• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    鄂爾多斯盆地北部侏羅系泥巖地球化學(xué)特征:物源與古沉積環(huán)境恢復(fù)

    2017-06-01 11:35:08雷開(kāi)宇劉池洋張龍吳柏林寸小妮孫莉
    沉積學(xué)報(bào) 2017年3期
    關(guān)鍵詞:直羅杭錦旗侏羅系

    雷開(kāi)宇,劉池洋,張龍,吳柏林,寸小妮,孫莉

    1.大陸動(dòng)力學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室(西北大學(xué)),西北大學(xué)地質(zhì)學(xué)系,西安 7100692.陜西延長(zhǎng)石油(集團(tuán))油氣勘探公司延長(zhǎng)氣田采氣一廠,陜西延安 716000

    鄂爾多斯盆地北部侏羅系泥巖地球化學(xué)特征:物源與古沉積環(huán)境恢復(fù)

    雷開(kāi)宇1,2,劉池洋1,張龍1,吳柏林1,寸小妮1,孫莉1

    1.大陸動(dòng)力學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室(西北大學(xué)),西北大學(xué)地質(zhì)學(xué)系,西安 7100692.陜西延長(zhǎng)石油(集團(tuán))油氣勘探公司延長(zhǎng)氣田采氣一廠,陜西延安 716000

    鄂爾多斯盆地北部侏羅系泥巖地球化學(xué)特征記錄了當(dāng)時(shí)重要的地質(zhì)信息。通過(guò)對(duì)該區(qū)中侏羅統(tǒng)直羅組及延安組泥巖的X射線(xiàn)熒光常量元素分析以及ICP-MS微量、稀土元素分析對(duì)其源區(qū)構(gòu)造背景、源巖屬性進(jìn)行了綜合研究。與此同時(shí),根據(jù)泥巖典型地球化學(xué)參數(shù)的垂向變化對(duì)其古沉積環(huán)境進(jìn)行了恢復(fù)。研究結(jié)果表明:盆地北部侏羅系沉積巖與北鄰陰山—大青山—烏拉山地區(qū)前寒武紀(jì)古老基底的片麻巖、麻粒巖、孔茲巖等變質(zhì)巖系以及各時(shí)代侵入巖具有較大的親緣性,是其主要物源。源區(qū)構(gòu)造背景主要是與大陸島弧相關(guān)的活動(dòng)大陸邊緣。Sr/Cu、Rb/Sr、CIA、Sr/Ba、V/(V+Ni)、Ceanom等泥巖地球化學(xué)指標(biāo)的垂向變化特征對(duì)古沉積環(huán)境的反演表明,從延安期→直羅組沉積早期→直羅組沉積晚期,古氣候由溫濕氣候逐漸變得越來(lái)越干旱,水體古鹽度整體上由微咸水相的淡水環(huán)境逐漸向半咸水相的淡水環(huán)境轉(zhuǎn)變,古氧化還原環(huán)境為水體分層不強(qiáng)的還原環(huán)境。

    鄂爾多斯盆地北部;侏羅系;元素地球化學(xué);物源分析;古沉積環(huán)境

    0 引言

    鄂爾多斯盆地位于多個(gè)構(gòu)造域的復(fù)合疊加部位,盆地演化過(guò)程與地球動(dòng)力學(xué)環(huán)境極為復(fù)雜,油氣、煤、鈾等資源極為豐富[1]。多年來(lái),依托油氣及煤資源勘探開(kāi)發(fā)力度的不斷加大,盆地沉積地層物源方面的研究亦主要集中于石炭系—二疊系等產(chǎn)氣層系以及上三疊統(tǒng)延長(zhǎng)組及中侏羅統(tǒng)延安組等產(chǎn)油產(chǎn)煤層系,相比之下,對(duì)中侏羅統(tǒng)直羅組等上覆地層的物源研究有限。近年來(lái),隨著盆地北部杭錦旗—東勝大型砂巖型鈾礦帶的發(fā)現(xiàn),賦礦層位中侏羅統(tǒng)直羅組地層受到普遍關(guān)注。關(guān)于盆地北部侏羅系沉積物源,相關(guān)學(xué)者從巖石學(xué)[2-3]、地球化學(xué)[4-8]、沉積構(gòu)造背景[9-10]及鋯石定年[11-13]等不同角度進(jìn)行了研究。上述研究既有定性方法,也不乏精確的同位素定年物源示蹤予以支持,取得了一些廣泛認(rèn)識(shí):1)盆地北部物源主要來(lái)自北鄰陰山地塊、孔茲巖帶等地;2)盆地北部侏羅系沉積體系的空間配置及古水流向均表明其物源來(lái)自北鄰造山帶。值得指出的是,目前為數(shù)不多的利用全巖的主微量、稀土元素參數(shù)對(duì)盆地北部鈾礦賦礦層位直羅組沉積期物源的研究均集中于砂巖的相關(guān)地球化學(xué)分析[4-5,8]。通常情況下,基于砂巖的Dickinson碎屑骨架三角圖[14]投值、主微量地球化學(xué)圖解及稀土元素配分曲線(xiàn)對(duì)比分析可有效判斷物源區(qū)構(gòu)造背景及源巖屬性[15-16]。盆地北部地區(qū)前人直羅組砂巖碎屑研究結(jié)果表明源區(qū)主要為再旋回造山帶物源區(qū)[4],砂巖主微量系列判別圖解分析表明源巖形成于大陸弧—活動(dòng)大陸邊緣環(huán)境[5,8],砂巖稀土元素配分曲線(xiàn)對(duì)比分析表明母巖主要為花崗片麻巖、斜長(zhǎng)角閃巖等變質(zhì)巖[4]或閃長(zhǎng)巖、花崗閃長(zhǎng)巖等侵入巖[8]。然而截止目前為止,尚未見(jiàn)利用研究區(qū)直羅組細(xì)碎屑巖的相關(guān)物源研究。與此同時(shí),也未見(jiàn)通過(guò)侏羅系鉆井剖面細(xì)粒沉積物地球化學(xué)參數(shù)的垂向演化特征對(duì)盆地北部侏羅紀(jì)古沉積環(huán)境進(jìn)行系統(tǒng)恢復(fù)的研究工作。

    巖石地球化學(xué)元素示蹤的精確性及高分辨率性使之成為物源示蹤、構(gòu)造背景判別及重建古沉積環(huán)境的重要手段[17]。在前人研究基礎(chǔ)上,通過(guò)對(duì)盆地北部杭錦旗地區(qū)侏羅系鉆井剖面泥巖的系統(tǒng)采樣,結(jié)合其常量、微量及稀土元素分析結(jié)果,對(duì)該區(qū)直羅組的源區(qū)構(gòu)造背景、源巖屬性進(jìn)行了研究。在物源分析的基礎(chǔ)上,根據(jù)侏羅系鉆井剖面泥巖典型地球化學(xué)參數(shù)的垂向演化特征,對(duì)賦礦層位直羅組沉積期的古沉積環(huán)境進(jìn)行了恢復(fù)。選擇泥巖一方面是因?yàn)榈厍蚧瘜W(xué)元素在泥巖中分布的均一性更強(qiáng)[18],可能更能反映混合物源的綜合結(jié)果,一方面也是對(duì)利用粗碎屑巖判斷物源的有益補(bǔ)充和驗(yàn)證。

    1 區(qū)域地質(zhì)背景

    1.1 區(qū)域構(gòu)造演化特征

    鄂爾多斯地塊位于華北克拉通西部(圖1),與其北部的陰山地塊以及東部地塊大致在早元古宙先后發(fā)生碰撞[19-20],華北克拉通由此形成。鄂爾多斯盆地的形成始于中晚三疊世,盆地疊加于早古生代及晚古生代大型盆地之上,屬于多重疊合盆地[1]。

    在鄂爾多斯盆地侏羅系沉積之前,經(jīng)過(guò)印支運(yùn)動(dòng)的不均勻構(gòu)造抬升,延長(zhǎng)組頂部遭受較強(qiáng)剝蝕并造就了高低起伏的侵蝕地貌,進(jìn)而奠定了早侏羅世富縣—延安期的古地貌格局以及沉積相的分布[21]。在延安組地層沉積末期,盆地抬升、沉積間斷,使延安組與上覆直羅組之間形成侵蝕不整合面[1],不整合面之上的直羅組在盆地北部常發(fā)育一套可對(duì)比的直羅組底礫巖,而在不整合面之下的延安組頂部則發(fā)育一套白色砂巖(圖2),兩者均為盆地北部重要的地層劃分對(duì)比標(biāo)志層[22]。在中侏羅世直羅—安定期,盆地構(gòu)造環(huán)境總體較為穩(wěn)定[1]。進(jìn)入晚侏羅世,受該時(shí)期燕山運(yùn)動(dòng)的影響,盆地北部普遍存在侏羅系與上覆白堊系的不整合接觸[1,23-24]。

    圖1 研究區(qū)及周緣地質(zhì)圖與采樣位置a.華北克拉通位置簡(jiǎn)圖;b.華北克拉通基底構(gòu)造單元及研究區(qū)(據(jù)文獻(xiàn)[27]修改);c.鄂爾多斯盆地北緣地層分布圖(據(jù)1∶1 500 000內(nèi)蒙古及鄰區(qū)地質(zhì)圖修編);d.杭錦旗地區(qū)ZKB39-0井柱狀圖及泥巖樣品位置Fig.1 Geological sketch map of the study and adjacent areas and sampling locationa. location sketch map of the North China Craton; b.tectonic subdivision of the North China Craton and study area(modified after reference[27]); c.distribution map of strata in the northern margin of Ordos Basin(modified after 1∶1 500 000 geological map of the Inner Mongolia and adjacent areas); d.columnar diagram of Well ZKB39-0 in Hangjinqi area and location of mudstone samples

    圖2 鄂爾多斯盆地北部杭錦旗地區(qū)ZKB39-0井巖性及沉積相綜合柱狀圖(紅色圓點(diǎn)為泥巖取樣位置)Fig.2 Generalized column of the lithologic section and sedimentary facies of Well ZKB39-0 in Hangjinqi area in the northern Ordos Basin(locations of mudstone samples are indicated by red circles)

    1.2 盆地北緣地層沉積特征

    鄂爾多斯盆地北緣古老結(jié)晶基底主要為太古代—元古代多套變火山—沉積巖構(gòu)成的古老變質(zhì)巖系[25],該基底地層主要出露于大青山—烏拉山、色爾騰山、陰山以及狼山等地區(qū),其巖性主要由太古代集寧群的麻粒巖、片麻巖及角閃巖,烏拉山群的片麻巖、角閃巖及深變質(zhì)巖系,元古代色爾騰山群的片麻巖、混合巖,二道凹群的大理巖及綠片巖,渣爾泰山群的石英巖及變質(zhì)砂礫巖等組成(表1)。

    大營(yíng)鈾礦床位于鄂爾多斯盆地北部伊盟隆起中部的杭錦旗地區(qū)(圖1c),其北部與河套斷陷盆地接壤,東側(cè)與東勝鈾礦床毗鄰。區(qū)內(nèi)地層整體為一向西南緩傾的單斜構(gòu)造。中侏羅統(tǒng)直羅組是區(qū)內(nèi)重要的砂巖型鈾礦賦礦層位,根據(jù)直羅組內(nèi)部巖性變化特征,可將其分為上段(J2z2)和下段(J2z1)兩段,下段(J2z1)進(jìn)一步可細(xì)分為上、下兩個(gè)亞段,鈾礦化主要集中分布在下亞段(J2z1-1)。直羅組沉積時(shí)期水體較淺,巖性整體較為單調(diào),早期以辮狀河沉積為主,中晚期以曲流河沉積為主[1],該組巖性以中粗粒砂巖及少量細(xì)砂巖為主,局部夾有煤線(xiàn)。直羅組以其底部的含礫砂巖與下伏延安組煤系地層平行不整合接觸,安定組在盆地大部分地區(qū)屬湖相沉積,但在盆地北部則以一套氣候干旱條件下的河流沉積為主,整合覆蓋于直羅組之上。野外露頭及鉆井研究表明盆地北部東勝等地缺失安定組,即直羅組直接與白堊系接觸[22]。本次研究對(duì)杭錦旗地區(qū)大營(yíng)鈾礦巖芯的編錄結(jié)果亦顯示該區(qū)可能缺失安定組(圖2)。

    2 樣品采集與分析方法

    用于主量、微量及稀土元素分析的29個(gè)直羅組及延安組泥巖樣品采集于鄂爾多斯盆地北部杭錦旗地區(qū)大營(yíng)鈾礦區(qū)ZKB39-0井鉆井巖芯,巖性柱狀圖及泥巖采樣位置見(jiàn)圖2。本次研究進(jìn)行地球化學(xué)分析的樣品均為新鮮的、受后期成巖作用影響小的泥巖或粉砂質(zhì)泥巖,這樣可以更好的去挖掘物源信息,也更有助于反演古沉積環(huán)境。

    所有泥巖樣品的主量、微量和稀土元素測(cè)試均在西北大學(xué)大陸動(dòng)力學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室完成。主量元素采用X射線(xiàn)熒光光譜儀分析,分析誤差<5%。微量和稀土元素測(cè)試采用Elan6100DRC等離子體質(zhì)譜儀(ICP-MS)進(jìn)行,測(cè)試的樣品均采用國(guó)際標(biāo)樣BH-VO-1,BSR-1及AGV-1作為標(biāo)準(zhǔn),質(zhì)譜儀對(duì)Co、Ni、Zn、Ga、Rb、Zr、Nb、Hf、La、Ce、Pr、Nd、Sm、Eu等元素測(cè)試誤差<5%,其他元素測(cè)試誤差介于5%~10%。

    表1 鄂爾多斯盆地北緣基巖巖性簡(jiǎn)表(據(jù)文獻(xiàn)[26]修改)

    3 泥巖地球化學(xué)特征與源區(qū)構(gòu)造背景

    3.1 常量元素特征與源區(qū)構(gòu)造背景

    杭錦旗地區(qū)侏羅系直羅組及延安組泥巖常量元素與澳大利亞太古代平均頁(yè)巖PAAS[28]相比,SiO2、Al2O3、MgO含量基本一致(表2),常量元素特征反映沉積物源巖有酸性巖存在。Roseretal.[29]基于砂、泥巖的K2O/Na2O-SiO2關(guān)系圖解常被用于判斷源區(qū)構(gòu)造背景。研究區(qū)侏羅系泥巖樣品在K2O/Na2O-SiO2圖解上的投點(diǎn)總體主要落在活動(dòng)大陸邊緣區(qū)域內(nèi),個(gè)別點(diǎn)落在被動(dòng)大陸邊緣區(qū)域(圖3)。上述泥巖樣品的常量元素判別圖解投點(diǎn)結(jié)果表明,盆地北部源區(qū)構(gòu)造背景主要為活動(dòng)大陸邊緣。

    注:PAAS為澳大利亞太古代平均頁(yè)巖(Tayloretal.[28]);CIA為化學(xué)蝕變指數(shù);ICV為成分變異指數(shù)。

    圖3 杭錦旗地區(qū)侏羅系泥巖K2O/Na2O-SiO2判別圖解(本圖的數(shù)據(jù)已經(jīng)過(guò)燒失量校正,底圖據(jù)文獻(xiàn)[29])Fig.3 K2O/Na2O-SiO2 discrimination diagram of the Jurassic mudstones in Hangjinqi area(data have been rectified by LOI, after reference[29])

    3.2 微量—稀土元素特征與源區(qū)構(gòu)造背景

    微量—稀土元素在沉積成巖過(guò)程中比較穩(wěn)定,在水中溶解度低且滯留時(shí)間短,因而能快速進(jìn)入細(xì)粒沉積物,使細(xì)粒沉積物可以較好的反映物源區(qū)地球化學(xué)信息[28,30]。Bhatia[30]總結(jié)的4種不同構(gòu)造環(huán)境(大洋島弧、大陸島弧、活動(dòng)大陸邊緣、被動(dòng)大陸邊緣)下的雜砂巖稀土元素特征可以歸納為:構(gòu)造背景為大洋島弧的雜砂巖,其源區(qū)是未切割的巖漿弧,稀土元素特征為低稀土總量、弱的輕稀土富集以及基本無(wú)Eu的負(fù)異常;構(gòu)造背景為大陸島弧的雜砂巖,其源區(qū)是切割的巖漿弧,稀土元素特征為較高稀土總量、中等輕稀土富集以及弱的Eu負(fù)異常;來(lái)自活動(dòng)大陸邊緣和被動(dòng)大陸邊緣的雜砂巖,其源區(qū)分別為上隆的基底及克拉通內(nèi)部構(gòu)造高地,且具有高稀土總量、高輕稀土富集以及較為明顯的Eu負(fù)異常。對(duì)于相同構(gòu)造背景之下的泥巖和雜砂巖,泥巖的∑REE含量要高出雜砂巖的20%左右,因此將泥巖稀土元素特征參數(shù)除以1.2則為同沉積期雜砂巖的對(duì)應(yīng)參數(shù)值,該校正后的稀土元素參數(shù)值可直接與Bhatia總結(jié)的4種構(gòu)造環(huán)境下的雜砂巖稀土元素特征參數(shù)進(jìn)行對(duì)比[17]。通過(guò)稀土元素特征參數(shù)的綜合對(duì)比分析發(fā)現(xiàn)(表3),直羅組及延安組泥巖稀土元素特征值均與活動(dòng)大陸邊緣背景下的稀土元素特征值最為相似,并且物源來(lái)自上隆的基底。

    Bhatiaetal.[31]根據(jù)La、Th、Sc、Co、Zr等更具穩(wěn)定性的微量—稀土元素總結(jié)出了適用于砂巖及泥巖樣品的Ti/Zr-La/Sc、La-Th-Sc及Th-Co-Zr/10構(gòu)造環(huán)境判別圖解,利用這些判別圖解的綜合分析,可以對(duì)前述常量元素判別圖解及稀土元素特征參數(shù)對(duì)比結(jié)果做進(jìn)一步的補(bǔ)充和論證。本次研究泥巖微量—稀土元素判別圖解如圖4所示(投圖測(cè)試數(shù)據(jù)見(jiàn)表4,5),在Ti/Zr-La/Sc圖解中(圖4a),直羅組及延安組泥巖樣品大多數(shù)落在大陸島弧和活動(dòng)大陸邊緣區(qū)域上方,并且總體更接近活動(dòng)大陸邊緣;部分泥巖樣品落在活動(dòng)大陸邊緣區(qū)域內(nèi),個(gè)別泥巖樣品基本處于大陸島弧與活動(dòng)陸緣界線(xiàn)處。在La-Th-Sc圖解中(圖4b),除直羅組下段1塊樣品落點(diǎn)偏離4個(gè)區(qū)域之外,大多數(shù)直羅組及延安組泥巖樣品比較一致的落在大陸島弧區(qū)域內(nèi),還有少量直羅組上下段的樣品落在活動(dòng)陸緣、被動(dòng)陸緣混合區(qū)域與大陸島弧區(qū)域之間。在Th-Co-Zr/10圖解中(圖4c),各組樣品落點(diǎn)位置較為分散,絕大多數(shù)樣品落在大陸島弧和活動(dòng)大陸邊緣區(qū)域內(nèi)及其周?chē)瑑H1塊直羅組下段樣品落入被動(dòng)大陸邊緣,另外有1塊直羅組下段樣品遠(yuǎn)離各區(qū)域。以上3個(gè)構(gòu)造判別圖解的分析表明,源區(qū)構(gòu)造背景除主要與活動(dòng)大陸邊緣相關(guān)外,與大陸島弧也有較多聯(lián)系。

    表3 不同構(gòu)造背景稀土元素參數(shù)特征

    注:帶*數(shù)據(jù)來(lái)自文獻(xiàn)[30];括號(hào)內(nèi)數(shù)據(jù)為對(duì)應(yīng)標(biāo)準(zhǔn)偏差;稀土元素含量單位為×10-6;(La/Yb)N采用Boynton[32]推薦的球粒隕石標(biāo)準(zhǔn)化參數(shù)值計(jì)算;δEu=EuN/(SmN×GdN)1/2,其中EuN、SmN、GdN分別為對(duì)應(yīng)元素球粒隕石標(biāo)準(zhǔn)化值。

    圖4 杭錦旗地區(qū)侏羅系泥巖Ti/Zr-La/Sc、La-Th-Sc及Th-Co-Zr/10判別圖解(底圖據(jù)文獻(xiàn)[31])Fig.4 Ti/Zr-La/Sc,La-Th-Sc and Th-Co-Zr/10 diagrams of the Jurassic mudstones in Hangjinqi area(after reference[31])

    層位樣品號(hào)LaCePrNdSmEuGdTbDyHoErTmYbLu∑REECeanom145.997.010.6537.66.081.155.430.704.510.873.260.402.500.42216.470.01243.998.010.5542.78.511.868.451.326.911.434.630.493.550.51232.810.01350.9105.012.0544.78.061.926.870.836.381.013.070.373.140.53244.83-0.01440.882.210.1540.17.611.556.550.915.571.253.020.462.870.40203.44-0.04543.995.110.9037.36.801.365.220.814.840.982.730.452.810.34213.540.01直羅組上段646.198.99.5134.45.871.365.201.076.611.144.270.433.660.64219.160.03744.687.510.6536.66.711.205.780.894.870.792.650.302.270.33205.14-0.03858.2107.514.1048.68.551.556.150.965.741.143.060.403.140.53259.62-0.05951.1107.011.9043.97.901.485.700.824.620.892.470.342.270.30240.690.001050.183.411.8541.17.651.485.030.695.020.732.770.342.450.34212.95-0.101143.487.712.0045.27.181.255.950.844.490.962.570.402.430.34214.71-0.051231.655.37.6127.24.740.874.240.713.940.742.180.302.650.38142.46-0.081341.6122.010.0037.86.361.245.440.863.910.872.640.482.430.34235.970.131452.6113.513.2548.17.881.986.941.065.451.162.770.442.630.36258.120.001551.6115.012.5045.07.561.546.270.924.980.842.390.391.920.33251.240.021661.0127.013.5050.38.441.736.011.014.340.792.560.472.140.31279.60.001750.3112.512.2045.57.591.475.660.914.550.882.430.282.020.35246.640.021852.1113.013.8550.67.931.897.690.996.031.092.840.453.150.53262.14-0.011960.3117.512.2542.47.011.414.690.693.550.842.130.262.280.34255.65-0.01直羅組下段2049.6105.012.0543.08.231.396.400.934.650.902.650.252.460.36237.870.002145.385.810.1537.16.670.915.140.793.380.701.940.331.830.26200.3-0.042244.492.910.1039.46.381.235.230.964.360.732.060.332.310.32210.71-0.012342.486.310.5038.26.421.465.200.693.620.852.210.341.970.29200.45-0.022459.6124.513.9551.38.650.886.360.965.091.093.370.563.110.66280.08-0.012536.772.08.5327.04.250.763.880.552.780.651.400.231.560.31160.6-0.012636.369.27.9526.24.060.883.100.513.120.641.780.181.270.21155.4-0.022734.365.27.6426.43.750.934.460.674.971.283.980.634.390.61159.21-0.032829.655.36.2722.44.110.943.290.432.960.571.900.331.790.26130.15-0.04延安組2945.7101.511.4544.47.911.676.300.834.481.052.990.422.600.42231.720.00球粒隕石(Boynton[32])0.30.80.120.60.170.070.260.050.320.070.210.030.210.03

    表5 杭錦旗地區(qū)侏羅系泥巖微量元素含量(×10-6)及特征參數(shù)

    綜合上述常量、微量和稀土元素構(gòu)造背景判別結(jié)果的分析,可以認(rèn)為鄂爾多斯盆地北部杭錦旗地區(qū)侏羅系沉積巖源區(qū)的構(gòu)造背景主要是與大陸島弧相關(guān)的活動(dòng)大陸邊緣。本研究結(jié)論與該區(qū)前人直羅組砂巖主微量元素判別圖解分析結(jié)果[5,8]基本吻合。

    4 泥巖地球化學(xué)特征與源巖屬性

    前文已通過(guò)常量、微量及稀土元素綜合分析了杭錦旗地區(qū)直羅組及延安組的源區(qū)構(gòu)造背景,下面通過(guò)稀土元素配分模式及各種源巖判別圖解進(jìn)一步完善并確定源巖屬性。

    沉積巖稀土元素特征主要受控于相應(yīng)物源區(qū)的巖石組成,因而能夠反映源巖的稀土特征[33]。相同來(lái)源的沉積巖具有非常相似的稀土元素配分模式,所以在物源研究中,稀土元素配分曲線(xiàn)總體形態(tài)特征、傾斜程度以及Ce異常和Eu異常等特征的相互對(duì)比成為重要的判別指標(biāo)[16,34]。

    為了通過(guò)稀土元素配分曲線(xiàn)特征的對(duì)比進(jìn)一步確定物源。筆者統(tǒng)計(jì)了近年來(lái)前人在盆地北部已經(jīng)發(fā)表的不同時(shí)期、不同巖體的稀土元素?cái)?shù)據(jù),并將本次研究數(shù)據(jù)(表4)及前人研究數(shù)據(jù)統(tǒng)一采用Boynton[32]推薦的球粒隕石平均值進(jìn)行標(biāo)準(zhǔn)化,繪制出相應(yīng)地區(qū)的稀土元素配分模式曲線(xiàn)(圖5b,c,d)與研究區(qū)(圖5a)進(jìn)行對(duì)比。在空間分布上,數(shù)據(jù)主要來(lái)自研究區(qū)周緣的方山地區(qū)[35]、陰山—大青山—烏拉山[36-59]。

    鄂爾多斯盆地北部杭錦旗地區(qū)侏羅系直羅組及延安組泥巖樣品的稀土元素配分模式相似,均屬輕稀土富集、重稀土虧損的右傾型,曲線(xiàn)中La-Eu段較陡而Eu-Lu段較平緩,存在明顯的Eu負(fù)異常,并顯示出配分曲線(xiàn)相互平行的特征,表明研究區(qū)直羅組及延安組泥巖樣品稀土含量大致呈同步變化(圖5a)。盆地北鄰陰山—大青山—烏拉山地區(qū)的前寒武紀(jì)變質(zhì)巖、侵入巖和海西—印支期侵入巖的稀土元素配分模式均顯示出與杭錦旗地區(qū)泥巖樣品高度相似的特征,即具有輕稀土富集、重稀土虧損的特點(diǎn)(圖5c,d),表明盆地北部侏羅系沉積巖與陰山—大青山—烏拉山地區(qū)前寒武紀(jì)古老基底的片麻巖、麻粒巖、孔茲巖等變質(zhì)巖系以及各時(shí)代花崗巖、閃長(zhǎng)巖等侵入巖具有親緣性,換言之,盆地北部侏羅系沉積巖物源主要為集寧群(Ar1-2)、烏拉山群(Ar3)、色爾騰山群(Pt1)、二道凹群(Pt2)、渣爾泰山群(Pt2)等古老變質(zhì)巖系以及各時(shí)期侵入巖。與此同時(shí),盆地東北緣方山地區(qū)前寒武紀(jì)混合花崗巖及北鄰陰山等地前寒武紀(jì)混合花崗巖與杭錦旗地區(qū)樣品稀土元素配分模式差別較大,其中方山地區(qū)前寒武紀(jì)混合花崗巖稀土元素配分特征為輕稀土虧損、重稀土富集的左傾型,配分曲線(xiàn)La-Eu段平坦(圖5b);陰山等地前寒武紀(jì)混合花崗巖稀土配分特征為輕稀土富集、重稀土虧損的右傾型,但出現(xiàn)Eu的正異常且Eu-Lu段曲線(xiàn)整體形態(tài)與研究區(qū)樣品差別明顯(圖5c),這表明兩者不是研究區(qū)侏羅系沉積巖的母巖。前人對(duì)該區(qū)直羅組砂巖的稀土元素配分曲線(xiàn)對(duì)比分析結(jié)果表明,母巖主要為花崗片麻巖、斜長(zhǎng)角閃巖等變質(zhì)巖[4]或閃長(zhǎng)巖、花崗閃長(zhǎng)巖等侵入巖[8]。本項(xiàng)研究通過(guò)大量統(tǒng)計(jì)周鄰造山帶巖體的稀土元素?cái)?shù)據(jù),與研究區(qū)侏羅系泥巖稀土元素配分曲線(xiàn)進(jìn)行對(duì)比,在前人研究基礎(chǔ)上進(jìn)一步明確和豐富了源巖類(lèi)型。

    圖5 杭錦旗地區(qū)侏羅系泥巖與鄰區(qū)不同巖體稀土元素配分模式(球粒隕石標(biāo)準(zhǔn)化值均采用文獻(xiàn)[32]推薦值)Fig.5 The REE distribution patterns of Jurassic mudstones in Hangjinqi area and various rocks in adjacent areas(chondrite values after reference[32])

    杭錦旗地區(qū)侏羅系泥巖的稀土元素配分曲線(xiàn)形態(tài)總體較為相似,說(shuō)明其具有同源性,可以利用稀土元素特征更進(jìn)一步判斷物源區(qū)性質(zhì)。根據(jù)Allegreetal.[60]提出的La/Yb-∑REE源巖判別圖解進(jìn)行泥巖樣品的投點(diǎn),絕大多數(shù)研究區(qū)侏羅系泥巖樣品落在沉積巖、花崗巖及堿性玄武巖的交匯區(qū)(圖6),這與上述稀土元素配分曲線(xiàn)的分析結(jié)果相一致。

    圖6 杭錦旗地區(qū)侏羅系泥巖La/Yb-∑REE源巖判別圖解(底圖據(jù)文獻(xiàn)[60])Fig.6 La/Yb-∑REE source rock discrimination diagram of Jurassic mudstones in Hangjinqi area(after reference[60])

    利用Co/Th-La/Sc及La/Th-Hf源巖判別圖解對(duì)杭錦旗地區(qū)侏羅系泥巖樣品進(jìn)行投點(diǎn)(圖7)。在Co/Th-La/Sc圖解中(圖7a),所有直羅組及延安組泥巖樣品的La/Sc比值均高于長(zhǎng)英質(zhì)火山巖,而Co/Th比值大多介于長(zhǎng)英質(zhì)火山巖與安山巖之間。以上落點(diǎn)特征反映源巖主要為長(zhǎng)英質(zhì)巖石并且有安山質(zhì)巖石的混入。在La/Th-Hf圖解中(圖7b),大多數(shù)泥巖樣品比較集中的分布在長(zhǎng)英質(zhì)源區(qū),部分泥巖樣品落在長(zhǎng)英質(zhì)、基性巖混合物源區(qū),并且直羅組下段泥巖中有1塊落在長(zhǎng)英質(zhì)物源區(qū)域的右側(cè),顯示存在古老沉積物的混入,這與Co/Th-La/Sc圖解的分析結(jié)論一致,表明杭錦旗地區(qū)侏羅系沉積地層源巖以長(zhǎng)英質(zhì)巖石為主,同時(shí)存在一定量的中—基性巖漿巖以及古老沉積物。

    綜上所述,杭錦旗地區(qū)侏羅系泥巖的稀土元素配分曲線(xiàn)、La/Yb-∑REE、Co/Th-La/Sc及La/Th-Hf源巖判別圖解分析結(jié)果共同表明了研究區(qū)侏羅系沉積地層源巖主要來(lái)自盆地北鄰陰山—大青山—烏拉山前寒武紀(jì)基底的片麻巖、麻粒巖、孔茲巖等變質(zhì)巖系以及各時(shí)代侵入巖。

    5 泥巖垂向地球化學(xué)特征與古沉積環(huán)境演化

    為了對(duì)盆地北部侏羅系時(shí)期的古沉積環(huán)境進(jìn)行恢復(fù),筆者通過(guò)對(duì)杭錦旗地區(qū)直羅組及延安組鉆井泥巖的系統(tǒng)采樣與分析,從古氣候、古鹽度、古氧化還原環(huán)境三個(gè)方面對(duì)古沉積環(huán)境演化過(guò)程進(jìn)行了相關(guān)探討。

    5.1 古氣候演化

    化學(xué)蝕變指數(shù)(CIA)最早由Nesbittetal.[63]提出,用于反映源區(qū)化學(xué)風(fēng)化程度。其計(jì)算公式為:CIA={n(Al2O3)/[n(Al2O3)+n(CaO*)+n(Na2O)+n(K2O)]}×100。式中各主成分均以摩爾分?jǐn)?shù)表示,CaO*指硅酸鹽礦物中的CaO(不包括碳酸鹽以及磷酸鹽礦物中的CaO),本文采用Mclennan[64]提出的假定硅酸鹽Ca與Na比值一定的方法計(jì)算CaO*值,具體方法如下:n(CaO剩余)=n(CaO)-n(P2O5),若此n(CaO剩余)n(Na2O),則取n(Na2O)為n(CaO*)。由于CIA=50~60時(shí)指示初級(jí)風(fēng)化強(qiáng)度,反映氣候干燥;CIA=60~80時(shí)指示中等風(fēng)化強(qiáng)度,反映氣候溫暖濕潤(rùn);CIA=80~100時(shí)指示強(qiáng)烈風(fēng)化強(qiáng)度,反映氣候炎熱潮濕。因此,CIA變化趨勢(shì)可以大致反演沉積時(shí)期古氣候特征[63,65-66]。由于碎屑巖成巖過(guò)程中的鉀交代作用以及搬運(yùn)、沉積過(guò)程可以導(dǎo)致鉀的富集,使巖石成分發(fā)生改變,所以樣品的CIA需要首先進(jìn)行鉀的校正[65]。鉀交代作用的校正可根據(jù)A-CN-K三角圖解[63,67]以及Panahietal.[68]提出的計(jì)算公式進(jìn)行校正,其公式為:K2Ocorr.={m·n(Al2O3)+m·[n(CaO*)+n(Na2O)]}/(1-m),其中m=n(K2O)/[n(Al2O3)+n(CaO*)+n(Na2O)+n(K2O)],式中各主成分均以摩爾分?jǐn)?shù)表示。在研究區(qū)侏羅系泥巖A-CN-K三角圖解(圖8)可以看出,平行于A-CN邊的線(xiàn)T'為巖石預(yù)測(cè)風(fēng)化趨勢(shì)線(xiàn)(剔除了鉀交代作用的影響)[67],除直羅組底部個(gè)別異常點(diǎn)(圖8線(xiàn)T'左側(cè)點(diǎn))外,本次研究的絕大多數(shù)泥巖樣品的風(fēng)化趨勢(shì)線(xiàn)T整體偏向含K2O端元,說(shuō)明大多數(shù)泥巖樣品存在一定程度的鉀交代作用。從K頂點(diǎn)出發(fā)穿過(guò)實(shí)測(cè)數(shù)據(jù)投點(diǎn)與預(yù)測(cè)風(fēng)化趨勢(shì)線(xiàn)T′相交點(diǎn)的值,即代表樣品鉀交代作用前真實(shí)的CIA值[67,69]。A-CN-K三角圖解校正結(jié)果顯示,更正后的CIA值范圍有所升高。進(jìn)一步利用上述校正公式,計(jì)算獲得了校正后的CIAcorr.值為66.11~84.25(校正前CIA值為63.57~83.35)。

    圖7 杭錦旗地區(qū)侏羅系泥巖Co/Th-La/Sc及La/Th-Hf源巖判別圖解(a底圖據(jù)文獻(xiàn)[61];b底圖據(jù)文獻(xiàn)[62])Fig.7 Co/Th-La/Sc and La/Th-Hf source rock discrimination diagram of Jurassic mudstones in Hangjinqi area(a. after reference[61];b. after reference[62])

    除成巖過(guò)程中的鉀交代作用外,碎屑巖的再循環(huán)沉積作用也會(huì)導(dǎo)致其成分發(fā)生改變,因此有必要對(duì)樣品進(jìn)行再沉積作用的判別。Coxetal.[71]提出的成分變異指數(shù)ICV被廣泛用來(lái)判斷細(xì)屑巖是否為再循環(huán)沉積物,其定義為:ICV=[n(Fe2O3)+n(K2O*)+n(Na2O)+n(CaO*)+n(MgO)+n(MnO)+n(TiO2)]/n(Al2O3),式中各主成分均以摩爾分?jǐn)?shù)表示,n(CaO*)為硅酸鹽礦物中的CaO,n(K2O*)為校正后的值。當(dāng)ICV>1時(shí),說(shuō)明該樣品含少量黏土礦物,指示其為活動(dòng)構(gòu)造帶的首次沉積;當(dāng)ICV<1時(shí),說(shuō)明該樣品存在大量黏土礦物,代表可能經(jīng)歷了再循環(huán)沉積[72]。從本次研究所有泥巖樣品的ICV值(表2)可知,大多數(shù)樣品的ICV值均接近1或>1,顯示其基本為活動(dòng)構(gòu)造帶的首次沉積;少數(shù)直羅組底部樣品的ICV值在0.48~0.68之間,明顯小于1,結(jié)合區(qū)域地質(zhì)背景,這些樣品經(jīng)歷了再循環(huán)沉積作用,從而導(dǎo)致其A-CN-K圖解投點(diǎn)結(jié)果的異常。由于上述少量直羅組底部樣品(圖9黃色圓點(diǎn))受再循環(huán)沉積作用影響較為明顯,其巖石成分存在不同程度的變化,不適宜進(jìn)行下文的古沉積環(huán)境分析,因此對(duì)這些樣品的相關(guān)地球化學(xué)參數(shù)的變化不做討論。

    圖8 杭錦旗地區(qū)侏羅系泥巖A-CN-K三角圖(底圖據(jù)文獻(xiàn)[70])A.Al2O3;CN.(CaO*+Na2O);K·K2O;CIA.化學(xué)蝕變指數(shù);UCC.上大陸殼;PAAS.澳大利亞后太古代頁(yè)巖Fig.8 A-CN-K ternary diagram of Jurassic mudstones samples in Hangjinqi area(after reference[70])

    杭錦旗地區(qū)延安組泥巖CIAcorr.=79.68,指示中等風(fēng)化強(qiáng)度且氣候溫暖濕潤(rùn);直羅組下段泥巖CIAcorr.平均值為75.50,指示中等風(fēng)化程度且該時(shí)期古氣候相對(duì)于延安期變的干燥;直羅組上段泥巖CIAcorr.平均值為71.94(圖9綠色區(qū)域),顯示直羅組上段相對(duì)于下段的風(fēng)化程度有所減弱,指示直羅組沉積晚期相對(duì)于直羅組沉積早期古氣候變得更加干旱。

    Sr/Cu和Rb/Sr比值均被廣泛用于恢復(fù)古氣候。通常Sr/Cu>5指示干熱氣候,Sr/Cu<5則指示溫濕氣候[73]。Sr/Cu垂向演化曲線(xiàn)顯示(圖9),杭錦旗地區(qū)延安組泥巖Sr/Cu值為3.3,為所有泥巖樣品的最低值,指示延安期處于溫暖潮濕的氣候;直羅組下段的Sr/Cu平均值為8.3,指示古氣候相對(duì)延安期變?yōu)楦蔁釟夂颍恢绷_組上段泥巖樣品(圖9綠色區(qū)域)Sr/Cu平均值為13.4,指示直羅組沉積晚期與沉積早期相比變的更加干熱。

    Rb在風(fēng)化作用中相對(duì)穩(wěn)定,而Sr則較易發(fā)生淋失[74]。在氣候濕潤(rùn)時(shí),由于降水較多、風(fēng)化較強(qiáng)烈,導(dǎo)致Sr部分淋失,從而使Rb/Sr比值升高;在氣候干旱時(shí),降水較少、風(fēng)化強(qiáng)度相對(duì)降低,母巖中殘留更多的Sr,進(jìn)而使Rb/Sr比值相對(duì)降低[75]。換言之,Rb/Sr高值指示濕潤(rùn)氣候,Rb/Sr低值指示干旱氣候。對(duì)比Rb/Sr和Sr/Cu垂向演化曲線(xiàn)(圖9)可以看出,兩者大致呈鏡像變化趨勢(shì),這與上文所述Sr/Cu與溫濕氣候反相關(guān)、與干熱氣候正相關(guān),而Rb/Sr則恰好相反的規(guī)律相一致。因此,Rb/Sr比值進(jìn)一步揭示了從延安期→直羅組沉積早期→直羅組沉積晚期由溫濕氣候逐漸向干熱氣候轉(zhuǎn)變的整個(gè)古氣候演變過(guò)程。

    綜上所述,無(wú)論是化學(xué)蝕變指數(shù)CIA,還是微量元素比值Sr/Cu、Rb/Sr對(duì)古氣候的反演均得出較為一致的結(jié)論,即從延安期→直羅組沉積早期→直羅組沉積晚期,古氣候由溫濕氣候逐漸變得越來(lái)越干旱。

    5.2 古鹽度演化

    古鹽度是恢復(fù)古沉積環(huán)境及其演化的重要內(nèi)容。Sr/Ba比值是判別古鹽度的靈敏標(biāo)志,該比值與古鹽度呈正相關(guān),當(dāng)Sr/Ba<1時(shí),指示淡水沉積(其中小于0.5為微咸水相,0.5~1為半咸水相);Sr/Ba>1時(shí),指示鹽湖或海相沉積[76-77]。杭錦旗地區(qū)侏羅系泥巖Sr/Ba變化曲線(xiàn)顯示(圖9),直羅組及延安組所有泥巖樣品的Sr/Ba比值均小于1,表明整體為淡水沉積環(huán)境。其中,延安組泥巖Sr/Ba值為0.2,指示延安組沉積期處于微咸水相的淡水環(huán)境;直羅組下段泥巖整體Sr/Ba平均值為0.49,指示直羅組下段沉積期的水體古鹽度較延安組沉積期有所增加,但整體仍為微咸水相的淡水環(huán)境;直羅組上段泥巖Sr/Ba平均值為0.62(圖中綠色區(qū)域),指示直羅組沉積晚期古鹽度相對(duì)沉積早期進(jìn)一步增大,整體變?yōu)榘胂趟嗟牡h(huán)境。古鹽度的變化在一定程度上反映了古氣候的變化,古氣候條件通過(guò)蒸發(fā)/降雨量的變化直接控制了水體古鹽度的高低[78]。因此,上述古鹽度變化特征進(jìn)一步印證了前文關(guān)于從延安期→直羅組沉積早期→直羅組沉積晚期,古氣候由溫濕氣候不斷向干旱氣候演變的分析結(jié)果。

    圖9 杭錦旗地區(qū)ZKB39-0井侏羅系泥巖地球化學(xué)參數(shù)垂向演化圖(數(shù)據(jù)來(lái)自表2,表4,表5)Fig.9 The vertical variation of geochemical parameters in Jurassic mudstones of Well ZKB39-0 in Hangjinqi area(data from Table 2 and Table 4 and Table 5)

    5.3 古氧化還原環(huán)境

    微量元素V/(V+Ni)比值越來(lái)越多的被用于沉積水體古氧化還原環(huán)境的研究。當(dāng)V/(V+Ni)比值>0.84時(shí),指示水體分層且底層水體出現(xiàn)H2S的厭氧環(huán)境;當(dāng)V/(V+Ni)=0.6~0.84時(shí),指示水體分層不強(qiáng)的厭氧環(huán)境;而當(dāng)V/(V+Ni)=0.46~0.6時(shí)則指示水體分層弱的貧氧環(huán)境[79]。從杭錦旗地區(qū)侏羅系泥巖V/(V+Ni)值垂向變化曲線(xiàn)可以看出(圖9),延安組泥巖V/(V+Ni)值為0.78,直羅組下段泥巖V/(V+Ni)平均值為0.76,直羅組上段泥巖V/(V+Ni)平均值為0.71,即研究區(qū)侏羅系泥巖V/(V+Ni)比值基本保持在0.6~0.84之間,換言之,研究區(qū)侏羅系直羅組及延安組泥巖沉積時(shí)期的古氧化還原環(huán)境為水體分層不強(qiáng)的厭氧環(huán)境。與此同時(shí),Elderfieldetal.[80]提出的Ce異常參數(shù)Ceanom也是目前應(yīng)用較為廣泛的古氧化還原條件判別參數(shù),其計(jì)算公式為Ceanom=lg{3CeN/(2LaN+NdN)}。當(dāng)以北美頁(yè)巖作為標(biāo)準(zhǔn)化參數(shù)的前提下,Ceanom>-0.1時(shí),指示缺氧的還原環(huán)境;Ceanom<-0.1時(shí),指示氧化環(huán)境。杭錦旗地區(qū)直羅組及延安組所有泥巖樣品的Ceanom均大于-0.1,亦指示了其處于缺氧的還原環(huán)境。

    6 結(jié)論

    (1) 鄂爾多斯盆地北部杭錦旗地區(qū)侏羅系直羅組及延安組泥巖的常量、微量及稀土元素構(gòu)造判別結(jié)果綜合分析認(rèn)為,其源區(qū)構(gòu)造背景主要是與大陸島弧相關(guān)的活動(dòng)大陸邊緣。

    (2) 稀土元素配分曲線(xiàn)特征及各種源巖判別圖解的分析表明,盆地北部侏羅系沉積巖與北鄰陰山—大青山—烏拉山地區(qū)前寒武紀(jì)古老基底的片麻巖、麻粒巖、孔茲巖等變質(zhì)巖系以及各時(shí)代侵入巖具有親緣性,即為研究區(qū)侏羅系沉積巖的主要物源。

    (3) 研究區(qū)侏羅系泥巖Sr/Cu、Rb/Sr比值及化學(xué)蝕變指數(shù)CIA對(duì)古氣候的反演均得出較為一致的結(jié)論,即從延安期→直羅組沉積早期→直羅組沉積晚期,古氣候由溫濕氣候逐漸變得越來(lái)越干旱。泥巖微量元素Sr/Ba比值表明,從延安期→直羅組沉積早期→直羅組沉積晚期,水體古鹽度整體上由微咸水相的淡水環(huán)境逐漸向半咸水相的淡水環(huán)境轉(zhuǎn)變。泥巖微量元素V/(V+Ni)比值及Ce異常參數(shù)Ceanom表明,研究區(qū)侏羅系直羅組及延安組泥巖沉積時(shí)期的古氧化還原環(huán)境為水體分層不強(qiáng)的還原環(huán)境。

    致謝 本論文撰寫(xiě)過(guò)程中得到西北大學(xué)地質(zhì)學(xué)系羅金海教授、張龍博士的熱忱指導(dǎo)和幫助;另外,還要感謝審稿專(zhuān)家提出的寶貴意見(jiàn)和有益建議,以及編輯們認(rèn)真細(xì)致的工作,在此一并表示由衷感謝。

    References)

    [1] 劉池洋,趙紅格,桂小軍,等. 鄂爾多斯盆地演化—改造的時(shí)空坐標(biāo)及其成藏(礦)響應(yīng)[J]. 地質(zhì)學(xué)報(bào),2006,80(5):617-638. [Liu Chiyang, Zhao Hongge, Gui Xiaojun, et al. Space-time coordinate of the evolution and reformation and mineralization response in Ordos Basin[J]. Acta Geologica Sinica, 2006, 80(5): 617-638.]

    [2] Li R X, Li Y Z. The geologic features of mineralization at the Dongsheng uranium deposit in the northern Ordos Basin (CentralChina)[J]. Russian Geology and Geophysics, 2011, 52(6): 593-602.

    [3] 易超,韓效忠,李西得,等. 鄂爾多斯盆地東北部直羅組砂巖巖石學(xué)特征與鈾礦化關(guān)系研究[J]. 高校地質(zhì)學(xué)報(bào),2014,20(2):185-197. [Yi Chao, Han Xiaozhong, Li Xide, et al. Study on sandstone petrologic feature of the Zhiluo Formation and its controls on uranium mineralization in northeastern Ordos Basin[J]. Geological Journal of China Universities, 2014, 20(2): 185-197.]

    [4] 李宏濤,蔡春芳,羅曉容,等. 內(nèi)蒙古東勝地區(qū)中侏羅統(tǒng)砂巖沉積物源的地球化學(xué)證據(jù)[J]. 地質(zhì)科學(xué),2007,42(2):353-361. [Li Hongtao, Cai Chunfang, Luo Xiaorong, et al. Geochemical evidence for sedimentary provenance of Middle Jurassic sandstones in Dongsheng area, Inner Mongolia[J]. Chinese Journal of Geology, 2007, 42(2): 353-361.]

    [5] 趙俊峰. 鄂爾多斯盆地直羅—安定期原盆恢復(fù)[D]. 西安:西北大學(xué),2007. [Zhao Junfeng. Restoration of the primary Ordos Basin in Zhiluo-Anding period[D]. Xi’an: Northwest University, 2007.]

    [6] 楊曉勇,羅賢冬,凌明星,等. 鄂爾多斯盆地砂巖型鈾礦床地球化學(xué)特征及其地質(zhì)意義[J]. 地質(zhì)論評(píng),2008,54(4):539-549. [Yang Xiaoyong, Luo Xiandong, Ling Mingxing, et al. Geochemical features of sandstone-type uranium deposits in the Ordos Basin and their geological significances[J]. Geological Review, 2008, 54(4): 539-549.]

    [7] 劉漢彬,李子穎,秦明寬,等. 鄂爾多斯盆地北部砂巖型鈾礦地球化學(xué)研究進(jìn)展[J]. 地學(xué)前緣,2012,19(3):139-146. [Liu Hanbin, Li Ziying, Qin Mingkuan, et al. Progress in geochemistry of sandstone-type uranium deposit in North Ordos Basin[J]. Earth Science Frontiers, 2012, 19(3): 139-146.]

    [8] 吳兆劍,韓效忠,易超,等. 鄂爾多斯盆地東勝地區(qū)直羅組砂巖的地球化學(xué)特征與物源分析[J]. 現(xiàn)代地質(zhì),2013,27(3):557-567. [Wu Zhaojian, Han Xiaozhong, Yi Chao, et al. Geochemistry of sandstones from the Middle Jurassic Zhiluo Formation, Dongsheng area, northeastern Ordos Basin: implications for provenance and tectonic setting[J]. Geoscience, 2013, 27(3): 557-567.]

    [9] 劉池洋,邱欣衛(wèi),吳柏林,等. 中—東亞能源礦產(chǎn)成礦域基本特征及其形成的動(dòng)力學(xué)環(huán)境[J]. 中國(guó)科學(xué)(D輯):地球科學(xué),2007,37(增刊1):1-15. [Liu Chiyang, Qiu Xinwei, Wu Bolin, et al. Characteristics and dynamic settings of the central-east Asia multi-energy minerals metallogenetic domain[J]. Science China(Seri.D): Earth Sciences, 2007, 37(Suppl.1): 1-15.]

    [10] 焦養(yǎng)泉,吳立群,彭云彪,等. 中國(guó)北方古亞洲構(gòu)造域中沉積型鈾礦形成發(fā)育的沉積—構(gòu)造背景綜合分析[J]. 地學(xué)前緣,2015,22(1):189-205. [Jiao Yangquan, Wu Liqun, Peng Yunbiao, et al. Sedimentary-tectonic setting of the deposition-type uranium deposits forming in the Paleo-Asian tectonic domain, North China[J]. Earth Science Frontiers, 2015, 22(1): 189-205.]

    [11] Chen Y L, Li D P, Zhou J, et al. U-Pb ages of zircons in western Qinling Shan, China, and their tectonic implications[J]. Earth Science Frontiers, 2008, 15(4): 88-107.

    [12] 王盟,羅靜蘭,李杪,等. 鄂爾多斯盆地東勝地區(qū)砂巖型鈾礦源區(qū)及其構(gòu)造背景分析——來(lái)自碎屑鋯石U-Pb年齡及Hf同位素的證據(jù)[J]. 巖石學(xué)報(bào),2013,29(8):2746-2758. [Wang Meng, Luo Jinglan, Li Miao, et al. Provenance and tectonic setting of sandstone-type uranium deposit in Dongsheng area, Ordos Basin: evidence from U-Pb age and Hf isotopes of detrital zircons[J]. Acta Petrologica Sinica, 2013,29(8): 2746-2758.]

    [13] Bao C, Chen Y L, Li D P, et al. Provenances of the Mesozoic sediments in the Ordos Basin and implications for collision between the North China Craton (NCC) and the South China Craton (SCC)[J]. Journal of Asian Earth Sciences, 2014, 96: 296-307.

    [14] Dickinson W R. Interpreting provenance relations from detrital modes of sandstones[M]//Zuffa G G. Provenance of Arenites: NATO ASI Series. Netherlands: Springer, 1985, 148: 333-361.

    [15] 趙紅格,劉池洋. 物源分析方法及研究進(jìn)展[J]. 沉積學(xué)報(bào),2003,21(3):409-415. [Zhao Hongge, Liu Chiyang. Approaches and prospects of provenance analysis[J]. Acta Sedimentologica Sinica, 2003, 21(3): 409-415.]

    [16] 毛光周,劉池洋. 地球化學(xué)在物源及沉積背景分析中的應(yīng)用[J]. 地球科學(xué)與環(huán)境學(xué)報(bào),2011,33(4):337-348. [Mao Guangzhou, Liu Chiyang. Application of geochemistry in provenance and depositional setting analysis[J]. Journal of Earth Sciences and Environment, 2011, 33(4): 337-348.]

    [17] 許中杰,程日輝,王嘹亮,等. 閩西南地區(qū)晚三疊—中侏羅世沉積巖礦物和元素地球化學(xué)特征:對(duì)盆地構(gòu)造背景轉(zhuǎn)變的約束[J]. 巖石學(xué)報(bào),2013,29(8):2913-2924. [Xu Zhongjie, Cheng Rihui, Wang Liaoliang, et al. Mineralogical and element geochemical characteristics of the Late Triassic-Middle Jurassic sedimentary rocks in southwestern Fujian province: constraints on changes of basin tectonic settings[J]. Acta Petrologica Sinica, 2013, 29(8): 2913-2924.]

    [18] Cullers R L. The controls on the major- and trace-element evolution of shales, siltstones and sandstones of Ordovician to Tertiary age in the Wet Mountains region, Colorado, U.S.A[J]. Chemical Geology, 1995, 123(1/2/3/4): 107-131.

    [19] Zhao G C, Cawood P A, Wilde S A, et al. Metamorphism of basement rocks in the central zone of the North China Craton: implications for Paleoproterozoic tectonic evolution[J]. Precambrian Research, 2000, 103(1/2): 55-88.

    [20] Wan Y S, Song B, Liu D Y, et al. SHRIMP U-Pb zircon geochronology of Palaeoproterozoic metasedimentary rocks in the North China Craton: evidence for a major Late Palaeoproterozoic tectonothermal event[J]. Precambrian Research, 2006, 149(3/4): 249-271.

    [21] 趙俊興,陳洪德. 鄂爾多斯盆地侏羅紀(jì)早中期甘陜古河的演化變遷[J]. 石油與天然氣地質(zhì),2006,27(2):152-158. [Zhao Junxing, Chen Hongde. Evolution of Gan-Shaan paleochannel during early and Middle Jurassic in Ordos Basin[J]. Oil & Gas Geology, 2006, 27(2): 152-158.]

    [22] 焦養(yǎng)泉,吳立群,楊生科,等. 鈾儲(chǔ)層沉積學(xué)[M]. 北京:地質(zhì)出版社,2006:233. [Jiao Yangquan, Wu Liqun, Yang Shengke, et al. Sedimentology of uranium reservoir[M]. Beijing: Geological Publishing House, 2006: 233.]

    [23] 張?jiān)罉?,廖昌珍,施煒,? 論鄂爾多斯盆地及其周緣侏羅紀(jì)變形[J]. 地學(xué)前緣,2007,14(2):182-196. [Zhang Yueqiao, Liao Changzhen, Shi Wei, et al. On the Jurassic deformation in and around the Ordos Basin, North China[J]. Earth Science Frontiers, 2007, 14(2): 182-196.]

    [24] 李振宏,董樹(shù)文,馮勝斌,等. 鄂爾多斯盆地中—晚侏羅世構(gòu)造事件的沉積響應(yīng)[J]. 地球?qū)W報(bào),2015,36(1):22-30. [Li Zhenhong, Dong Shuwen, Feng Shengbin, et al. Sedimentary response to middle-late Jurassic tectonic events in the Ordos Basin[J]. Acta Geoscientica Sinica, 2015, 36(1): 22-30.]

    [25] 何自新. 鄂爾多斯盆地演化與油氣[M]. 北京:石油工業(yè)出版社,2003:1-390. [He Zixin. Ordos Basin evolution and oil and gas[M]. Beijing: Petroleum Industry Press, 2003: 1-390.]

    [26] 陳全紅,李文厚,胡孝林,等. 鄂爾多斯盆地晚古生代沉積巖源區(qū)構(gòu)造背景及物源分析[J]. 地質(zhì)學(xué)報(bào),2012,86(7):1150-1162. [Chen Quanhong, Li Wenhou, Hu Xiaolin, et al. Tectonic setting and provenance analysis of Late Paleozoic sedimentary rocks in the Ordos Basin[J]. Acta Geologica Sinica, 2012, 86(7): 1150-1162.]

    [27] Zhao G C, Sun M, Wilde S A, et al. Late Archean to Paleoproterozoic evolution of the North China Craton: key issues revisited[J]. Precambrian Research, 2005, 136(2): 177-202.

    [28] Taylor S R, McLennan S M. The continental crust: its composition and evolution[M]. Palo Alto, CA: Blackwell Scientific Publications, 1985: 321.

    [29] Roser B P, Korsch R J. Determination of tectonic setting of sandstone-mudstone suites using SiO2content and K2O/Na2O ratio[J]. The Journal of Geology, 1986, 94(5): 635-650.

    [30] Bhatia M R. Rare earth element geochemistry of Australian Paleozoic graywackes and mudrocks: provenance and tectonic control[J]. Sedimentary Geology, 1985, 45(1/2): 97-113.

    [31] Bhatia M R, Crook K A W. Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins[J]. Contributions to Mineralogy and Petrology, 1986, 92(2): 181-193.

    [32] Boynton W V. Cosmochemistry of rare earth elements: meteorite studies[M]//Henderson P. Rare Earth Element Geochemistry: Developments in Geochemistry. Amsterdam: Elsevier, 1984, 2: 63-114.

    [33] McLennan S M, Hemming S, Mcdaniel D K, et al. Geochemical approaches to sedimentation, provenance, and tectonics[J]. Geological Society of America Special Papers, 1993, 284: 21-40.

    [34] 張金亮,張?chǎng)? 塔中地區(qū)志留系砂巖元素地球化學(xué)特征與物源判別意義[J]. 巖石學(xué)報(bào),2007,23(11):2990-3002. [Zhang Jinliang, Zhang Xin. Element geochemistry of sandstones in the Silurian of central Tarim Basin and the significance in provenance discrimination[J]. Acta Petrologica Sinica, 2007, 23(11): 2990-3002.]

    [35] 宋凱,呂劍文,杜金良,等. 鄂爾多斯盆地中部上三疊統(tǒng)延長(zhǎng)組物源方向分析與三角洲沉積體系[J]. 古地理學(xué)報(bào),2002,4(3):59-66. [Song Kai, Lü Jianwen, Du Jinliang, et al. Source direction analysis and delta depositional systems of Yanchang Formation of the Upper Triassic in the central Ordos Basin[J]. Journal of Palaeogeography, 2002, 4(3): 59-66.]

    [36] Li Q L, Chen F K, Guo J H, et al. Zircon ages and Nd-Hf isotopic composition of the Zhaertai Group (Inner Mongolia): evidence for early Proterozoic evolution of the northern North China Craton[J]. Journal of Asian Earth Sciences, 2007, 30(3/4): 573-590.

    [37] 鐘長(zhǎng)汀,鄧晉福,萬(wàn)渝生,等. 華北克拉通北緣中段古元古代造山作用的巖漿記錄:S型花崗巖地球化學(xué)特征及鋯石SHRIMP年齡[J]. 地球化學(xué),2007,36(6):585-600. [Zhong Changting, Deng Jinfu, Wan Yusheng, et al. Magma recording of Paleoproterozoic orogeny in central segment of northern margin of North China Craton: geochemical characteristics and zircon SHRIMP dating of S-type granitoids[J]. Geochimica, 2007, 36(6): 585-600.]

    [38] 張臣,韓寶福,劉樹(shù)文,等. 內(nèi)蒙大青山地區(qū)黑云母花崗巖SHRIMP U-Pb定年及其構(gòu)造意義[J]. 巖石學(xué)報(bào),2009,25(3):561-567. [Zhang Chen, Han Baofu, Liu Shuwen, et al. SHRIMP U-Pb dating of biotite granites in Daqingshan, Inner Mongolia, and its significance[J]. Acta Petrologica Sinica, 2009, 25(3): 561-567.]

    [39] 張玉清,王弢,賈和義,等. 內(nèi)蒙古中部大青山北西烏蘭不浪紫蘇斜長(zhǎng)麻粒巖鋯石U-Pb年齡[J]. 中國(guó)地質(zhì),2003,30(4):394-399. [Zhang Yuqing, Wang Tao, Jia Heyi, et al. U-Pb Ages of zircons from the Xi Ulanbulang hypersthene-plagioclase granulite in the North Daqing Mountains, Central Inner Mongolia[J]. Geology in China, 2003, 30(4): 394-399.]

    [40] 張維杰,李龍,耿明山. 內(nèi)蒙古固陽(yáng)地區(qū)新太古代侵入巖的巖石特征及時(shí)代[J]. 地球科學(xué),2000,25(3):221-226. [Zhang Weijie, Li Long, Geng Mingshan. Petrology and dating of Neo-Archaean intrusive rocks from Guyang area, Inner Mongolia[J]. Earth Science, 2000, 25(3): 221-226.]

    [41] 劉建輝,劉福來(lái),丁正江,等. 烏拉山地區(qū)早古元古代花崗質(zhì)片麻巖的鋯石U-Pb年代學(xué)、地球化學(xué)及成因[J]. 巖石學(xué)報(bào),2013,29(2):485-500. [Liu Jianhui, Liu Fulai, Ding Zhengjiang, et al. Zircon U-Pb chronology, geochemistry and their petrogenesis of Early Paleoproterozoic granitoid gneisses in Ulashan area, North China Craton[J]. Acta Petrologica Sinica, 2013, 29(2): 485-500.]

    [42] 劉平華,劉福來(lái),蔡佳,等. 華北克拉通孔茲巖帶中段大青山—烏拉山變質(zhì)雜巖立甲子基性麻粒巖年代學(xué)及地球化學(xué)研究[J]. 巖石學(xué)報(bào),2013,29(2):462-484. [Liu Pinghua, Liu Fulai, Cai Jia, et al. Geochronological and geochemical study of the Lijiazi mafic granulites from the Daqingshan-Wulashan metamorphic complex, the central Khondalite Belt in the North China Craton[J]. Acta Petrologica Sinica, 2013, 29(2): 462-484.]

    [43] 馬銘株,董春艷,徐仲元,等. 內(nèi)蒙古大青山地區(qū)古元古代早期榴云片麻巖(大青山表殼巖)深熔作用:地質(zhì)、鋯石年代學(xué)和地球化學(xué)研究[J]. 巖石學(xué)報(bào),2015,31(6):1535-1548. [Ma Mingzhu, Dong Chunyan, Xu Zhongyuan, et al. Anatexis of Early Paleoproterozoic garnet-biotite gneisses (Daqingshan supracrustal rocks) in Daqingshan, Inner Mongolia: geology, zircon geochronology and geochemistry[J]. Acta Petrologica Sinica, 2015, 31(6): 1535-1548.]

    [44] 趙慶英,劉正宏,吳新偉,等. 內(nèi)蒙古大青山地區(qū)哈拉合少巖體特征及成因[J]. 礦物巖石,2007,27(1):46-51. [Zhao Qingying, Liu Zhenghong, Wu Xinwei, et al. Characteristics and origin of Halaheshao pluton in Daqingshan region, Inner-Mongolia[J]. Journal of Mineralogy and Petrology, 2007, 27(1): 46-51.]

    [45] 趙慶英,李剛,劉正宏,等. 內(nèi)蒙古大青山地區(qū)沙德蓋巖體特征及成因[J]. 吉林大學(xué)學(xué)報(bào):地球科學(xué)版,2009,39(6):1073-1079. [Zhao Qingying, Li Gang, Liu Zhenghong, et al. Characteristics and origin of the Shadegai Pluton in the Daqingshan area, Inner-Mongolia[J]. Journal of Jilin University: Earth Science Edition, 2009, 39(6): 1073-1079.]

    [46] 莫南,郭磊,童英,等. 華北北緣大青山小井溝巖體年代學(xué)、地球化學(xué)和Hf同位素特征及其地質(zhì)意義[J]. 北京大學(xué)學(xué)報(bào):自然科學(xué)版,2014,50(6):1021-1034. [Mo Nan, Guo Lei, Tong Ying, et al. Geochronology, geochemistry, Hf isotope of Xiaojinggou pluton in the northern margin of North China craton and its tectonic implications[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2014, 50(6): 1021-1034.]

    [47] 張青偉,劉正宏,柴社立,等. 內(nèi)蒙古烏拉特中旗烏蘭地區(qū)含石榴石花崗巖鋯石U-Pb年齡及地質(zhì)意義[J]. 吉林大學(xué)學(xué)報(bào):地球科學(xué)版,2011,41(3):745-752. [Zhang Qingwei, Liu Zhenghong, Chai Sheli, et al. Zircon U-Pb dating of the garnet-bearing granite from Wulan area of Urad Zhongqi in Inner Monglia and its geological significance[J]. Journal of Jilin University: Earth Science Edition, 2011, 41(3): 745-752.]

    [48] 孟慶鵬,賀元?jiǎng)P,張文,等. 華北板塊北緣古大洋閉合時(shí)間的限定——來(lái)自四子王旗西后壕子同碰撞花崗巖的證據(jù)[J]. 地質(zhì)通報(bào),2013,32(11):1749-1759. [Meng Qingpeng, He Yuankai, Zhang Wen, et al. Time constraints on the closure of the Paleo-Asian Ocean on the northern margin of North China Craton: evidence from Xihouhaozisyn-collisional granites in Siziwang Qi area[J]. Geological Bulletin of China, 2013, 32(11): 1749-1759.]

    [49] 羅紅玲,吳泰然,李毅. 烏拉特中旗克布巖體的地球化學(xué)特征及SHRIMP定年:早二疊世華北克拉通底侵作用的證據(jù)[J]. 巖石學(xué)報(bào),2007,23(4):755-766. [Luo Hongling, Wu Tairan, Li Yi, et al. Geochemistry and SHRIMP dating of the Kebu massif from Wulatezhongqi, Inner Mongolia: evidence for the Early Permian underplating beneath the North China Craton[J]. Acta Petrologica Sinica, 2007, 23(4): 755-766.]

    [50] 羅紅玲,吳泰然,趙磊. 華北板塊北緣烏梁斯太A型花崗巖體鋯石SHRIMP U-Pb定年及構(gòu)造意義[J]. 巖石學(xué)報(bào),2009,25(3):515-526. [Luo Hongling, Wu Tairan, Zhao Lei, et al. Zicron SHRIMP U-Pb dating of Wuliangsitai A-type granite on the northern margin of the North China Plate and tectonic significance[J]. Acta Petrologica Sinica, 2009, 25(3): 515-526.]

    [51] 柳長(zhǎng)峰,楊帥師,武將偉,等. 內(nèi)蒙古中部四子王旗地區(qū)晚二疊—早三疊世過(guò)鋁花崗巖定年及成因[J]. 地質(zhì)學(xué)報(bào),2010,84(7):1002-1016. [Liu Changfeng, Yang Shuaishi, Wu Jiangwei, et al. Dating and petrogenesis of Late Permian-Early Triassic Peraluminous granites in the Siziwangqi area, Inner Mongolia[J]. Acta Geologica Sinica, 2010, 84(7): 1002-1016.]

    [52] 侯萬(wàn)榮,聶鳳軍,胡建民,等. 內(nèi)蒙古烏拉山地區(qū)沙德蓋巖體年代學(xué)、地球化學(xué)特征及成因探討[J]. 吉林大學(xué)學(xué)報(bào):地球科學(xué)版,2011,41(6):1914-1927. [Hou Wanrong, Nie Fengjun, Hu Jianmin, et al. Geochronology and geochemistry of Shadegai Granites in Wulashan area, Inner Mongolia and its geological significance[J]. Journal of Jilin University: Earth Science Edition, 2011, 41(6): 1914-1927.]

    [53] 曾俊杰,鄭有業(yè),齊建宏,等. 內(nèi)蒙古固陽(yáng)地區(qū)埃達(dá)克質(zhì)花崗巖的發(fā)現(xiàn)及其地質(zhì)意義[J]. 地球科學(xué),2008,33(6):755-763. [Zeng Junjie, Zheng Youye, Qi Jianhong, et al. Foundation and geological significance of Adakitic Granite at Guyang of Inner Mongolia[J]. Earth Science, 2008, 33(6): 755-763.]

    [54] 周志廣,張華鋒,劉還林,等. 內(nèi)蒙中部四子王旗地區(qū)基性侵入巖鋯石定年及其意義[J]. 巖石學(xué)報(bào),2009,25(6):1519-1528. [Zhou Zhiguang, Zhang Huafeng, Liu Huanlin, et al. Zircon U-Pb dating of basic intrusions in Siziwangqi area of middle Inner Mongolia, China[J]. Acta Petrologica Sinica, 2009, 25(6): 1519-1528.]

    [55] 張維,簡(jiǎn)平. 內(nèi)蒙古達(dá)茂旗北部早古生代花崗巖類(lèi)SHRIMP U-Pb年代學(xué)[J]. 地質(zhì)學(xué)報(bào),2008,82(6):778-787. [Zhang Wei, Jian Ping. SHRIMP dating of Early Paleozoic granites from North Damaoqi, Inner Mongolia[J]. Acta Geologica Sinica, 2008, 82(6): 778-787.]

    [56] 張維,簡(jiǎn)平. 華北北緣固陽(yáng)二疊紀(jì)閃長(zhǎng)巖—石英閃長(zhǎng)巖—英云閃長(zhǎng)巖套SHRIMP年代學(xué)[J]. 中國(guó)地質(zhì),2012,39(6):1593-1603. [Zhang Wei, Jian Ping. SHRIMP dating of the Permian Guyang diorite-quartz diorite-tonalite suite in the northern margin of the North China Craton[J]. Geology in China, 2012, 39(6): 1593-1603.]

    [57] 章永梅,張華鋒,劉文燦,等. 內(nèi)蒙古中部四子王旗大廟巖體時(shí)代及成因[J]. 巖石學(xué)報(bào),2009,25(12):3165-3181. [Zhang Yongmei, Zhang Huafeng, Liu Wencan, et al. Timing and petrogenesis of the Damiao granodiorite, Siziwangqi, Inner Mongolia[J]. Acta Petrologica Sinica, 2009, 25(12): 3165-3181.]

    [58] 王挽瓊,徐仲元,劉正宏,等. 華北板塊北緣中段早中二疊世的構(gòu)造屬性:來(lái)自花崗巖類(lèi)鋯石U-Pb年代學(xué)及地球化學(xué)的制約[J]. 巖石學(xué)報(bào),2013,29(9):2987-3003. [Wang Wanqiong, Xu Zhongyuan, Liu Zhenghong, et al. Early-Middle Permian tectonic evolution of the central-northern margin of the North China Craton: Constraints from zircon U-Pb ages and geochemistry of the granitoids[J]. Acta Petrologica Sinica, 2013, 29(9): 2987-3003.]

    [59] 許立權(quán),賈和義,張玉清,等. 白云鄂博地區(qū)堿性正長(zhǎng)巖特征及其意義[J]. 地質(zhì)調(diào)查與研究,2004,27(1):43-47. [Xu Liquan, Jia Heyi, Zhang Yuqing, et al. The characters and significance of alkali syenites in Bayan Obo area, Inner Mongolia[J]. Geological Survey and Research, 2004, 27(1): 43-47.]

    [60] Allègre C J, Minster J F. Quantitative models of trace element behavior in magmatic processes[J]. Earth and Planetary Science Letters, 1978, 38(1): 1-25.

    [61] Gu X X, Liu J M, Zheng M H, et al. Provenance and tectonic setting of the Proterozoic turbidites in Hunan, South China: geochemical evidence[J]. Journal of Sedimentary Research, 2002, 72(3): 393-407.

    [62] Floyd P A, Leveridge B E. Tectonic environment of the Devonian Gramscatho Basin, South Cornwall: framework mode and geochemical evidence from turbiditic sandstones[J]. Journal of the Geological Society, 1987, 144(4): 531-542.

    [63] Nesbitt H W, Young G M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites[J]. Nature, 1982, 299(5885): 715-717.

    [64] McLennan S M. Weathering and global denudation[J]. The Journal of Geology, 1993, 101(2): 295-303.

    [65] Fedo C M, Nesbitt H W, Young G M. Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance[J]. Geology, 1995, 23(10): 921-924.

    [66] 馮連君,儲(chǔ)雪蕾,張啟銳,等. 化學(xué)蝕變指數(shù)(CIA)及其在新元古代碎屑巖中的應(yīng)用[J]. 地學(xué)前緣,2003,10(4):539-544. [Feng Lianjun, Chu Xuelei, Zhang Qirui, et al. CIA (Chemical index of alteration) and its applications in the Neoproterozoic clastic rocks[J]. Earth Science Frontiers, 2003, 10(4): 539-544.]

    [67] Nesbitt H W, Young G M. Formation and diagenesis of weathering profiles[J]. The Journal of Geology, 1989, 97(2): 129-147.

    [68] Panahi A, Young G M, Rainbird R H. Behavior of major and trace elements (including REE) during Paleoproterozoic pedogenesis and diagenetic alteration of an Archean granite near Ville Marie, Québec, Canada[J]. Geochimica et Cosmochimica Acta, 2000, 64(13): 2199-2220.

    [69] Nesbitt H W, Young G M. Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations[J]. Geochimica et Cosmochimica Acta, 1984, 48(7): 1523-1534.

    [70] 李雙應(yīng),楊棟棟,王松,等. 南天山中段上石炭統(tǒng)碎屑巖巖石學(xué)、地球化學(xué)、重礦物和鋯石年代學(xué)特征及其對(duì)物源區(qū)、構(gòu)造演化的約束[J]. 地質(zhì)學(xué)報(bào),2014,88(2):167-184. [Li Shuangying, Yang Dongdong, Wang Song, et al. Characteristics of petrology, geochemistry, heavy minerals and isotope chronology of upper Carboniferous detrital rocks in the middle segment of south Tianshan and constraints to the provenance and tectonic evolution[J]. Acta Geologica Sinica, 2014, 88(2): 167-184.]

    [71] Cox R, Lowe D R, Cullers R L. The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States[J]. Geochimica et Cosmochimica Acta, 1995, 59(14): 2919-2940.

    [72] Cullers R L, Podkovyrov V N. Geochemistry of the Mesoproterozoic Lakhanda shales in southeastern Yakutia, Russia: implications for mineralogical and provenance control, and recycling[J]. Precambrian Research, 2000, 104(1/2): 77-93.

    [73] 王隨繼,黃杏珍,妥進(jìn)才,等. 泌陽(yáng)凹陷核桃園組微量元素演化特征及其古氣候意義[J]. 沉積學(xué)報(bào),1997,15(1):65-70. [Wang Suiji, Huang Xingzhen, Tuo Jincai, et al. Evolutional characteristics and their paleoclimate significance of trace elements in the Hetaoyuan Formation, Biyang depression[J]. Acta Sedimentologica Sinica, 1997, 15(1): 65-70.]

    [74] 陳駿,汪永進(jìn),陳旸,等. 中國(guó)黃土地層Rb和Sr地球化學(xué)特征及其古季風(fēng)氣候意義[J]. 地質(zhì)學(xué)報(bào),2001,75(2):259-266. [Chen Jun, Wang Yongjin, Chen Yang, et al. Rb and Sr geochemical characterization of the Chinese loess and its implications for palaeomonsoon climate[J]. Acta Geologica Sinica, 2001, 75(2): 259-266.]

    [75] 葉荷,張克信,季軍良,等. 青海循化盆地23.1~5.0Ma沉積地層中常量、微量元素組成特征及其古氣候演變[J]. 地球科學(xué),2010,35(5):811-820. [Ye He, Zhang Kexin, Ji Junliang, et al. Major and trace element characters of the sediments and paleoclimatic evolvement during about 23.1-5.0 Ma in Xunhua Basin, Qinghai[J]. Earth Science, 2010, 35(5): 811-820.]

    [76] 鄭榮才,柳梅青. 鄂爾多斯盆地長(zhǎng)6油層組古鹽度研究[J]. 石油與天然氣地質(zhì),1999,20(1):20-25. [Zheng Rongcai, Liu Meiqing. Study on palaeosalinity of Chang-6 oil reservoir set in Ordos Basin[J]. Oil & Gas Geology, 1999, 20(1): 20-25.]

    [77] 劉剛,周東升. 微量元素分析在判別沉積環(huán)境中的應(yīng)用——以江漢盆地潛江組為例[J]. 石油實(shí)驗(yàn)地質(zhì),2007,29(3):307-310,314. [Liu Gang, Zhou Dongsheng. Application of microelements analysis in identifying sedimentary environment—Taking Qianjiang Formation in the Jianghan Basin as an example[J]. Petroleum Geology & Experiment, 2007, 29(3): 307-310, 314.]

    [78] 趙俊青,紀(jì)友亮,張世奇,等. 陸相高分辨率層序界面識(shí)別的地球化學(xué)方法[J]. 沉積學(xué)報(bào),2004,22(1):79-86. [Zhao Junqing, Ji Youliang, Zhang Shiqi, et al. Geochemical methods of boundary identification in terrigenous high-resolution sequence[J]. Acta Sedimentologica Sinica, 2004, 22(1): 79-86.]

    [79] Davis C, Pratt L M, Sliter W V, et al. Factors influencing organic carbon and trace metal accumulation in the Upper Cretaceous La Luna Formation of the western Maracaibo Basin, Venezuela[M]//Barrera E, Johnson C C. Evolution of the Cretaceous Ocean-Climate System. Geological Society of America, 1999: 203-230.

    [80] Elderfield H, Pagett R. Rare earth elements in ichthyoliths: variations with redox conditions and depositional environment[J]. Science of the Total Environment, 1986, 49: 175-197.

    Element Geochemical Characteristics of the Jurassic Mudstones in the Northern Ordos Basin: Implications for tracing sediment sources and paleoenvironment restoration

    LEI KaiYu1,2,LIU ChiYang1,ZHANG Long1,WU BoLin1,CUN XiaoNi1,SUN Li1

    1. State Key Laboratory of Continental Dynamics(Northwest University), Geology Department of Northwest University, Xi’an 710069, China2. The 1st Factory of Yanchang Gas Wells, Oil and Gas Exploration Company of Shaanxi Yanchang Petroleum(Group) Co.LTD, Yan’an, Shaanxi 716000, China

    The geochemical characteristics of Jurassic mudstones in the Northern Ordos Basin Hangjinqi Area recorded important geological information at that time. Based on the method of X-ray fluorescence spectrometry of the major element analysis and ICP-MS trace element and rare earth element analysis,the tectonic setting and provenance attribute of Zhiluo Formation and Yan’ an Formation have been comprehensively analyzed. Meanwhile, we restored the evolution of sedimentary setting by the vertical variation characteristics of geochemical parameters.The main conclusions can be drawn as follows:The Jurassic sedimentary rocks in the Northern Ordos Basin have affinities to the Precambrian metamorphotic rocks from old basement,such as gneiss,granulite,khondalite and the intrusive rock which formed in different geological time,so the provenance of the study area mainly came from it.The tectonic setting of source area is the active continental margin associated with the continental island arc. The result of paleoenvironment reconstruction is based on the vertical variation characteristics of mudstone geochemical indexes such as Sr/Cu,Rb/Sr,CIA,Sr/Ba,V/(V+Ni)and Ceanomshows that from Yan’ an period to early Zhiluo period and then to late Zhiluo period, the paleoclimate was warm and humid at the beginning and tended to become increasingly dry and hot,the palaeosalinity transformed from the brackish water phase of the fresh water environment to the brackish-water phase of the fresh water environment,the redox condition belong to the reducing environment and the water column stratification is not obvious.

    Northern Ordos Basin; Jurassic; element geochemistry; provenance analysis; paleoenvironment

    1000-0550(2017)03-0621-16

    10.14027/j.cnki.cjxb.2017.03.019

    2016-04-14; 收修改稿日期: 2016-07-05

    國(guó)家自然科學(xué)重點(diǎn)基金項(xiàng)目(41330315);中國(guó)地質(zhì)調(diào)查局項(xiàng)目(12120114009201);西北大學(xué)大陸動(dòng)力學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室科技部專(zhuān)項(xiàng)經(jīng)費(fèi)[Foundation: National Natural Science Foundation of China,No.41330315; China Geological Survey Project, No. 12120114009201;Special Grant of Ministry of Science and Technology of China for State Key Laboratory of Continental Dynamics, Northwest University]

    雷開(kāi)宇,男,1989年出生,碩士研究生,盆地分析與礦產(chǎn)資源勘查研究,E-mail: leiky1989@126.com

    劉池洋,男,教授,E-mail: lcy@nwu.edu.cn

    P588.22 P595

    A

    猜你喜歡
    直羅杭錦旗侏羅系
    巨厚充水含水層疏放水層位優(yōu)化研究
    鄂爾多斯盆地北部直羅組含水層研究進(jìn)展與水害防治建議
    杭錦旗地區(qū)辮狀河定量地質(zhì)知識(shí)庫(kù)建立及應(yīng)用
    從姓氏的角度看杭錦旗名稱(chēng)演變
    民族地區(qū)本土音樂(lè)文化教育傳承現(xiàn)狀與思考——以杭錦旗“古如歌”教育傳承基地為例
    準(zhǔn)噶爾盆地東部侏羅系西山窯組層序控制下的聚煤規(guī)律研究
    陸相頁(yè)巖氣資源評(píng)價(jià)初探:以延長(zhǎng)直羅——下寺灣區(qū)中生界長(zhǎng)7段為例
    臺(tái)北凹陷侏羅系含油氣系統(tǒng)天然氣序列性研究
    四川盆地侏羅系致密油特殊的介觀孔縫儲(chǔ)滲體
    直羅油田三疊系延長(zhǎng)組長(zhǎng)8段油氣成藏條件分析
    临颍县| 洛宁县| 山丹县| 广昌县| 蓬安县| 分宜县| 湟中县| 莲花县| 东乡县| 万州区| 美姑县| 襄樊市| 浑源县| 中西区| 屏山县| 陆丰市| 呼图壁县| 扶余县| 安化县| 高要市| 商都县| 苍溪县| 大方县| 文化| 景德镇市| 雅安市| 闽清县| 永仁县| 通渭县| 光山县| 沅江市| 浦城县| 吉水县| 吴旗县| 惠水县| 兴业县| 广河县| 安泽县| 福贡县| 肥西县| 霍城县|