王 磊,李松山,苗 瑞,朱 苗,鄧東旭
?
Mg2+對腐殖酸在EVOH膜面微觀作用過程的影響
王 磊,李松山,苗 瑞*,朱 苗,鄧東旭
(西安建筑科技大學環(huán)境與市政工程學院,陜西西安 710055)
在不同Mg2+條件下,使用耗散型石英晶體微天平(QCM-D)技術(shù)考察了腐植酸(HA)在乙烯-乙烯醇共聚物(EVOH)膜面的吸附行為及HA吸附層結(jié)構(gòu)特征,定量測定了EVOH-HA及HA-HA之間作用力隨Mg2+含量的變化特征,結(jié)合宏觀EVOH膜污染實驗,揭示Mg2+對天然有機物超濾膜污染行為的影響機制.結(jié)果表明: Mg2+對HA污染行為的影響分為2個階段:在較低的Mg2+條件下,電荷屏蔽、絡(luò)合及架橋等作用使得EVOH及HA表面所帶凈電荷量減小,削弱了EVOH-HA及HA-HA之間的靜電排斥力,進而促進HA在膜面的吸附累積,且形成密實的HA污染層,相應(yīng)膜污染加劇.隨著Mg2+含量繼續(xù)增大,EVOH-HA及HA-HA之間水合排斥力逐漸增強,成為控制膜污染的主要因素,有效減緩了HA在EVOH膜面的吸附累積速率,且膜面形成松散多孔的HA吸附層,伴隨著膜污染速率及污染幅度的減小.
EVOH超濾膜;Mg2+;腐殖酸污染;QCM-D;微觀作用力
膜污染問題一直是限制膜分離技術(shù)在水處理領(lǐng)域進一步推廣應(yīng)用的主要瓶頸[1].而地表原水、城市二級水和海水等待處理廢水中,大量存在的天然有機物是引起膜污染的主要物質(zhì)[2-3].因此,解析天然有機物對超濾膜的污染行為受到廣泛的關(guān)注.
天然有機物引起的膜污染行為是一個復雜的過程,其受到膜面性能、水質(zhì)因素、運行條件等諸多參數(shù)的影響.而水中大量存在的二價鈣鎂離子正是影響天然有機物膜污染的關(guān)鍵因素之一,因為鈣鎂離子極易與天然有機物中的羧基、羥基及氨基等化學官能團發(fā)生絡(luò)合、中和、架橋等作用,從而改變膜面及污染物的帶電性、酸堿性等物化性能,導致污染物與膜及污染物與污染物之間的相互作用力大小發(fā)生變化,最終影響膜污染行為[4-6].因此,深入解析鈣鎂離子對天然有機物膜污染行為的影響機制,對探明NOM膜污染機制至關(guān)重要.
既往已經(jīng)有一些研究者考察了二價鈣鎂離子對膜污染行為的影響機制,多數(shù)研究結(jié)果發(fā)現(xiàn),隨鈣鎂離子含量的增加,膜污染會逐漸加劇.認為一方面因為鈣離子的絡(luò)合作用,導致天然有機物之間形成密實絡(luò)合物,膜面形成密實的污染層,膜污染加劇[7-9];另一方面,鈣離子的電荷屏蔽及電荷中和作用,導致天然有機物分子所帶電荷減小,故分子間排斥力減小,所以污染物分子在膜面或者膜孔內(nèi)快速吸附沉降,膜污染加劇[10-11].但是,Lee等[12]的研究發(fā)現(xiàn),隨著鈣離子含量的增加,膜污染并不是一直增大,推測可能是有機物分子尺寸遠小于膜孔尺寸,并不足以堵塞膜孔或在膜面沉積形成污染層.而Katsoufidou等[13-14]進行不同鈣離子濃度的HA過濾試驗,發(fā)現(xiàn)當鈣離子濃度在0~2mmol/L的范圍內(nèi),膜污染隨鈣離子含量的增大而加劇;但當鈣離子含量繼續(xù)增大到4mmol/L時,膜污染卻隨鈣離子含量增大而逐漸減輕. Zhou等[15]也得到了類似的實驗結(jié)果.
綜上發(fā)現(xiàn),關(guān)于二價鈣鎂離子對腐植酸膜污染的影響并沒有統(tǒng)一的認識,多是基于宏觀的過濾實驗給出的一些推測或判斷.近年來,一些膜污染研究者證實了從微觀層面解析污染物與膜及污染物與污染物之間的相互作用力,揭示污染物在膜面的微觀作用過程是探明膜污染根本原因的關(guān)鍵手段[16].因此,為了探明二價鈣鎂離子對HA膜污染行為的影響機制,本研究選用一種典型超濾膜-EVOH超濾膜,及典型離子-Mg2+,采用原子力顯微鏡(AFM)結(jié)合自行研發(fā)的膠體探針,定量測定了不同Mg2+條件下, EVOH-HA、HA-HA之間的作用力,并使用耗散型石英晶體微天平(QCM-D)技術(shù)考察HA在EVOH膜表面的微觀吸附行為及吸附層結(jié)構(gòu)特征隨Mg2+的變化特征,結(jié)合宏觀的過濾實驗揭示Mg2+對HA膜污染行為的影響機制.
1.1 材料
腐植酸(HA, 98%純度, Sigma-Aldrich, St. Louis, Mo), MgCl2(天津市天力化學試劑有限公司),乙烯-乙烯醇共聚物(EVOH,乙烯含量32%,日本可樂麗公司),無水氯化鋰(Licl,天津市天力化學試劑有限公司), N,N-二甲基乙酰胺(DMAc;分析純,天津市福晨化學試劑廠).
1.2 超濾膜制備
采用浸沒相轉(zhuǎn)化法制備EVOH平板超濾膜,制備方法如下:將EVOH與無水LiCl按一定比例溶解于DMAc中,在60℃恒溫條件下共混攪拌形成均質(zhì)鑄膜液,靜置后將其均勻涂覆于玻璃板表面,然后將其浸沒于恒溫去離子水中進行分相成膜,分相結(jié)束后獲得EVOH超濾膜,待用.所制備EVOH超濾膜純水通量(250±50)L/(m2?h),接觸角(52±2.5)?,表面平均粗糙度87.78nm.
1.3 膜污染實驗
使用死端超濾系統(tǒng)進行EVOH超濾膜污染實驗[17].具體步驟如下:首先在0.15MPa下,使用去離子水預壓使膜通量達到穩(wěn)定,其次在0.1MPa下,過濾去離子水,獲得膜純水通量0.最后在0.1MPa下,進行特定Mg2+條件的HA污染液(DOC=10mg/L, pH=(7±0.05))過濾實驗,計量天平在線監(jiān)測超濾膜實時通量,使用/0表征過濾過程中膜通量衰減情況.
1.4 HA在膜面的吸附行為及吸附層結(jié)構(gòu)特征
采用耗散型石英晶體微天平(QCM-D, E1, Q-Sense,瑞典)結(jié)合自制的EVOH超濾膜石英晶體芯片,考察Mg2+對HA在EVOH膜面的吸附行為及吸附層結(jié)構(gòu)特征的影響機制[18-20].
EVOH超濾膜石英晶體芯片的制備:首先配置一定濃度的EVOH聚合物溶液待用;其次將金芯片(QSX301Au, Qsence)在特定的清洗液中充分清洗后待用;最后采用高速旋轉(zhuǎn)離心技術(shù),將EVOH聚合物溶液均勻涂覆于干凈的金芯片表面,獲得相應(yīng)EVOH石英晶體芯片.
吸附行為及吸附層結(jié)構(gòu)特征研究:將制備的EVOH芯片安裝于QCM-D上,首先引入超純水使芯片頻率達到穩(wěn)定值;之后引入特定Mg2+含量的HA溶液,運行30min,通過芯片振動頻率及耗散變化特征,評價HA在EVOH表面的微觀吸附過程及吸附層結(jié)構(gòu)特征.溶液流速為0.1mL/min,測試溫度為25 ℃,每組試驗至少重復3次.
1.5 微觀作用力測定
本研究使用Multimode 8.0原子力顯微鏡(AFM,布魯克,德國)結(jié)合-COOH(HA分子中大量存在官能團)膠體探針進行作用力測定[17].
首先通過環(huán)氧樹脂將直徑為3 μm的-COOH微球粘附于無針尖探針微懸臂自由端,獲得-COOH膠體探針.其后使用AFM結(jié)合-COOH探針,在液體池回路系統(tǒng)中,定量測定不同Mg2+條件下,探針與EVOH膜及探針與HA污染物之間的作用力.為了減小實驗誤差,每個樣品在6個不同的局域點進行作用力測定,每個點進行至少10次重復測定,最終取平均值進行作用力分析.
1.6 分析方法
使用Zeta電位儀(ZS90Zeta,馬爾文,英國)測定HA的Zeta電位.使用固體表面Zeta電位儀(SurPASS, Anton Paar GmbH,奧地利)分析EVOH膜表面Zete電位.
2.1 Mg2+條件對HA及EVOH膜面帶電性能的影響
表1為不同MgCl2離子強度下, HA污染物及EVOH超濾膜面的Zeta電位值.從表1可以看出:在所考察的離子強度范圍內(nèi), HA分子及EVOH超濾膜面皆帶負電荷,且二者所帶負電量均隨著離子強度的增加而逐漸減小.這是因為隨著Mg2+含量的不斷增加, Mg2+引起的電荷屏蔽、絡(luò)合及架橋等效應(yīng)逐漸增強,致使EVOH超濾膜及HA的帶電量逐漸降低.
表1 不同MgCl2離子強度下EVOH膜面及HA的Zeta電位(mV)
2.2 Mg2+條件對HA膜污染的影響分析
圖1所示為EVOH超濾膜過濾不同MgCl2離子強度下HA污染物溶液時,膜比通量隨運行時間的變化特征.由圖1可以看出,隨Mg2+含量的增大,膜污染呈現(xiàn)先增大后減小的趨勢.
在120min的運行時間內(nèi),當MgCl2離子強度為0,1,10mmol/L時,對應(yīng)膜通量衰減率分別為71%、88%及95%,顯然膜通量衰減率隨Mg2+含量的增加而增大.但是,當離子強度從10mmol/L繼續(xù)增大到100mmol/L時,膜通量衰減率從95%急劇下降到12%,說明隨Mg2+含量的增大膜污染大幅度減緩,這與DLVO理論恰恰相反.Shao等[21]在考察不同CaCl2離子強度條件下HA膜污染行為行為時,發(fā)現(xiàn)相似的現(xiàn)象,推測隨著離子強度的逐漸增加, HA所帶凈電荷量逐漸減小,導致HA分子之間的靜電斥力減小,最終引起HA污染物的大量聚集,形成大尺寸聚合物,相應(yīng)膜面形成松散污染層及膜污染減緩.
綜上發(fā)現(xiàn),隨著Mg2+含量的增加,其對HA污染行為的影響分為2個階段,即在低離子強度范圍內(nèi),膜污染隨Mg2+含量的增加而加劇.相反,當離子強度達到一定值后,膜污染會大幅度減緩.但是既往的研究并沒有深入考察不同離子強度范圍內(nèi)的膜污染機制,特別是高離子強度條件下膜污染減緩的現(xiàn)象,多是基于宏觀膜通量變化給出的一些推測性解釋,并未深入研究引起膜污染減緩的本質(zhì)原因.
2.3 Mg2+條件對HA在EVOH膜面吸附行為及污染層結(jié)構(gòu)的影響
為了進一步探明Mg2+對HA膜污染機制的影響,本研究使用QCM-D技術(shù),考察了與宏觀膜污染試驗相同的Mg2+條件下, HA在EVOH超濾膜界面的微觀吸附過程及HA吸附層結(jié)構(gòu)特征,結(jié)果見圖2和圖3.
測試過程中, A階段是注入超純水以獲得穩(wěn)定基線;之后注入特定Mg2+含量的HA溶液,運行25min(B階段),使用該階段的│?│、?進行數(shù)據(jù)分析比較.
圖2為不同Mg2+條件下EVOH芯片頻率隨吸附時間的變化特征.在25min的吸附時間內(nèi), MgCl2離子強度為0,1,10,100mmol/L時, │?│依次為10.25,18.78,24.63,8.07Hz.顯然,與宏觀的EVOH超濾膜污染試驗相同,隨著Mg2+含量的增加,HA在EVOH界面的吸附量及吸附速率亦是呈現(xiàn)先增大后減小的趨勢.
圖3所示為相應(yīng)Mg2+條件下,HA在EVOH界面吸附過程中EVOH芯片耗散值?的變化特征.從圖3可以看出,各離子條件下HA吸附層耗散值存在明顯差異,當離子強度從0增大到1及10mmol/L時, ?呈現(xiàn)逐漸減小的趨勢,分別為1.69×10-6、1.11×10-6、0.72×10-6;但是,當離子強度達到100mmol/L時, ?急劇增大到2.13×10-6.
?表征的是QCM-D測試過程中芯片振動所需能耗損失,是表征吸附層結(jié)構(gòu)特性的有效參數(shù),為了便于比較使用│?/?│單位質(zhì)量耗散值考察吸附層結(jié)構(gòu)特征更為準確[20].通常認為較低的│?/?│說明密實剛性的吸附層結(jié)構(gòu),較高的│?/?│值表示吸附層結(jié)構(gòu)較為松散柔軟[22-23].因此,本研究使用│?/?│值表征HA吸附層結(jié)構(gòu)隨Mg2+含量的變化特征.
結(jié)果顯示,當MgCl2離子強度從0增大到1及10mmol/L時,│?/?│從0.16′10-6依次減小到0.059×10-6及0.029×10-6,說明隨著Mg2+含量的增加, EVOH超濾膜表面形成了密實剛性的HA吸附層.相反,當MgCl2離子強度從10 增大到100mmol/L時,│?/?│從0.029×10-6增大到0.26×10-6,說明當Mg2+離子含量繼續(xù)增加時后, EVOH超濾膜面的HA吸附層逐漸變得松散多孔.
綜上QCMD實驗結(jié)果發(fā)現(xiàn),與宏觀膜污染試驗完全相符, Mg2+對HA在EVOH界面的吸附行為的影響同樣分為2個階段:在低離子強度范圍下,吸附行為遵循DLVO理論;但是當離子強度達到一定值后, HA在EVOH界面的吸附量會隨著離子強度的增加而減小,膜面形成松散多孔的HA吸附層.根據(jù)HA粒徑的測量結(jié)果,當Mg2+濃度為0,1,10,100mmol/L時,HA溶液粒徑分別為190,214,205,850nm,因而當離子強度增加到100mM時,膜面形成松散多孔的HA吸附層.在上述提到,Shao等[21]推測高離子強度下, HA大量聚集形成松散多孔的HA污染層可能是膜污染減緩的主要原因.雖然該推測可以解釋│?/?│隨離子強度的變化特征,但是其推論并不能解釋相應(yīng)離子條件下HA在膜面吸附量大幅度減緩的現(xiàn)象.因此,本研究進一步考察Mg2+含量對膜污染微觀作用力的影響特征.
2.4 Mg2+條件對微觀作用力變化特征的影響分析
為了進一步探明Mg2+對HA膜污染行為的影響機理,本研究定量測定了MgCl2離子強度為0,1,10,100mmol/L時EVOH-HA及HA-HA之間作用力大小特征.相應(yīng)離子條件下EVOH- HA及HA-HA之間典型粘附力曲線見圖4.
在MgCl2離子強度為0,1,10,100mmol/L時, EVOH與HA之間的平均粘附力分別為0.57, 1.05,1.51,0.22mN/m,而HA與HA之間的平均粘附力則分別為0.21,0.52,0.70,0.11mN/m.由此可以得出,隨著Mg2+含量的增加, EVOH- HA及HA-HA之間的作用力皆呈現(xiàn)先增大后減小的趨勢.
首先,在MgCl2離子強度為0~10mmol/L范圍內(nèi), EVOH-HA及HA-HA之間的作用力皆隨著Mg2+含量的增加而逐漸增大.這是因為隨著離子強度的增大, Mg2+的電荷屏蔽、絡(luò)合及架橋等效應(yīng)逐漸增強,導致HA和EVOH膜面所帶凈電荷量減小,削弱了EVOH-HA和HA-HA之間的靜電排斥力,伴隨著相應(yīng)粘附力的增大.
但是,當離子強度繼續(xù)增大到100mmol/L時,EVOH-HA及HA-HA之間的作用力均明顯減小,這與DLVO理論恰恰相反.這是因為Mg2+是典型的水合陽離子,當其離子強度達到100mmol/L后, HA分子及EVOH膜面捕獲大量的水合鎂離子,致使HA分子周圍及EVOH膜面形成特定的水分子層結(jié)構(gòu),當兩界面水分子層結(jié)構(gòu)重疊時體系之間自由能增大, EVOH-HA及HA-HA之間產(chǎn)生較強的水合排斥力,有效掩蓋了靜電作用力的變化,成為控制EVOH-HA及HA-HA之間的主導因素.
3.1 Mg2+主要通過影響EVOH-HA及HA-HA之間的相互作用力,進而控制HA在膜面的吸附累積速率及吸附層結(jié)構(gòu)特性,最終影響膜污染行為.而在不同Mg2+含量范圍內(nèi),其對HA膜污染行為的影響機制并不相同.
3.2 在較低的Mg2+含量下,靜電作用力的變化是控制HA膜污染的主導作用.即隨離子強度的增大, Mg2+的電荷屏蔽、絡(luò)合及架橋等作用導致EVOH及HA表面所帶凈電荷量逐漸減小,削弱了EVOH-HA及HA-HA之間的靜電排斥力,進而加劇了HA在膜面的吸附累積速率,且在膜面形成密實的HA污染層,相應(yīng)膜污染加劇.
3.3 當Mg2+含量達到一定值后, EVOH-HA及HA-HA之間的水合排斥力逐漸增強,掩蓋了靜電作用力的變化量,有效削弱了EVOH-HA及HA-HA之間的作用力,導致HA在EVOH膜面的吸附累積速率減緩,且膜面形成松散多孔的HA吸附層,伴隨著膜污染速率及污染幅度的減小.
[1] Qu F S, Liang H. Ultra-filtration membrane fouling by extracellular oragnic matters (EOM) of Microcystis aerugioain stationary phase:Influences of interfacial characteristicsof foulants and fouling mechanisms [J]. Water Research, 2012,46:1490-1500.
[2] 宋亞麗,董秉直,高乃云.不同氧化劑降低膜污染效果的研究 [J]. 中國環(huán)境科學, 2009,29(1):11-16.
[3] 喻 瑤,徐光紅,林 潔,等.太湖原水中膜污染物質(zhì)的確定與表征 [J]. 中國環(huán)境科學, 2012,32(11):2067-2074.
[4] Hoon Y S, Hak L C, Jin K K, et al. Effect of calcium ion on the fouling of nanofilter by humic acid in drinking water production [J]. Water Research, 1998,32:2180-2186.
[5] Tang C Y, Fu Q S, Criddle C S, et al. Effect of flux (transmembrane pressure) and membrane properties on fouling and rejection of reverse osmosis and nanofiltration membranes treating perfluorooctane sulfonate containing wastewater [J]. Environmental Science and Technology, 2007,41:2008-2014.
[6] Nanci K, Maxililiano B, Graciela Z, et al. Aggregation kinetics of humic acids in the presence of calcium ions [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013,427: 76-82.
[7] Hao Y, Moriya A, Maruyama T H, et al. Effect of metal ions on humic acid fouling of hollow fiber ultrafiltration membrane [J]. Journal of Membrane Science, 2011,376:247-253.
[8] Zularisam A W, Ahmad A, Sakinah M, et al. Role of natural organic matter (NOM), colloidal particles, and soluti-on chemistry on ultrafiltration performance [J]. Separation and Purification Technology, 2011,78:189-200.
[9] Jarusutthirak, C. Fouling and flux decline of reverse osmosis (RO), nanoflitration (NF) and ultrafiltration (UF) membranes associated with effluent organic matter (EfOM) during wastewater reclamation/reuse [D]. Boulder: University of colorado boulder, 2002.
[10] Michael B J D, Tracy B L, Rossman G F, et al. Nanoscale forces of interaction between glass in aqueous andnon-aqueous media: a theoretical and empirical study [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010,362:90-96.
[11] L. Feng, L.X. Fen, D.G. Cheng, et al. Adsorption and fouling characterization of Klebsiella oxytoca to microfiltration membranes [J]. Process Biochemistry, 2009,44:1289-1292.
[12] Lee N, Amy G. Low-pressure membrane (MF/UF) fouling associated with allochthonous versus autochthonous natural organic matter [J]. Water Research, 2006,40:2357-2368.
[13] Katsoufidou K, Yiantsios S G, Karabelas A J. A study of ultrafiltration membrane fouling by humic acids and flux recovery by backwashing: Experiments and modeling [J]. Journal of Membrane Science, 2005,266:40-50.
[14] Katsoufidou K, Yiantsios S G, Karabelas A J. An experimental study of UF membrane fouling by humic acid and sodiumalginate solutions: the effect of backwashing on flux recovery [J]. Desalination, 2008,220:214-227.
[15] Zhou M H, Meng F G. Using UVevis absorbance spectral parameters to characterize the fouling propensity of humicsubstances during ultrafiltration [J]. Water Research, 2015,87:311-319.
[16] Basri H, Ismail A F, Aziz M. Microstructure and anti-adhesion properties of PES/TAP/Ag hybrid UF membrane [J]. Desalination, 2012,287:71-77.
[17] 苗 瑞,王 磊,田 麗,等.海藻酸及腐殖酸共存對PVDF超濾膜的污染行為 [J]. 中國環(huán)境科學, 2014,34(10):2568-2574.
[18] Quevedo I R, Tufenkji N. Influence of solution chemistry on the deposition and detachment kinetics of a CdTe Quantum Dot examined using a quartz crystal microbalance [J]. Environmental Science and Technology, 2009,43(9):3176-3182..
[19] Chowdhury I, Duch M C, Mansukhani N D , et al. Deposition and release of Grephene oxide nanomaterias using a quartz crystal microbalance [J]. Environmental Science and Technology, 2014,48:961-969.
[20] Feiler A A , Sahllhplm A, Sandberg T, et al. AdsoMin (BSM) and bovine serum albumin (BSA) studied with quartz crystal microbalance (QCM-D) [J]. Journal of Colloid and Interface Science, 2007,315(2):475-481.
[21] Shao J, Hou J, Song H. Comparison of humic acid rejection and flux decline during filtration with negativly charged and uncharged filtration membrane [J]. Water Research, 2011,45(2): 473-482
[22] Kwon K D, Green H, Bjoorn P, et al. Model bacterial extracellular polysaccharide adsorption onto silica and alumina: quartz crystal microbalance with dissipation monitoring of dextran adsorption [J]. Environmental Science and Technology, 2006,40(24):7739-7744.
[23] 高 哲,苗 瑞,王 磊,等.pH值對有機物(BSA)膜污染的影響 [J]. 中國環(huán)境科學, 2015,35(12):3640-3645.
The influence mechanism of Mg2+to the microcosmic process of humic acid on EVOH membrane surface.
WANG Lei, LI Song-shan, MIAO Rui*, ZHU Miao, DENG Dong-xu
(Environmental and Municipal Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China).
In this study, adsorption behaviour of humic acid (HA) on Ethylene-vinyl alcohol copolymer (EVOH) ultrafiltration membrane surface and HA adsorbed layer structure were determined in the different concentration of Mg2+, combined with the interaction forces of EVOH-HA and HA-HA, and HA fouling experiments to unravel the influence mechanism of Mg2+on natural organic matter fouling of ultrafiltration membrane. According to the results, the effects of Mg2+on HA fouling were in two stages: at the lower Mg2+range, the net charges of EVOH and HA surface were reduced because of the charge screening and complex bridge and this weaken the electrostatic repulsion of EVOH-HA and HA-HA, thus a higher deposition rate of HA was accumulated and a denser HA layer was formed on the membrane surface, so the membrane fouling aggravated. However, when Mg2+dosage above a critical value, the hydration repultion forces were provoked effectivity, which caused a decrease in the deposition rate and extent of HA onto the membrane surface, and more nonrigid HA layer was formed, corresponding membrane fouling was mitigated.
EVOH ultrafiltration membrane;Mg2+;humic acid membrane fouling;QCM-D;microscopic-forces
X703.1
A
1000-6923(2017)04-1380-06
2016-08-01
國家自然科學基金(51278408;51608429);中國博士后科學基金(2015M580820;2016T90895);陜西省自然科學基金(2016JQ5067);陜西省教育廳計劃項目(16JS062);陜西省高??茀f(xié)青年人才托舉計劃(20160220)
王 磊(1971-),男,陜西銅川人,教授,博士,研究方向為膜分離技術(shù)開發(fā)與應(yīng)用.發(fā)表論文200余篇.
* 責任作者, 講師, 395832936@qq.com
, 2017,37(4):1380~1385