect the safety and reliability of the moving chain system, and even lead to a disaster with high-amplitude vibrations. It is necessary to find an effective method for reducing wind-induced vibrations to an acceptable level imposed by the boundary conditions. In this paper, the Hamilton principle was applied to develop the dynamic differential functions of one-span moving chain under the lateral wind excitation. Mean lift and drag coefficients were used to characterize the susceptibility of moving chain to the galloping effect since the wind velocity was not normal to the chain axis. Long-span chain system may be subjected to the vortex-induced vibration seriously. The differential equations of axially moving chain system were proposed and discretized, which were based on the force equilibrium considering the chain boundary conditions with polygon effect. The formulation of transversal vibration subjected to the wind excitation was valid for the entire range of chain speeds and all points of the chain span. The solution of the differential equation governing the motion of the moving chain was obtained by using the Crank-Nicolson method and fourth order Ronge-Kutta method. The accuracy of the solution depended on the taken number of terms for the wind-induced chains. The time-history of wind speed was simulated by using harmonic superposition method, and the vibration properties of the axially moving chain with different mean wind speeds were numerically simulated. An experiment set-up was built for wind excitation test and 2 high speed cameras were used to capture the transversal vibration of the moving chain system. The LabWindows/CVI program was designed to process the captured vibration images. The wind speeds were simultaneously measured under different wind excitations generated by the experiment set-up. The wind speed profiles of mean wind speed with additional turbulence components were adopted. The turbulence component could be treated as a stationary random process with a mean value of zero. The equations describing the wind in the atmospheric boundary layer were represented by the proposed wind profile. The results of simulations and experiments showed that the lower mean wind speed could result in the decreasing of the amplitude of transversal vibration, which had a good aerodynamic stability for the moving chain system. At very high mean wind speeds, the negative damping effect would be exerted on the moving chain and cause the vibration to have considerable divergence and instability. This finding is useful for the development of active wind-induced vibration controller considering the chain polygon effect. This study can provide a reference for the transversal vibration control of the axially moving chain or string system under the lateral wind excitation.
agricultural machinery; transportation; models; wind excitation; moving chain; transversal vibration; orchard; numerical solution
10.11975/j.issn.1002-6819.2017.05.011
S229+. 1; TD527
A
1002-6819(2017)-05-0075-07
李 君,薛坤鵬,楊 洲,洪添勝,張倩倩,許堅(jiān)聰. 果園貨運(yùn)鏈索風(fēng)致振動(dòng)非線性動(dòng)力學(xué)分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(5):75-81.
10.11975/j.issn.1002-6819.2017.05.011 http://www.tcsae.org
Li Jun, Xue Kunpeng, Yang zhou, Hong Tiansheng, Zhang Qianqian, Xu Jiancong. Nonlinear dynamics analysis for wind-induced vibration of orchard chain ropeway system[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(5): 75-81. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.05.011 http://www.tcsae.org
2016-08-21
2017-02-07
國家自然科學(xué)基金項(xiàng)目(51205139);農(nóng)業(yè)部農(nóng)業(yè)科研創(chuàng)新團(tuán)隊(duì)項(xiàng)目(農(nóng)辦人[2015]62號)
李 君,男,湖南永州人,教授,博士,主要從事現(xiàn)代農(nóng)業(yè)裝備與機(jī)械化研究。廣州 華南農(nóng)業(yè)大學(xué)工程學(xué)院,510642。
Email:autojunli@scau.edu.cn
※通信作者:楊 洲,男,山西襄汾人,教授,博士,主要從事農(nóng)業(yè)機(jī)械化研究。廣州 華南農(nóng)業(yè)大學(xué)工程學(xué)院,510642。Email:yangzhou@scau.edu.cn