• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Hypoxia inducible factor-1 alpha stabilization for regenerative therapy in traumatic brain injury

    2017-06-05 08:56:43MushfiquddinKhanHamzaKhanInderjitSinghAvtarSingh

    Mushfiquddin Khan, Hamza Khan, Inderjit Singh Avtar K. Singh

    1 Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA

    2 College of Medicine, University of South Carolina, Columbia, SC, USA

    3 Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA 4 Ralph H. Johnson VA Medical Center, Charleston, SC, USA

    Hypoxia inducible factor-1 alpha stabilization for regenerative therapy in traumatic brain injury

    Mushfiquddin Khan1,*, Hamza Khan2, Inderjit Singh1, Avtar K. Singh3,4

    1 Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA

    2 College of Medicine, University of South Carolina, Columbia, SC, USA

    3 Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA 4 Ralph H. Johnson VA Medical Center, Charleston, SC, USA

    How to cite this article:Khan M, Khan H, Singh I, Singh AK (2017) Hypoxia inducible factor-1 alpha stabilization for regenerative therapy in traumatic brain injury. Neural Regen Res 12(5):696-701.

    Open access statement:This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as the author is credited and the new creations are licensed under the identical terms.

    Funding:This work was supported by grants from VA merit awards (BX3401 and RX2090).

    Mild traumatic brain injury (TBI), also called concussion, initiates sequelae leading to motor deficits, cognitive impairments and subtly compromised neurobehaviors. While the acute phase of TBI is associated with neuroinflammation and nitroxidative burst, the chronic phase shows a lack of stimulation of the neurorepair process and regeneration. The deficiency of nitric oxide (NO), the consequent disturbed NO metabolome, and imbalanced mechanisms of S-nitrosylation are implicated in blocking the mechanisms of neurorepair processes and functional recovery in the both phases. Hypoxia inducible factor-1 alpha (HIF-1α), a master regulator of hypoxia/ischemia, stimulates the process of neurorepair and thus aids in functional recovery after brain trauma. The activity of HIF-1α is regulated by NOviathe mechanism of S-nitrosylation of HIF-1α. S-nitrosylation is dynamically regulated by NO metabolites such as S-nitrosoglutathione (GSNO) and peroxynitrite. GSNO stabilizes, and peroxynitrite destabilizes HIF-1α. Exogenously administered GSNO was found not only to stabilize HIF-1α and to induce HIF-1α-dependent genes but also to stimulate the regeneration process and to aid in functional recovery in TBI animals.

    traumatic brain injury; hypoxia inducible factor-1 alpha; S-nitrosoglutathione; neurorepair; functional recovery

    Introduction

    The U.S. Centers for Disease Control and Prevention define a traumatic brain injury (TBI) as being caused by a bump, blow, or jolt to the head or a penetrating head injury that disrupts normal brain function (www.cdc.gov/traumaticbraininjury/data). The causes of TBI are extremely diverse, ranging from accidents on the highways, to involvement in sports related injuries, and the effects of improvised explosive devices in the theater of war. Falls are the major cause of TBI in children and the elderly (Blennow et al., 2016). TBI causes neurobehavioral deficits, especially in motor and cognitive functions (Langlois et al., 2006). The observed cognitive changes that follow TBI include decreased mental flexibility, impaired attention, poor planning/judgment, deficits in verbal fluency, dementia, and problems with working memory (Levin and Kraus, 1994; Johnson et al., 2010). Furthermore, TBI is associated with significant morbidity/ mortality, pain, and fatigue (Levin and Diaz-Arrastia, 2015; Blennow et al., 2016; Mollayeva et al., 2017). TBI patients are also susceptible to stroke, epilepsy, and Alzheimer’s disease (Johnson et al., 2010; Liu et al., 2017).

    Over 5.3 million Americans suffer lifelong disabilities due to TBI and 1.7 million Americans meet with TBI-associated accidents annually (Gardner and Zafonte, 2016). Approximately 52,000 Americans die annually as a result of TBI (www.cdc.gov/traumaticbraininjury/data). As estimated by the World Health Organization, TBI will become the leading cause of death and disability worldwide by the year 2020 (Hyder et al., 2007). In terms of TBI-related mortality, the US 2006–2010 data revealed males had an almost threefold increased risk of TBI-related death than females, and individuals over the age of 64 years had the highest mortality rates (www.cdc.gov/traumaticbraininjury/data; Faul and Coronado, 2015). TBI among children aged 0–14 years is also prevalent due to falls (Langlois et al., 2005). The total (direct and indirect) TBI costs in the USA were approximately $60.43 billion in 2000 (Corso et al., 2006), which has now increased to approximately $76.5 billion (www.cdc.gov/ traumaticbraininjury/data). Despite substantial investments in TBI research, the treatment options are limited to manage the sequelae of the injury. The state of TBI science and pharmacotherapy have been thoroughly reviewed recently (Diaz-Arrastia et al., 2014).

    Immediately following TBI, the direct trauma and lack of blood flow cause necrotic neuronal death; however, even greater apoptotic neuron loss can occur later from secondaryinjury caused by hypoxia/ischemia and insults associated with oxidative stress and inflammation (Coles, 2004; Greve and Zink, 2009; Diaz-Arrastia et al., 2014). Focal injury, as a result of TBI, affects not only locomotor function but also cognition, perhaps because damage to brain connectivity is a critical component in the cognitive impairment from TBI. Moreover, cognitive impairment may not be the result of a single event but due to multiple mechanisms originating from secondary injury (Lloyd et al., 2008). The neurorepair process (in the chronic phase) depends on regeneration mechanisms that involve a coordinated integration of angiogenesis, neurogenesis, and remyelination of new and spared axons (Lu et al., 2007). Therapies to increase regeneration activity (angiogenesis, neurogenesis, remyelination) during the chronic phase of TBI therefore hold promise as a treatment strategy for stimulating the recovery of neurological functions.

    Approximately 40% of all TBIs are contusions; therefore, animal models of TBI using the focal cortical impact injury (CCI) technique are recognized as physiologically relevant to human TBI (Pennings et al., 1993). The CCI technique was developed by General Motors to model head injuries from automobile accidents and was later adapted for wider experimental use (Lighthall et al., 1989). It reproduces many of the features of brain injuries, including motor deficits, dementia, memory loss, and neuronal loss (Colicos et al., 1996). The severity of injury can be controlled by altering the velocity and depth of the impact and the size of the impact or tip (Dixon et al., 1991). CCI provides an animal model system to evaluate injuries in both the acute and chronic phases. The mechanisms of the injury in the two phases are different and complex. While CCI results in a significant number of necrotic as well as apoptotic neurons in the acute phase, it lacks sufficient regeneration process stimulation (Diaz-Arrastia et al., 2014). Stimulating neurorepair activity by therapeutic modalities,vianeurotrophic and growth factors, has been shown to improve motor and cognitive functions (Oyesiku et al., 1999; Kim et al., 2001; Wu et al., 2008; Sun et al., 2009). Our studies show that S-nitrosoglutathione (GSNO)-induced mechanisms stabilize hypoxia-inducible factor-1 alpha (HIF-1α) and stimulate the mechanisms of regeneration and functional recovery in TBI (Khan et al., 2016a). Unlike in stroke, the role of HIF-1α in TBI is less understood. While the activity of HIF-1α is increased immediately after TBI, its expression levels are significantly decreased 24 hours following TBI (Ding et al., 2009). Studies from other laboratories have also reported that neurorepair (stimulation of the expression of vascular endothelial growth factor (VEGF) and brain-derived neurotrophic factor (BDNF)) mechanisms in the chronic phase of TBI are dependent on HIF-1α activity (Sen and Sen, 2016; Thelin et al., 2016).

    HIF-1α and its regulating enzymes, including prolyl-4-hydroxylases (PHDs), are directly regulated by S-nitrosylation (Metzen et al., 2003), leading to stabilization of HIF-1α and induction of neurorepair mechanisms in the repair phase. S-nitrosylation-mediated stabilization of HIF-1α was also reported to increase angiogenesis and myocardial protection (Lima et al., 2009), indicating a protective role of S-nitrosylated HIF-1α. Therefore, we investigated whether S-nitrosylation-mediated modulation of HIF-1α induces neurorepair, leading to functional recovery in a rat CCI model of TBI.

    HIF-1, a nuclear transcription factor, was discovered by Dr. Semenza in 1996 (Semenza, 1996). It was characterized as the master regulator of cellular oxygen homeostasis. It activates the tissue survival pathways by inducing several key enzymes involved in cell metabolism glucose transporter (GLUT), angiogenesis (VEGF, VEGFR1, angiopoietin), and free radical scavenging (heme hydroxylase-1; HO-1) (Ke and Costa, 2006). HIF is a heterodimeric protein composed of α and β subunits. There are three HIF-α isoforms (HIF-1α, HIF-2α and HIF-3α). The beta class includes HIF-1β. HIF-1 is a combination of the HIF-1α (120 kDa) and HIF-1β (91-94 kDa) subunits. The HIF-1β subunit is a constitutively expressed protein, but the expression of the HIF-1α subunit (a cytosolic protein) is largely dependent on oxygen levels. HIF-1α is rapidly up regulated in response to hypoxia and is rapidly degraded upon reoxygenation/reperfusion. Under normoxia, HIF-1α is bound by the von Hippel-Lindau protein (pVHL). pVHL recruits a ubiquitin ligase that targets HIF-1α for the 26S proteasomal degradation. The binding of pVHL is dependent upon hydroxylation of specific proline residues in HIF-1α (pro402 and pro564) by the PHD family of proteins (PHDs), especially HIF-1α-specific PHDs, such as PHD3/PHD2 (please see Ke and Costa, 2006; Harten et al., 2010 for details). These PHD isozymes share maximum homology, and they are implicated in degradation of HIF-1α. PHDs use oxygen as a substrate; therefore, their activity is inhibited under hypoxia. Oxygen can also activate factor-inhibiting HIF (FIH), leading to prevention of the binding of the co-activators p300/CBP, thus down regulating HIF-1-induced transcriptional activity (Figure 1). HIF-1α knockout mice show impaired vascular development and embryonic lethality, indicating HIF-1’s protective role in vascular diseases (Iyer et al., 1998).

    Remarkably, the HIF-1α pathway is involved in both pathological (hypoxia) and neurorepair (normoxia) mechanisms following TBI. The HIF-1α stabilizers/inducers, such as desferrioxamine (an iron chelator approved for haemochromatosis treatment), promote a number of survival pathways, including neuroprotection, angiogenesis and neurotrophins, and reduce brain infarctions when administered pre- or post-stroke (Kasivisvanathan et al., 2011). PHD inhibitors, such as FG-4539, are presently in a phase II anemia trial because of their activity to stabilize HIF-1α by preventing degradation with the ubiquitin proteasome system (Harten et al., 2010). However, inhibition of HIF-1α in the acute injury phase of TBI has also been reported to be neuroprotective (Shenaq et al., 2012; Schaible et al., 2014).

    Figure 1 Hypothesized HIF-1α regulation under hypoxia, normoxia, and redox.

    Under normoxic conditions, studies are lacking on direct stabilization of HIF-1α by secondary modification and the induction of consequent protective genes. Nevertheless, S-nitrosylation has been shown to stabilize HIF-1 protein expression and activity in normoxic endothelial cells (Palmer et al., 2000). Later, it was confirmed that, while GSNO stabilizes HIF-1α by S-nitrosylation, reactive nitrogen species (peroxynitrite) destabilize HIF-1α (Figure 1) (Wellman et al., 2004). GSNO-mediated stabilization of HIF-1α has been shown to be dependent on PI3K/Akt activity (Carver et al., 2007). A recent study in a mouse model of stroke shows that S-nitrosylation of phosphatase and tensin homolog (PTEN) results in an inhibition of its activity, leading to the activation of Akt (Numajiri et al., 2011). GSNO also activated Akt in a rat model of experimental stroke (Sakakima et al., 2012). Furthermore, GSNO also attenuated PHD activity during normoxia and inhibited proteasomal degradation of HIF-1α (Metzen et al., 2003). S-nitrosylation-mediated stabilization of HIF-1α has been shown to protect against myocardial injuryviathe VEGF/angiogenesis pathway in GSNO reductase (GSNOR) knockout mice (Lima et al., 2009), indicating that HIF-1 is a key player in the regeneration process. Our TBI studies showing that the HIF-1α/VEGF pathway accelerated functional recovery in a 2-week mouse model of TBIviaS-nitrosylation of HIF-1α further support the neuroreparative role of HIF-1α (Khan et al., 2016a) as depicted in Figure 2. S-nitrosylation/GSNO-mediated increased expression HIF-1α and stimulation of neurotrophic factors provide a strong rationale to evaluate the potential of a GSNO-mediated HIF-1α pathway for human therapy in the chronic phase of TBI.

    Figure 2 Schematic showing that exogenously administered GSNO stabilizes HIF-1αviaS-nitrosylation, leading to the stimulation of neurorepair mediators and functional recovery in TBI.

    GSNO is a natural component of the human body produced by the reaction of nitric oxide (NO) with glutathione (GSH) in the presence of oxygen (Singh et al., 1996). It is sensitive to light, ascorbate, thiols and divalent cations such as Fe2+ and Cu2+(Broniowska et al., 2013). GSNO is present in the brain and other organs (Kluge et al., 1997). It is directly involved in cell signalingviaS-nitrosylation of target proteins, including nuclear factor kappaB (NF-κB), signal transducer and activator of transcription 3 (STAT3), cyclooxygenase-2 (COX-2), caspase-3, calpains, inducible nitric oxide synthase (iNOS), and endothelial NOS (eNOS) and neuronal NOS (nNOS) (Jaffrey et al., 2001; Khan et al., 2005, 2006, 2012, 2016a, b; Kim et al., 2013). Exogenous admin-istration of GSNO (Rassaf et al., 2006) also protects against cardiac ischemic injury (Konorev et al., 1995; Lima et al., 2009), supporting the therapeutic potential of GSNO. Studies have also reported that GSNO inhibits platelet activation in humans (Radomski et al., 1992) and protects both bloodbrain barrier integrity and epithelial permeability (Savidge et al., 2007; Khan et al., 2009). Various disease conditions are known to have reduced levels of S-nitrosothiols (-SNO/ GSNO) (Snyder et al., 2002; Heiss et al., 2006; Schonhoff et al., 2006) and exogenous administration of GSNO has increased endogenous GSNO and S-NO levels (Khan et al., 2012; Zanini et al., 2012; Hu et al., 2013).

    In a microenvironment of TBI, NO released by conventional NO-donors or NO gas itself is anticipated to be inactivated by superoxide, thus forming deleterious peroxynitrite (Singh et al., 2007; Deng-Bryant et al., 2008; Reed et al., 2009). Unlike NO, the disadvantage of inactivation is not associated with the S-nitrosylating agent GSNO (Khan et al., 2006). In addition, S-nitrosylation of cysteine residue (a reversible modification) prevents it from further oxidation to sulfinic and sulfonic acids (an irreversible modification), thereby preventing inactivation of both NO and proteins. The neurorepair effect of GSNO may be mediated by two different mechanisms: 1) S-nitrosylation and 2) maintaining redox by mechanistically reducing the production of oxidants, including peroxynitrite. Such multi-mechanistic functional and therapeutic abilities are not embedded in conventional NO donors as previously reported (Khan et al., 2006), making GSNO a unique candidate to be investigated for the stimulation of functional recovery following TBI.

    Several studies showing the efficacy of GSNO in human diseases have been listed by Hornyak et al. (Hornyak et al., 2011). Recently, GSNO was also used in early onset of preeclampsia (Christopher et al.). None of the studies report major or significant side effects associated with the use of GSNO in humans. GSNO-releasing nanoparticles, hydrogel and/or polymers are also used tropically in wound healing and skin diseases (Georgii et al., 2011; Chouake et al., 2012). Microparticles loaded with GSNO have a much longer half-life than free GSNO and show neurovascular protective efficacy in an animal model of embolic stroke (Parent et al., 2015). GSNO-mediated therapeutic effects can also be achievedviathe inhibition of GSNO reductase (GSNOR) enzyme. GSNOR is the major GSNO-metabolizing enzyme and thus GSNOR knock out mice store GSNO in excess. GSNOR degrades GSNO into ammonia and oxidized glutathione without releasing free NO. Other enzymes, including carbonyl reductase, formaldehyde dehydrogenase and gamma glutamyl transpeptidase also metabolize GSNO, but their activity is not specific toward GSNO (Foster et al., 2009). Pharmacological inhibition of GSNOR has also been shown to improve endothelial functions (Chen et al., 2013), indicating a protective role of GSNO in neurovascular dysfunction. A recent report shows that GSNOR knock out mice behave normally and GSNO invokes its mechanistic effectviathe mechanisms of trans-S-nitrosylation (Moon et al., 2017). However, another study found GSNOR knock mice having compromised neuro-muscular functions (Montagna et al., 2014). Use of GSNOR inhibitors have been found beneficial in animal models of experimental asthma (Ferrini et al., 2013), allergic airway inflammation (Blonder et al., 2014) and endothelial vasodilatory dysfunction (Chen et al., 2013). These results support the association of beneficial activity with GSNO-mediated mechanisms in several diseases.

    Conclusion

    The potential of GSNO as an HIF-1α stabilization-based therapeutic agent in TBI offers a novel target for further investigation (Figure 2). Mechanistically, GSNO invokes its action mainlyviaan S-nitrosylation-based mechanism, a physiological secondary protein modification process. Unlike other chemical therapeutics, GSNO is an endogenous neurorepair-inducing agent and its exogenous administration protects against neurodegenerative disease mechanisms in stroke, spinal cord injury, and TBI. The treatment with GSNO accelerated functional recovery and improved overall outcomes in a comparatively long-term TBI study (Khan et al., 2016a). Furthermore, GSNO’s administration in humans for other indications resulted in no toxicity or side effects, thus supporting the translational potential of GSNO therapy in TBI. A long term study showing stimulation of neurorepair mechanisms and improvements of neurological functions in humans will determine the overall efficacy and the clinical relevance of GSNO as a rehabilitation therapy in TBI.

    Acknowledgments:We acknowledge Dr. Tom Smith, Ph.D., from the MUSC Writing Center for his valuable editing of the manuscript. We also thank Dr. Tajinder S. Dhammu for his input in understanding the role of HIFs in TBI.

    Author contributions:This article is based on original contributions from MK, IS and AKS. MK and HK have assembled, written and edited the manuscript. All authors hereby approve the content of the article.

    Conflicts of interest:The authors declare that they have no competing interests.

    Open peer reviewer:Eric Peter Thelin.

    Additional file:Open peer review report 1.

    Blennow K, Brody DL, Kochanek PM, Levin H, McKee A, Ribbers GM, Yaffe K, Zetterberg H (2016) Traumatic brain injuries. Nat Rev Dis Primers 2:16084.

    Blonder JP, Mutka SC, Sun X, Qiu J, Green LH, Mehra NK, Boyanapalli R, Suniga M, Look K, Delany C, Richards JP, Looker D, Scoggin C, Rosenthal GJ (2014) Pharmacologic inhibition of S-nitrosoglutathione reductase protects against experimental asthma in BALB/c mice through attenuation of both bronchoconstriction and inflammation. BMC Pulm Med 14:3.

    Broniowska KA, Diers AR, Hogg N (2013) S-nitrosoglutathione. Biochim Biophys Acta 1830:3173-3181.

    Carver DJ, Gaston B, Deronde K, Palmer LA (2007) Akt-mediated activation of HIF-1 in pulmonary vascular endothelial cells by S-nitrosoglutathione. Am J Respir Cell Mol Biol 37:255-263.

    Chen Q, Sievers RE, Varga M, Kharait S, Haddad DJ, Patton AK, Delany CS, Mutka SC, Blonder JP, Dube GP, Rosenthal GJ, Springer ML (2013) Pharmacological inhibition of S-nitrosoglutathione reductase improves endothelial vasodilatory function in rats in vivo. J Appl Physiol (1985) 114:752-760.

    Chouake J, Schairer D, Kutner A, Sanchez DA, Makdisi J, Blecher-Paz K, Nacharaju P, Tuckman-Vernon C, Gialanella P, Friedman JM, Nosanchuk JD, Friedman AJ (2012) Nitrosoglutathione generating nitric oxide nanoparticles as an improved strategy for combating Pseudomonas aeruginosa-infected wounds. J Drugs Dermatol 11:1471-1477.

    Coles JP (2004) Regional ischemia after head injury. Curr Opin Crit Care 10:120-125.

    Colicos MA, Dixon CE, Dash PK (1996) Delayed, selective neuronal death following experimental cortical impact injury in rats: possible role in memory deficits. Brain Res 739:111-119.

    Corso P, Finkelstein E, Miller T, Fiebelkorn I, Zaloshnja E (2006) Incidence and lifetime costs of injuries in the United States. Inj Prev 12:212-218.

    Deng-Bryant Y, Singh IN, Carrico KM, Hall ED (2008) Neuroprotective effects of tempol, a catalytic scavenger of peroxynitrite-derived free radicals, in a mouse traumatic brain injury model. J Cereb Blood Flow Metab 28:1114-1126.

    Diaz-Arrastia R, Kochanek PM, Bergold P, Kenney K, Marx CE, Grimes CJ, Loh LT, Adam LT, Oskvig D, Curley KC, Salzer W (2014) Pharmacotherapy of traumatic brain injury: state of the science and the road forward: report of the Department of Defense Neurotrauma Pharmacology Workgroup. J Neurotrauma 31:135-158.

    Ding JY, Kreipke CW, Speirs SL, Schafer P, Schafer S, Rafols JA (2009) Hypoxia-inducible factor-1alpha signaling in aquaporin upregulation after traumatic brain injury. Neurosci Lett 453:68-72.

    Dixon CE, Clifton GL, Lighthall JW, Yaghmai AA, Hayes RL (1991) A controlled cortical impact model of traumatic brain injury in the rat. J Neurosci Methods 39:253-262.

    Faul M, Coronado V (2015) Epidemiology of traumatic brain injury. Handb Clin Neurol 127:3-13.

    Ferrini ME, Simons BJ, Bassett DJ, Bradley MO, Roberts K, Jaffar Z (2013) S-nitrosoglutathione reductase inhibition regulates allergen-induced lung inflammation and airway hyperreactivity. PLoS One 8:e70351.

    Foster MW, Hess DT, Stamler JS (2009) Protein S-nitrosylation in health and disease: a current perspective. Trends Mol Med 15:391-404.

    Gardner AJ, Zafonte R (2016) Neuroepidemiology of traumatic brain injury. Handb Clin Neurol 138:207-223.

    Georgii JL, Amadeu TP, Seabra AB, de Oliveira MG, Monte-Alto-Costa A (2011) Topical S-nitrosoglutathione-releasing hydrogel improves healing of rat ischaemic wounds. J Tissue Eng Regen Med 5:612-619.

    Greve MW, Zink BJ (2009) Pathophysiology of traumatic brain injury. Mt Sinai J Med 76:97-104.

    Harten SK, Ashcroft M, Maxwell PH (2010) Prolyl hydroxylase domain inhibitors: a route to HIF activation and neuroprotection. Antioxid Redox Signal 12:459-480.

    Heiss C, Lauer T, Dejam A, Kleinbongard P, Hamada S, Rassaf T, Matern S, Feelisch M, Kelm M (2006) Plasma nitroso compounds are decreased in patients with endothelial dysfunction. J Am Coll Cardiol 47:573-579.

    Hornyak I, Pankotai E, Kiss L, Lacza Z (2011) Current developments in the therapeutic potential of S-nitrosoglutathione, an endogenous NO-donor molecule. Curr Pharm Biotechnol 12:1368-1374.

    Hu Z, Bian X, Liu X, Zhu Y, Zhang X, Chen S, Wang K, Wang Y (2013) Honokiol protects brain against ischemia-reperfusion injury in rats through disrupting PSD95-nNOS interaction. Brain Res 1491:204-212.

    Hyder AA, Wunderlich CA, Puvanachandra P, Gururaj G, Kobusingye OC (2007) The impact of traumatic brain injuries: a global perspective. NeuroRehabilitation 22:341-353.

    Iyer NV, Kotch LE, Agani F, Leung SW, Laughner E, Wenger RH, Gassmann M, Gearhart JD, Lawler AM, Yu AY, Semenza GL (1998) Cellular and developmental control of O2 homeostasis by hypoxia-inducible factor 1 alpha. Genes Dev 12:149-162.

    Jaffrey SR, Erdjument-Bromage H, Ferris CD, Tempst P, Snyder SH (2001) Protein S-nitrosylation: a physiological signal for neuronal nitric oxide. Nat Cell Biol 3:193-197.

    Johnson VE, Stewart W, Smith DH (2010) Traumatic brain injury and amyloid-beta pathology: a link to Alzheimer’s disease? Nat Rev Neurosci 11:361-370.

    Kasivisvanathan V, Shalhoub J, Lim CS, Shepherd AC, Thapar A, Davies AH (2011) Hypoxia-inducible factor-1 in arterial disease: a putative therapeutic target. Curr Vasc Pharmacol 9:333-349.

    Ke Q, Costa M (2006) Hypoxia-inducible factor-1 (HIF-1). Mol Pharmacol 70:1469-1480.

    Khan M, Jatana M, Elango C, Paintlia AS, Singh AK, Singh I (2006) Cerebrovascular protection by various nitric oxide donors in rats after experimental stroke. Nitric Oxide 15:114-124.

    Khan M, Im YB, Shunmugavel A, Gilg AG, Dhindsa RK, Singh AK, Singh I (2009) Administration of S-nitrosoglutathione after traumatic brain injury protects the neurovascular unit and reduces secondary injury in a rat model of controlled cortical impact. J Neuroinflammation 6:32.

    Khan M, Dhammu TS, Sakakima H, Shunmugavel A, Gilg AG, Singh AK, Singh I (2012) The inhibitory effect of S-nitrosoglutathione on blood-brain barrier disruption and peroxynitrite formation in a rat model of experimental stroke. J Neurochem 123 Suppl 2:86-97.

    Khan M, Dhammu TS, Baarine M, Kim J, Paintlia MK, Singh I, Singh AK (2016a) GSNO promotes functional recovery in experimental TBI by stabilizing HIF-1alpha. Behav Brain Res doi:10.1016/ j.bbr.2016.10.037.

    Khan M, Dhammu TS, Matsuda F, Annamalai B, Dhindsa TS, Singh I, Singh AK (2016b) Targeting the nNOS/peroxynitrite/calpain system to confer neuroprotection and aid functional recovery in a mouse model of TBI. Brain Res 1630:159-170.

    Khan M, Sekhon B, Giri S, Jatana M, Gilg AG, Ayasolla K, Elango C, Singh AK, Singh I (2005) S-Nitrosoglutathione reduces inflammation and protects brain against focal cerebral ischemia in a rat model of experimental stroke. J Cereb Blood Flow Metab 25:177-192.

    Kim BT, Rao VL, Sailor KA, Bowen KK, Dempsey RJ (2001) Protective effects of glial cell line-derived neurotrophic factor on hippocampal neurons after traumatic brain injury in rats. J Neurosurg 95:674-679.

    Kim J, Won JS, Singh AK, Sharma AK, Singh I (2013) STAT3 regulation by S-nitrosylation: implication for inflammatory disease. Antioxid Redox Signal 20:2514-2527.

    Kluge I, Gutteck-Amsler U, Zollinger M, Do KQ (1997) S-nitrosoglutathione in rat cerebellum: identification and quantification by liquid chromatography-mass spectrometry. J Neurochem 69:2599-2607.

    Konorev EA, Tarpey MM, Joseph J, Baker JE, Kalyanaraman B (1995) S-nitrosoglutathione improves functional recovery in the isolated rat heart after cardioplegic ischemic arrest-evidence for a cardioprotective effect of nitric oxide. J Pharmacol Exp Ther 274:200-206.

    Langlois JA, Rutland-Brown W, Thomas KE (2005) The incidence of traumatic brain injury among children in the United States: differences by race. J Head Trauma Rehabil 20:229-238.

    Langlois JA, Rutland-Brown W, Wald MM (2006) The epidemiology and impact of traumatic brain injury: a brief overview. J Head Trauma Rehabil 21:375-378.

    Levin H, Kraus MF (1994) The frontal lobes and traumatic brain injury. J Neuropsychiatry Clin Neurosci 6:443-454.

    Levin HS, Diaz-Arrastia RR (2015) Diagnosis, prognosis, and clinical management of mild traumatic brain injury. Lancet Neurol 14:506-517.

    Lighthall JW, Dixon CE, Anderson TE (1989) Experimental models of brain injury. J Neurotrauma 6:83-97.

    Lima B, Lam GK, Xie L, Diesen DL, Villamizar N, Nienaber J, Messina E, Bowles D, Kontos CD, Hare JM, Stamler JS, Rockman HA (2009) Endogenous S-nitrosothiols protect against myocardial injury. Proc Natl Acad Sci U S A 106:6297-6302.

    Liu SW, Huang LC, Chung WF, Chang HK, Wu JC, Chen LF, Chen YC, Huang WC, Cheng H, Lo SS (2017) Increased risk of stroke in patients of concussion: a nationwide cohort study. Int J Environ Res Public Health 14:E230.

    Lloyd E, Somera-Molina K, Van Eldik LJ, Watterson DM, Wainwright MS (2008) Suppression of acute proinflammatory cytokine and chemokine upregulation by post-injury administration of a novel small molecule improves long-term neurologic outcome in a mouse model of traumatic brain injury. J Neuroinflammation 5:28.

    Lu D, Qu C, Goussev A, Jiang H, Lu C, Schallert T, Mahmood A, Chen J, Li Y, Chopp M (2007) Statins increase neurogenesis in the dentate gyrus, reduce delayed neuronal death in the hippocampal CA3 region, and improve spatial learning in rat after traumatic brain injury. J Neurotrauma 24:1132-1146.

    Metzen E, Zhou J, Jelkmann W, Fandrey J, Brune B (2003) Nitric oxide impairs normoxic degradation of HIF-1alpha by inhibition of prolyl hydroxylases. Mol Biol Cell 14:3470-3481.

    Mollayeva T, Cassidy JD, Shapiro CM, Mollayeva S, Colantonio A (2017) Concussion/mild traumatic brain injury-related chronic pain in males and females: A diagnostic modelling study. Medicine (Baltimore) 96:e5917.

    Montagna C, Di Giacomo G, Rizza S, Cardaci S, Ferraro E, Grumati P, De Zio D, Maiani E, Muscoli C, Lauro F, Ilari S, Bernardini S, Cannata S, Gargioli C, Ciriolo MR, Cecconi F, Bonaldo P, Filomeni G (2014) S-nitrosoglutathione reductase deficiency-induced S-nitrosylation results in neuromuscular dysfunction. Antioxid Redox Signal 21:570-587.

    Moon Y, Cao Y, Zhu J, Xu Y, Balkan W, Buys ES, Diaz F, Kerrick WG, Hare JM, Percival JM (2017) GSNOR deficiency enhances in situ skeletal muscle strength, fatigue resistance, and RyR1 S-nitrosylation without impacting mitochondrial content and activity. Antioxid Redox Signal 26:165-181.

    Numajiri N, Takasawa K, Nishiya T, Tanaka H, Ohno K, Hayakawa W, Asada M, Matsuda H, Azumi K, Kamata H, Nakamura T, Hara H, Minami M, Lipton SA, Uehara T (2011) On-off system for PI3-kinase-Akt signaling through S-nitrosylation of phosphatase with sequence homology to tensin (PTEN). Proc Natl Acad Sci U S A 108:10349-10354.

    Oyesiku NM, Evans CO, Houston S, Darrell RS, Smith JS, Fulop ZL, Dixon CE, Stein DG (1999) Regional changes in the expression of neurotrophic factors and their receptors following acute traumatic brain injury in the adult rat brain. Brain Res 833:161-172.

    Palmer LA, Gaston B, Johns RA (2000) Normoxic stabilization of hypoxia-inducible factor-1 expression and activity: redox-dependent effect of nitrogen oxides. Mol Pharmacol 58:1197-1203.

    Parent M, Boudier A, Perrin J, Vigneron C, Maincent P, Violle N, Bisson JF, Lartaud I, Dupuis F (2015) In situ microparticles loaded with S-nitrosoglutathione protect from stroke. PLoS One 10:e0144659.

    Pennings JL, Bachulis BL, Simons CT, Slazinski T (1993) Survival after severe brain injury in the aged. Arch Surg 128:787-793; discussion 793-784.

    Radomski MW, Rees DD, Dutra A, Moncada S (1992) S-nitroso-glutathione inhibits platelet activation in vitro and in vivo. Br J Pharmacol 107:745-749.

    Rassaf T, Poll LW, Brouzos P, Lauer T, Totzeck M, Kleinbongard P, Gharini P, Andersen K, Schulz R, Heusch G, Modder U, Kelm M (2006) Positive effects of nitric oxide on left ventricular function in humans. Eur Heart J 27:1699-1705.

    Reed TT, Owen J, Pierce WM, Sebastian A, Sullivan PG, Butterfield DA (2009) Proteomic identification of nitrated brain proteins in traumatic brain-injured rats treated postinjury with gamma-glutamylcysteine ethyl ester: insights into the role of elevation of glutathione as a potential therapeutic strategy for traumatic brain injury. J Neurosci Res 87:408-417.

    Sakakima H, Khan M, Dhammu TS, Shunmugavel A, Yoshida Y, Singh I, Singh AK (2012) Stimulation of functional recovery via the mechanisms of neurorepair by S-nitrosoglutathione and motor exercise in a rat model of transient cerebral ischemia and reperfusion. Restor Neurol Neurosci 30:383-396.

    Savidge TC, Newman P, Pothoulakis C, Ruhl A, Neunlist M, Bourreille A, Hurst R, Sofroniew MV (2007) Enteric glia regulate intestinal barrier function and inflammation via release of S-nitrosoglutathione. Gastroenterology 132:1344-1358.

    Schaible EV, Windschugl J, Bobkiewicz W, Kaburov Y, Dangel L, Kramer T, Huang C, Sebastiani A, Luh C, Werner C, Engelhard K, Thal SC, Schafer MK (2014) 2-Methoxyestradiol confers neuroprotection and inhibits a maladaptive HIF-1alpha response after traumatic brain injury in mice. J Neurochem 129:940-954.

    Schonhoff CM, Matsuoka M, Tummala H, Johnson MA, Estevez AG, Wu R, Kamaid A, Ricart KC, Hashimoto Y, Gaston B, Macdonald TL, Xu Z, Mannick JB (2006) S-nitrosothiol depletion in amyotrophic lateral sclerosis. Proc Natl Acad Sci U S A 103:2404-2409.

    Semenza GL (1996) Transcriptional regulation by hypoxia-inducible factor 1 molecular mechanisms of oxygen homeostasis. Trends Cardiovasc Med 6:151-157.

    Sen T, Sen N (2016) Treatment with an activator of hypoxia-inducible factor 1, DMOG provides neuroprotection after traumatic brain injury. Neuropharmacology 107:79-88.

    Shenaq M, Kassem H, Peng C, Schafer S, Ding JY, Fredrickson V, Guthikonda M, Kreipke CW, Rafols JA, Ding Y (2012) Neuronal damage and functional deficits are ameliorated by inhibition of aquaporin and HIF1alpha after traumatic brain injury (TBI). J Neurol Sci 323:134-140.

    Singh IN, Sullivan PG, Hall ED (2007) Peroxynitrite-mediated oxidative damage to brain mitochondria: Protective effects of peroxynitrite scavengers. J Neurosci Res 85:2216-2223.

    Singh SP, Wishnok JS, Keshive M, Deen WM, Tannenbaum SR (1996) The chemistry of the S-nitrosoglutathione/glutathione system. Proc Natl Acad Sci U S A 93:14428-14433.

    Snyder AH, McPherson ME, Hunt JF, Johnson M, Stamler JS, Gaston B (2002) Acute effects of aerosolized S-nitrosoglutathione in cystic fibrosis. Am J Respir Crit Care Med 165:922-926.

    Sun D, Bullock MR, McGinn MJ, Zhou Z, Altememi N, Hagood S, Hamm R, Colello RJ (2009) Basic fibroblast growth factor-enhanced neurogenesis contributes to cognitive recovery in rats following traumatic brain injury. Exp Neurol 216:56-65.

    Thelin EP, Frostell A, Mulder J, Mitsios N, Damberg P, Aski SN, Risling M, Svensson M, Morganti-Kossmann MC, Bellander BM (2016) Lesion size is exacerbated in hypoxic rats whereas hypoxia-inducible factor-1 alpha and vascular endothelial growth factor increase in injured normoxic rats: a prospective cohort study of secondary hypoxia in focal traumatic brain injury. Front Neurol 7:23.

    Wellman TL, Jenkins J, Penar PL, Tranmer B, Zahr R, Lounsbury KM (2004) Nitric oxide and reactive oxygen species exert opposing effects on the stability of hypoxia-inducible factor-1alpha (HIF-1alpha) in explants of human pial arteries. Faseb J 18:379-381.

    Wu H, Lu D, Jiang H, Xiong Y, Qu C, Li B, Mahmood A, Zhou D, Chopp M (2008) Simvastatin-mediated upregulation of VEGF and BDNF, activation of the PI3K/Akt pathway, and increase of neurogenesis are associated with therapeutic improvement after traumatic brain injury. J Neurotrauma 25:130-139.

    www.cdc.gov/traumaticbraininjury/data The US centers for disease control and prevention, Atlanta, GA.

    Zanini GM, Martins YC, Cabrales P, Frangos JA, Carvalho LJ (2012) S-nitrosoglutathione prevents experimental cerebral malaria. J Neuroimmune Pharmacol 7:477-487.

    *< class="emphasis_italic">Correspondence to: Mushfiquddin Khan, Ph.D., khanm@musc.edu.

    Mushfiquddin Khan, Ph.D., khanm@musc.edu.

    orcid: 0000-0001-7945-3237 (Mushfiquddin Khan)

    10.4103/1673-5374.206632

    Accepted: 2017-05-05

    国产高清有码在线观看视频| 国产精品一二三区在线看| 亚洲欧美精品专区久久| 91麻豆精品激情在线观看国产| eeuss影院久久| 日韩精品青青久久久久久| 在线观看一区二区三区| 免费电影在线观看免费观看| 嫩草影院精品99| 久久综合国产亚洲精品| 久久久久久久久大av| 欧美性猛交╳xxx乱大交人| 国产视频首页在线观看| 亚洲国产欧美人成| 我要看日韩黄色一级片| 欧美性猛交黑人性爽| 亚洲国产欧美在线一区| 99久久无色码亚洲精品果冻| av.在线天堂| 久久久久久久亚洲中文字幕| 亚洲人与动物交配视频| 日本爱情动作片www.在线观看| 久久99热这里只有精品18| 国产午夜福利久久久久久| 精品久久久久久久人妻蜜臀av| 亚洲一区高清亚洲精品| 亚洲五月天丁香| 亚洲国产欧美在线一区| 国产亚洲5aaaaa淫片| www.av在线官网国产| 国产亚洲av片在线观看秒播厂 | 99国产精品一区二区蜜桃av| 99热网站在线观看| 不卡一级毛片| 在线国产一区二区在线| 人妻久久中文字幕网| 国模一区二区三区四区视频| 精品久久久久久久久av| 亚洲自拍偷在线| 欧美区成人在线视频| 成人午夜精彩视频在线观看| 国产单亲对白刺激| 一本久久中文字幕| 亚洲最大成人av| 国产精品av视频在线免费观看| 国产熟女欧美一区二区| 亚洲av中文字字幕乱码综合| 晚上一个人看的免费电影| 一本久久精品| 欧美性猛交╳xxx乱大交人| 九九久久精品国产亚洲av麻豆| 一区二区三区高清视频在线| 两性午夜刺激爽爽歪歪视频在线观看| 国产大屁股一区二区在线视频| 99热6这里只有精品| 卡戴珊不雅视频在线播放| 亚洲自偷自拍三级| 国产精品福利在线免费观看| 国产老妇女一区| 欧美高清成人免费视频www| 久久精品国产亚洲av天美| 成人性生交大片免费视频hd| 最近中文字幕高清免费大全6| 日韩三级伦理在线观看| 亚洲成人精品中文字幕电影| 小说图片视频综合网站| 国产成人午夜福利电影在线观看| 别揉我奶头 嗯啊视频| 一进一出抽搐动态| 亚洲aⅴ乱码一区二区在线播放| 国产成人精品婷婷| 色噜噜av男人的天堂激情| 又粗又硬又长又爽又黄的视频 | 成年女人永久免费观看视频| 26uuu在线亚洲综合色| 亚洲成人久久性| 国产白丝娇喘喷水9色精品| 国产精品野战在线观看| 高清毛片免费看| 少妇熟女欧美另类| 插阴视频在线观看视频| 乱人视频在线观看| 国产精品国产三级国产av玫瑰| 最好的美女福利视频网| 亚洲中文字幕一区二区三区有码在线看| 精品少妇黑人巨大在线播放 | av在线老鸭窝| 91精品国产九色| 51国产日韩欧美| 午夜免费激情av| 日本av手机在线免费观看| 国产成人福利小说| 国产成人91sexporn| 黄片无遮挡物在线观看| 人妻夜夜爽99麻豆av| 久久久久久久久久久免费av| 亚洲成av人片在线播放无| 老女人水多毛片| 成熟少妇高潮喷水视频| 在线免费观看不下载黄p国产| 一本久久中文字幕| 精品人妻视频免费看| 国产爱豆传媒在线观看| av福利片在线观看| 一个人看视频在线观看www免费| 99久久精品一区二区三区| 中文字幕人妻熟人妻熟丝袜美| 女人被狂操c到高潮| 国产真实乱freesex| 欧美xxxx黑人xx丫x性爽| 搡老妇女老女人老熟妇| 色综合站精品国产| 99热只有精品国产| 亚洲美女视频黄频| 黄片无遮挡物在线观看| 中文字幕av成人在线电影| 免费观看在线日韩| 波野结衣二区三区在线| 精品少妇黑人巨大在线播放 | 欧美最黄视频在线播放免费| 国产在视频线在精品| 久久久国产成人精品二区| 狂野欧美白嫩少妇大欣赏| 99久国产av精品国产电影| 国模一区二区三区四区视频| 女人十人毛片免费观看3o分钟| 听说在线观看完整版免费高清| 床上黄色一级片| 黑人高潮一二区| 久久亚洲精品不卡| 哪个播放器可以免费观看大片| 91午夜精品亚洲一区二区三区| 三级国产精品欧美在线观看| 亚洲成人av在线免费| 九九在线视频观看精品| 人人妻人人澡欧美一区二区| 色综合站精品国产| 丰满乱子伦码专区| 国产老妇伦熟女老妇高清| 高清毛片免费看| av在线老鸭窝| 精品国内亚洲2022精品成人| 欧美区成人在线视频| avwww免费| 免费人成视频x8x8入口观看| av女优亚洲男人天堂| 简卡轻食公司| 国产久久久一区二区三区| 99久久人妻综合| av黄色大香蕉| 天天一区二区日本电影三级| 日韩一本色道免费dvd| 国产男人的电影天堂91| 一级毛片我不卡| 欧美3d第一页| 搞女人的毛片| eeuss影院久久| 亚洲国产精品成人综合色| 99热这里只有精品一区| 成人高潮视频无遮挡免费网站| 亚洲精品日韩av片在线观看| 丝袜美腿在线中文| 晚上一个人看的免费电影| 91狼人影院| 久久精品国产自在天天线| 国产一区二区三区在线臀色熟女| 国模一区二区三区四区视频| 91精品国产九色| 色5月婷婷丁香| 亚洲自拍偷在线| 嫩草影院精品99| 免费在线观看成人毛片| 亚洲丝袜综合中文字幕| 日本-黄色视频高清免费观看| 内射极品少妇av片p| 三级男女做爰猛烈吃奶摸视频| 国产一区二区在线观看日韩| 18禁在线播放成人免费| 国产淫片久久久久久久久| 欧美另类亚洲清纯唯美| 欧美日本视频| 久久99蜜桃精品久久| 青青草视频在线视频观看| 国产视频内射| 亚洲中文字幕日韩| 欧美日韩乱码在线| 中文字幕久久专区| 最好的美女福利视频网| 久久国内精品自在自线图片| 国产探花极品一区二区| 变态另类丝袜制服| 午夜福利成人在线免费观看| 国产乱人视频| 午夜老司机福利剧场| 小蜜桃在线观看免费完整版高清| 美女国产视频在线观看| 啦啦啦啦在线视频资源| 成年女人看的毛片在线观看| 欧美日韩乱码在线| 国产探花在线观看一区二区| 成人国产麻豆网| 久99久视频精品免费| 久久久久国产网址| 国产精品日韩av在线免费观看| 欧美另类亚洲清纯唯美| 波多野结衣高清无吗| 亚洲高清免费不卡视频| 久久久久免费精品人妻一区二区| 日韩三级伦理在线观看| 成熟少妇高潮喷水视频| 国产精品综合久久久久久久免费| 国产成人a∨麻豆精品| 国产激情偷乱视频一区二区| 久久精品国产清高在天天线| 男人狂女人下面高潮的视频| 午夜福利高清视频| 性插视频无遮挡在线免费观看| 成人午夜精彩视频在线观看| 男女做爰动态图高潮gif福利片| 51国产日韩欧美| 国产精品一区二区在线观看99 | 国产成人精品久久久久久| 内地一区二区视频在线| 男女啪啪激烈高潮av片| 久久午夜福利片| 在线播放无遮挡| 色吧在线观看| 亚洲欧美精品综合久久99| 12—13女人毛片做爰片一| 卡戴珊不雅视频在线播放| 波多野结衣巨乳人妻| 精品久久久久久久久亚洲| 国产精品久久视频播放| 成人性生交大片免费视频hd| 欧美zozozo另类| 乱系列少妇在线播放| 久久精品国产鲁丝片午夜精品| 免费av不卡在线播放| 久久久久久伊人网av| 国产麻豆成人av免费视频| 赤兔流量卡办理| 日本与韩国留学比较| 久久韩国三级中文字幕| 国产精品麻豆人妻色哟哟久久 | 久久人人爽人人片av| av在线亚洲专区| 最新中文字幕久久久久| 高清毛片免费观看视频网站| 欧美一级a爱片免费观看看| 小说图片视频综合网站| 欧美精品国产亚洲| 午夜福利视频1000在线观看| 亚洲在线观看片| 欧美一区二区精品小视频在线| 中国国产av一级| 欧美高清性xxxxhd video| 全区人妻精品视频| 国产成人福利小说| 国产成人影院久久av| 国产高清三级在线| 悠悠久久av| 亚洲av第一区精品v没综合| 国产一级毛片在线| 国产精品乱码一区二三区的特点| 午夜福利在线在线| 偷拍熟女少妇极品色| 国内久久婷婷六月综合欲色啪| 国产爱豆传媒在线观看| 我要看日韩黄色一级片| 高清毛片免费看| 九九在线视频观看精品| 国产真实伦视频高清在线观看| 中文精品一卡2卡3卡4更新| 免费人成视频x8x8入口观看| 一级黄片播放器| 亚洲在线自拍视频| 少妇高潮的动态图| 99国产极品粉嫩在线观看| 亚洲av免费在线观看| 69av精品久久久久久| 非洲黑人性xxxx精品又粗又长| 国产av一区在线观看免费| 特级一级黄色大片| 久久热精品热| 国产精品人妻久久久影院| 性插视频无遮挡在线免费观看| 色尼玛亚洲综合影院| 国产伦一二天堂av在线观看| 一区二区三区高清视频在线| 亚洲综合色惰| 两个人视频免费观看高清| 秋霞在线观看毛片| 黄色欧美视频在线观看| 色综合色国产| 亚洲成人精品中文字幕电影| 男女边吃奶边做爰视频| 亚洲欧美清纯卡通| 九九爱精品视频在线观看| 久久久久久久久久成人| 男女啪啪激烈高潮av片| 国产高清视频在线观看网站| 久久久色成人| 精品国内亚洲2022精品成人| 国产精品福利在线免费观看| 天美传媒精品一区二区| 国产亚洲av片在线观看秒播厂 | 少妇丰满av| 青春草亚洲视频在线观看| 国产成人aa在线观看| 欧美一级a爱片免费观看看| 精品不卡国产一区二区三区| 午夜a级毛片| 91在线精品国自产拍蜜月| 桃色一区二区三区在线观看| 国产伦精品一区二区三区四那| 天堂中文最新版在线下载 | 久久热精品热| 久久人人爽人人爽人人片va| 在线免费十八禁| 国产精品乱码一区二三区的特点| 久久久成人免费电影| 国产成人影院久久av| 久久久欧美国产精品| 一区福利在线观看| 亚洲精品久久国产高清桃花| 国产精品永久免费网站| 久久精品国产亚洲av涩爱 | 日本一二三区视频观看| 久久精品国产99精品国产亚洲性色| 亚洲无线观看免费| 黄片无遮挡物在线观看| 国产极品天堂在线| 亚洲av.av天堂| 亚洲精品久久国产高清桃花| 久久精品国产亚洲av天美| 亚洲第一区二区三区不卡| 午夜a级毛片| 男女边吃奶边做爰视频| 日韩亚洲欧美综合| 亚洲国产日韩欧美精品在线观看| 岛国毛片在线播放| 村上凉子中文字幕在线| 国国产精品蜜臀av免费| 99久久九九国产精品国产免费| 午夜福利高清视频| 九九久久精品国产亚洲av麻豆| 国产黄片视频在线免费观看| 国产黄色视频一区二区在线观看 | 色视频www国产| 日本熟妇午夜| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 久久久国产成人精品二区| 国产伦理片在线播放av一区 | 欧美日韩一区二区视频在线观看视频在线 | 毛片女人毛片| 成人一区二区视频在线观看| 久久精品国产自在天天线| 简卡轻食公司| .国产精品久久| 久久精品影院6| a级毛色黄片| 在线天堂最新版资源| 国产成人福利小说| 中文字幕免费在线视频6| 久久久久免费精品人妻一区二区| 国产乱人视频| 97在线视频观看| 最近2019中文字幕mv第一页| 可以在线观看毛片的网站| 悠悠久久av| 国产av不卡久久| 亚洲国产精品成人久久小说 | 久久这里只有精品中国| 免费人成视频x8x8入口观看| 国产精品蜜桃在线观看 | 欧美一区二区精品小视频在线| 波多野结衣高清作品| 99久国产av精品国产电影| 国产日韩欧美在线精品| 免费av不卡在线播放| 婷婷六月久久综合丁香| av卡一久久| 蜜桃久久精品国产亚洲av| 三级经典国产精品| 99久久精品热视频| 在线观看午夜福利视频| 中文在线观看免费www的网站| 女同久久另类99精品国产91| 亚洲av男天堂| 成人无遮挡网站| 亚洲天堂国产精品一区在线| 你懂的网址亚洲精品在线观看 | h日本视频在线播放| 97人妻精品一区二区三区麻豆| 精品免费久久久久久久清纯| 中文字幕精品亚洲无线码一区| 欧美成人免费av一区二区三区| 搞女人的毛片| 99视频精品全部免费 在线| 热99在线观看视频| 国产精品久久视频播放| 亚洲天堂国产精品一区在线| 免费观看在线日韩| 哪里可以看免费的av片| 一本久久精品| 亚洲欧美日韩高清在线视频| av在线蜜桃| 成人特级av手机在线观看| 麻豆乱淫一区二区| 久久久久免费精品人妻一区二区| 黄片无遮挡物在线观看| 亚洲av第一区精品v没综合| 午夜精品国产一区二区电影 | 亚洲国产精品久久男人天堂| 欧美日韩综合久久久久久| 国产精品人妻久久久影院| 国产精品久久久久久精品电影小说 | 国产高清不卡午夜福利| 亚洲一级一片aⅴ在线观看| 老司机影院成人| 亚洲人成网站在线观看播放| 亚洲真实伦在线观看| 少妇裸体淫交视频免费看高清| 欧美成人免费av一区二区三区| .国产精品久久| 国产一区亚洲一区在线观看| 能在线免费观看的黄片| 亚洲国产日韩欧美精品在线观看| 少妇人妻一区二区三区视频| 亚洲七黄色美女视频| 国产乱人偷精品视频| 日本黄大片高清| 久久久久久大精品| 免费看日本二区| 国产高清不卡午夜福利| 国产成人精品婷婷| 久久人人爽人人片av| 日韩,欧美,国产一区二区三区 | 日本色播在线视频| 国产精品久久视频播放| 中文字幕久久专区| 人人妻人人澡欧美一区二区| 成人午夜高清在线视频| 乱码一卡2卡4卡精品| 久久热精品热| 69人妻影院| 观看免费一级毛片| 天天躁夜夜躁狠狠久久av| 欧美日韩乱码在线| 国产精品永久免费网站| 国产免费一级a男人的天堂| 欧美性感艳星| 国产精品永久免费网站| 12—13女人毛片做爰片一| 国产精品女同一区二区软件| 我要搜黄色片| 免费看日本二区| 日产精品乱码卡一卡2卡三| 一进一出抽搐动态| 日韩欧美 国产精品| 国产精华一区二区三区| 小说图片视频综合网站| 欧美成人a在线观看| 伦理电影大哥的女人| 狠狠狠狠99中文字幕| 特级一级黄色大片| 国产精品女同一区二区软件| 免费人成在线观看视频色| 免费电影在线观看免费观看| 亚洲图色成人| 26uuu在线亚洲综合色| 久久精品国产99精品国产亚洲性色| 亚洲av中文av极速乱| 精品人妻熟女av久视频| 国产高潮美女av| 午夜精品在线福利| 夜夜看夜夜爽夜夜摸| 中国美女看黄片| .国产精品久久| 久久韩国三级中文字幕| 九草在线视频观看| 亚洲七黄色美女视频| 国产精品99久久久久久久久| 欧美性猛交╳xxx乱大交人| 国产精品人妻久久久久久| 成人特级av手机在线观看| 美女被艹到高潮喷水动态| 又粗又硬又长又爽又黄的视频 | 亚洲一区二区三区色噜噜| 禁无遮挡网站| 日本-黄色视频高清免费观看| 春色校园在线视频观看| 日本-黄色视频高清免费观看| 99热6这里只有精品| 午夜a级毛片| 亚洲三级黄色毛片| 日本爱情动作片www.在线观看| 全区人妻精品视频| 日本撒尿小便嘘嘘汇集6| 草草在线视频免费看| 99精品在免费线老司机午夜| 狠狠狠狠99中文字幕| 成年女人看的毛片在线观看| 国产亚洲欧美98| 久久久久久久久大av| 久久久久久久久中文| 男女视频在线观看网站免费| 国内少妇人妻偷人精品xxx网站| 99久国产av精品| 久久久久久久久久黄片| 国产成人一区二区在线| 男插女下体视频免费在线播放| 亚洲精品久久久久久婷婷小说 | 一本精品99久久精品77| 久久久精品欧美日韩精品| 婷婷精品国产亚洲av| 精品人妻熟女av久视频| 久久欧美精品欧美久久欧美| 夜夜夜夜夜久久久久| 看非洲黑人一级黄片| 联通29元200g的流量卡| 搡老妇女老女人老熟妇| 国产精品一区二区性色av| 国产69精品久久久久777片| 99久久中文字幕三级久久日本| 看黄色毛片网站| 美女内射精品一级片tv| 大型黄色视频在线免费观看| 日本三级黄在线观看| 久久久久久国产a免费观看| 婷婷亚洲欧美| 日韩 亚洲 欧美在线| 色噜噜av男人的天堂激情| 国产精品电影一区二区三区| 欧美激情在线99| 久久久久久九九精品二区国产| 精品久久久久久成人av| 久久久久久久午夜电影| 变态另类成人亚洲欧美熟女| 国产日本99.免费观看| 精品一区二区免费观看| 亚洲精华国产精华液的使用体验 | 亚洲激情五月婷婷啪啪| 99久久成人亚洲精品观看| 亚洲最大成人av| 国产老妇女一区| 国产精品一二三区在线看| 国产精品国产三级国产av玫瑰| 国产成人一区二区在线| 在现免费观看毛片| 亚洲精品乱码久久久久久按摩| 亚洲人成网站在线播| 变态另类丝袜制服| 国语自产精品视频在线第100页| 亚洲国产色片| 久久这里只有精品中国| 亚洲成av人片在线播放无| 亚洲精品国产av成人精品| 国产精品无大码| 亚洲欧美日韩高清在线视频| 欧美zozozo另类| 日韩欧美 国产精品| 九九爱精品视频在线观看| 淫秽高清视频在线观看| 人体艺术视频欧美日本| 婷婷色av中文字幕| 国产精品,欧美在线| 亚洲,欧美,日韩| 欧美色视频一区免费| 黄片wwwwww| 欧美变态另类bdsm刘玥| 国产成人影院久久av| 亚洲欧美日韩无卡精品| 成人一区二区视频在线观看| 亚洲精品影视一区二区三区av| 99国产极品粉嫩在线观看| 国产高清三级在线| av视频在线观看入口| 大型黄色视频在线免费观看| 国产在视频线在精品| 日本免费a在线| 不卡一级毛片| 国产精品久久久久久久久免| 久久久久久国产a免费观看| 女同久久另类99精品国产91| 久久精品国产99精品国产亚洲性色| 久久精品影院6| 婷婷精品国产亚洲av| 国产亚洲欧美98| АⅤ资源中文在线天堂| 免费av不卡在线播放| 国产69精品久久久久777片| 哪里可以看免费的av片| 夫妻性生交免费视频一级片| 色视频www国产| 一边亲一边摸免费视频| 国产高清不卡午夜福利| 亚洲精品456在线播放app| 国产黄a三级三级三级人| 岛国毛片在线播放| 99热6这里只有精品| 黑人高潮一二区| 免费无遮挡裸体视频| 国产亚洲欧美98| 床上黄色一级片| 欧美区成人在线视频| 女人被狂操c到高潮| 成年女人永久免费观看视频| 人体艺术视频欧美日本| 女的被弄到高潮叫床怎么办| or卡值多少钱| 我的老师免费观看完整版| 在线播放国产精品三级| 最近中文字幕高清免费大全6| 日韩精品青青久久久久久|