摘 要:Schief證明了若一個自相似集的自相似維數(shù)等于空間維數(shù),則該自相似集含有正Lebesgue測度等價于其含有內點。本文基于Schief的結論,證明了若有限個相似壓縮簇對于同一個開集均滿足開集條件,并且各自的自相似維數(shù)均等于空間維數(shù),則由其生成的“弱”不變集也含有內點。
關鍵詞:自相似集;迭代函數(shù)系;開集條件;正Lebesgue測度;內部非空
Abstract:Schief demonstrated that the equality between the self-similar dimension of a selfsimilar set and the space dimension ensures the equivalence of positive Lebesgue measure and nonempty interior.Based on Schiefs result,we prove that for finitely many iterated function systems of contraction similitudes,if each of them satisfies the open set condition with respect to the same open set,moreover,if each of them takes the space dimension as its similarity dimension,then the“weak”invariant set generated by them contains interiors.
Key words:selfsimilar set;iterated function system;open set condition;positive Lebesgue measure;nonempty interior
眾所周知,在歐氏空間中,若一個集合含有內點,則該集合必然含有正的Lebesgue測度,反之則不然。如著名的ε-康托爾集[1]在任意地方均不稠密,因此不含有內點,但是其Lebesgue測度卻大于0。顯然,并不是所有的分形集都能保證正Lebesgue測度與內部非空的等價性。
在分形幾何的研究中,自相似集是一類重要的研究對象。Peres和Solomyak[2]曾提出以下的問題:
假設自相似集KRd含有正Lebesgue測度,那么K是否含有內點?
答案是否定的,Csrnyei[3]構造出了一類不滿足開集條件(OSC)[4]的自相似集,而這類自相似集往往含有正的Lebesgue測度,卻不含有內點。另一方面,Schief[5]指出,若某一自相似集滿足開集條件,并且其自相似維數(shù)等于空間維數(shù)時,則當該自相似集的Lebesgue測度大于0時,其內部必然非空。由此可以猜想,當一個分形集具備某種自相似結構,同時滿足一定的分離條件時,該集含有正Lebesgue測度等價于內部非空。事實上,許多研究結果[5-14]支撐著這一猜想。
本文基于Schief的研究結果,將自相似集替換為“弱”不變集(見下文定義),推廣了Schief的相關結論,并且給出了例子進行論證。
1 基本概念與結論
參考文獻:
[1]CD Aliprantis.O Burkinshaw.Principles of Real Analysis.Mathmatical Gazette.66(436):789,1998.
[2]Yuval Peres and Boris Solomyak.Problem on selfsimilar sets and self-affine sets:an update.In Fractal
geometry and stochastics,II(Greifswald/Koserow,1998),volume 46 of Progr.Probab.,pages 95-106.
Birkhuser,Basel,2000.
[3]M.Csrnyei,T.Jordan,M.Pollicott,D.Preiss,and B.Solomyak.Positivemeasure self-similar sets
without interior.Ergodic Theory Dynam.Systems,26(3):755-758,2006.
[4]P.A.P.Moran.Additive functions of intervals and Hausdorff measure.Proc.Cambridge Philos.Soc.,42:15-23,1946.
[5]Andreas Schief.Separation properties for self-similar sets.Proc.Amer.Math.Soc.,122(1):111-115,1994.
[6]Christoph Bandt.Self-similar sets.V.Integer matrices and fractal tilings of Rn.Proc.Amer.Math.Soc.,112(2):549-562,1991.
[7]Christoph Bandt and Siegfried Graf.Self-similar sets.VII.A characterization of self-similar fractals with
positive Hausdorff measure,Proc.Amer.Math.Soc.,114(4):995-1001,1992.
[8]Keqiang Dong and Pengjian Shang.Do self-similar sets with positive Lebesgue measure contain an
interval?Appl.Math.Lett.,23(2):207-211,2010.
[9]Masayoshi Hata.On the structure of eslf-similar sets.Japan J.Appl.Math.,2(2)381-414,1985.
[10]Mike Keane,Meir Smorodinsky,and Boris Solomyak.On the morphology of γexpansions with deleted digits.Trans.Amer.Math.Soc.,347(3):955-966,1995.
[11]Richard Kenyou.Projecting the one-dimensional Sierpinski gasket.Israel J.Math.,97:221-238,1997.
[12]Richard W.Kenyou.Self-similar tilings.ProQuest LLC,Ann Arbor,MI,1990.Thesis(Ph.D.)Princeton University.
[13]Yuval Peres,Micha?Rams,Károly Simon,and Boris Solomyak.Equivalence of positive Hausdorff measure and the open set condition for selfconformal sets.Proc.Amer.Math.Soc.,129(9):2689-2699,2001.
[14]Martin P.W.Zerner.Weak separation properties for self-similar sets.Proc.Amer.Math.Soc.,124(11):3529-3539,1996.
[15]K.J.Falconer,F(xiàn)ractal Geometry:Mathematical Foundations and Applications.Wiley,46(4):499,2003.
作者簡介:羅偉杰(1992-),男,漢族,廣東珠海人,華南理工大學數(shù)學學院,碩士,研究方向:分形幾何。