何曉瑩 趙展輝
摘 要:運用李群理論,證明了BBM-Burgers方程的行波解所滿足的二階非線性自治系統(tǒng)在參數(shù)滿足一定關系時,在經(jīng)典意義下容許一個兩參數(shù)李群,可用積分法求出其首次積分.
關鍵詞:BBM-Burgers方程; 單參數(shù)李群; 首次積分
中圖分類號:O175.1 文獻標志碼:A
0 引言
物理、 化學、 生物、 工程技術等都存在大量的、 重要的非線性問題,這些問題的研究最終可用非線性波動方程這個數(shù)學模型來描述. 對于這些方程的精確解的研究已涌現(xiàn)了大量方法[1-2], 而對于這些方程可積性的研究也是人們關注的問題. 目前有很多種方法判別方程的可積性. 如李群理論[3-6], Liouville可積性理論[7-8]等.
參考文獻
[1] 何曉瑩,趙展輝,韓松. 應用首次積分法求非線性薛定諤方程的精確解[J]. 廣西科技大學學報, 2014, 25(4):19-22.
[2] 何曉瑩,趙展輝. (3+1)-維非線性方程的呼吸類和周期類孤子解[J]. 廣西科技大學學報, 2015, 26(4): 17-25.
[3] OLVER P J. Application of lie groups to differential equations[M]. New York: Springer-Verlag, 1986.
[4] BLUMAN G W, KUMEI S. Symmetric and differential equations[M]. New York:Springer-Verlag, 1989.
[5] LIU M H, GUAN K Y. The lie group and integrablity of the fisher type travelling wave equation[J]. Acta Mathematica Applicatae
Sinina,English Series,2009,25(2): 305-320.
[6] 劉明惠,管克英. 借助Lie群研究Burgers-KdV方程行波解得可積性[J]. 應用數(shù)學學報,2011,34(3):400-411.
[7] SINGER M F. Liouvillian first integrals of differential equations[J]. Trans.Amer.Math.Soc,1992(333): 673-688.
[8] GUAN K Y, LEI J Z. Integrability of second order autonomous system[J].Ann.of Diff.Eqs.,2002(18):117-135.
[9] GUAN K L, LIU S, JIN Z. Lie algebra admitted by an ordinary differential equation system[J]. Ann.of Diff.Eqs.,1998, 14(2):131-142.
Abstract : For BBM-Burgers equation travelling wave solution, which satisfies the second order nonlinear autonomous system, we will apply the Lie group theory to show that the corresponding travelling wave equation admits a double parameter Lie Group in classical sense when the parameter satisfies certain relations. The first integral of the system is solved by the method of integration.
Key words: BBM-Burgers equation; single parameter Lie group; first integral
(學科編輯:張玉鳳)