• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A novel method based on entransy theory for setting energy targets of heat exchanger network☆

    2017-05-29 10:48:04LiXiaYuanliFengXiaoyanSunShuguangXiang
    關(guān)鍵詞:中軸河網(wǎng)中軸線

    Li Xia,Yuanli Feng,Xiaoyan Sun,Shuguang Xiang*

    Institute of Process System Engineering,Qingdao University of Science and Technology,Qingdao 266042,China

    1.Introduction

    Energy is the driving force for economic growth and sustainable development of a country.Simultaneously,a series of environmental and health problems have been caused by energy production and consumption.Currently China has become the first energy producer and the second largest energy consumer in the world.With the rapid economic development and improved standards of living,energy demand in China is continually rising and resource constraints are becoming more seriously[1].

    Heat exchanger networks are widely used in oil refining,chemical,metallurgy,pharmaceutical and other large industrial enterprises.Its significance can be attributed to its role in reducing energy consumption and increasing energy utilization ratio[2].Nowadays,three kinds of heat exchangernetwork synthesis methods have been established:the pinch design method(PDM),the mathematical programming approach,and the artificial intelligence approach.PDM is the most mature and successful method in the heat exchange network design.Besides,PDM is applied to analyze the distribution ofenergy flow along the temperature gradient in the heat transfer process.The maximum energy recovery(MER)network can be obtained by PDM,but the heat transfer efficiency cannot be calculated.With the heatrecovery processes becoming more complex,the PDM has some shortcomings.For example,the operating and investment costs are not considered in this method.

    Heattransfer was widely thoughtto originate in 19th century,which had gradually matured in theory and engineering application[3].The various quantity methods have been used to describe the heat transfer rate,but there is no concept of efficiency for transfer processes.Guoet al.[4]introduced a new physical quantity,entransy,based on the analogy between heat and electrical conduction.The entransy of an object describes its heat transfer ability and “thermal potential energy”.The concept of entransy dissipation was introduced to analyze an irreversible heating transfer process.Moreover,Chenet al.[5,6]derived the extremumprinciple ofentransy dissipation to optimize the processes of the heat conduction.This attracts many scholars to carry out a series of in-depth related research in various directions,such as heat conduction[7–9],heat convection[10],the optimal design of heat exchangers[11,12],mass transfer[13,14],heat radiation[15–17],and multiple transfer process[18].

    In order to analyze the performance of heat transfer processes,Chenet al.[19]introduced a two-dimension property diagram,temperatureheat flow diagram(T-q·diagram).The area between the process curves of the hot and cold streams represented the total entransy dissipation rate in the whole heat exchanger.The diagram can be used to analyze the irreversibility of heat transfer processes.Wuet al.[20]compared the entransy dissipation rates of three simple chemical processes in the temperature-heat flow rate diagram(T-Q·diagram).This approach was applied to evaluate the performance of self-heat recuperation technology(SHRT).

    The theoretical basis for simplifying the complex chemical process was only provided in the previous work,but was not applied to the optimal design of HENs[29].

    This article willpropose an energy targetapproach ofHENs based on the concept of entransy and entransy dissipation.In comparison with the PDM,the entransy method of HENs has some obvious advantages,such as accurate calculation of entransy transfer efficiency,minimizing the entransy dissipation and maximizing the entransy recovery.A real case study is used to show the application of the novel method.Thus,the energy-saving potential of the HENs can be obtained based on the entransy transfer efficiency analysis.

    2.Model and Theoretical Analysis

    2.1.Model of a two-stream heat transfer process with entransy theory

    Guoet al.[4]proposed a new physical quantity,entransy,which correspond to electrical potential energy in a capacitor based on the analogy between electrical and thermal systems.The entransy of an object is,

    whereQvhis thermal capacity of an object with constant volume,cvis specific heatcapacity atconstantvolume,UhorTrepresents the thermal potential.

    For a two-stream heat exchanger,which is operated in steady state,when the temperature drop of the stream is dT,heat flow generating is dQ,and the output entransy is[21]:

    It is assumed that there is no heat exchanging with environment,the change of kinetic and potential energy,the effects of conduction and mixing in the direction ofstream can be ignored[22].The heatcapacities and heat transfer coefficients are defined as constant.

    With these assumptions,specific heat capacity at constant volume and specific heat capacity at constant pressure are approximately equal,which can be written as

    wheremis the mass flow,the subscript h refers to the hot stream,and the subscript c refers to the cold stream.

    The entransy change between the hot and cold streams is

    where the subscripts in and out denote the inlet and outlet states,respectively.

    The entransy dissipation in the whole heatexchange network can be obtained by summing Eqs.(6a)and(6b)

    In Eq.(7),we can see that entransy is not completely conserved due to dissipation,which means the entransy dissipation is a measurement of the irreversibility of heat transfer processes.If the quantity of entransy that the hot streams release is absorbed by the cold streams,the entransy dissipation is reduced.So the effective energy utilization is achieved.

    The entransy transfer efficiency can be used to evaluate the heat transfer performance of HENs,expressed as.

    whereEh,Ecrepresent the quantity of entransy that the hot streams release and the cold streams absorb,respectively.The more entransy that cold streams absorb and the less entransy that hot streams dissipate,the higher entransy transfer efficiency can be obtained.

    2.2.Available entransy and the physical meaning of T-Q diagram

    Entransy possesses both the nature of“energy”and the heattransfer ability.The temperature represents the potentialofthe heatbecause the heat differs at different temperatures.Hence the entransy of hot streams,which means“potentialenergy”ofheat,can be used effectively by cold streams.

    When two objects at different temperatures are in thermal contact,the total quantity of“potential energy”of heat can be transferred,which representthe entransy transfer associated with the heat transfer.Guoet al.[23]considered the entransy as the heat transport potential capacity in an earlierpaper.Chengetal.[24]found thatentransy changes in heat transfer process of an isolated system and a closed system.This principle was called entransy decrease,based on the first and second laws of thermodynamics.That can be written as dG≤0(the equal sign is tenable for an ideal heat transfer process,while the sign of“l(fā)ess than”is tenable for natural heat transfer process),which can be described as the irreversibility of heat transfer process due to entransy loss or heat transfer ability.

    The volume changes are not usually considered in heat transfer.AsTis a state quantity andδQis a process quantity,entransyT·δQis obviously a process quantity.Huet al.[25]derived that the entransy flow of a system,which was called the system entransyG,corresponded to a state quantity in a reversible process with constant volume.

    Based on the first law of thermodynamics,the energy balance equation can be expressed as.

    Eq.(9)points out that in entransy transfer,a portion of the entransy flow will be converted into work entransy,T·δW,which makes no contribution to the heating or cooling of an object.T·dUis the available portion of the entransy flow,which is called the available entransy.

    As mentioned above,the heat transfer process of streams can be shown in theT-Qdiagram.It is clear that the heat transfer capability should be enhanced in the HENs.The available entransy,which makes contribution to the heating or cooling streams,needs to be maximized.Thus,the heat transfer performance is improved,and the effective utilization of energy is realized.

    3.Novel Method to Setting the Energy Targets

    The tasks of HENs synthesis are minimizing capital and operating costs,achieving the initial temperature to the target temperature.The feed,which starts cold and needs to be heated up,is called as a cold stream;conversely which starts hot and needs to be cooled down,is called as a hot stream[26].

    Fig.1.The property diagram in heat transfer processes of streams.

    During the heattransferprocesses,the change of heat is equal to the enthalpy change of each stream.In Fig.2,theT-axis is a continuous change and theQ-axis is a relative change.If process curve is shifted along theQ-axis,the change of temperature,heat and entransy will not affect the property of stream.Thus,to handle multiple streams,it is convenient to combine the lines of multiple streams into a single curve.

    Fig.2 shows a formation of the hot composite curve.It is formed by three hot streams,whose heat capacity flow rates are named as A,B,C.The enthalpy change can be calculated in a series of every interval temperatures.If there is only one line in an interval,the slope cannot be changed.If multiple lines exit in an interval,the temperature of vertical coordinates in this interval remains unchanged,the enthalpy change of horizontal coordinates added together,which means the vector sum of these lines in this interval can be got.Finally,the line segments are connected end-to-end to form a single curve,shown in Fig.2(b).

    Using the same method,the cold composite curve can be obtained.Therefore,the green shade area between the hot and cold streams in Fig.3 is the total entransy dissipation,ΔE,·as shown in Eq.(7).The blue shaded area under the cold composite curve,which is identified as the entransy recovery of the system,indicates that the cold streams effectively utilize the entransy transferred from the hot streams.

    For a heat exchanger network,in order to meet the actual industrial production needs,the quantity of entransy that the hot stream releases is not completely absorbed by the cold stream.The entransy required for the cold stream to be heated to the target temperature cannot be provided entirely by the hot stream.Generally we need additional hot and cold utilities in the system.

    The maximum energy recovery and the minimum utility requirements can be achieved by the HENs synthesis method,which means that the entransy of all hot streams can possibly be absorbed in maximum by the cold streams.Meanwhile for the maximumentransy recovery,the minimum entransy dissipation and the minimum utility requirements are represented in the optimization of heat exchanger network,shown in Fig.4.

    For the design of heat exchangers,considering exchanger area,utility requirements and capital cost with minimum approach temperatureΔTminchanges.There isan optimumvalue forΔTmin,which isusually 10–20 K.

    本文所提方法最大的特點(diǎn)在于滿足中軸線提取結(jié)果可視化的基本要求下,實(shí)現(xiàn)了全自動(dòng)化提取。對(duì)提取結(jié)果完成拓?fù)錂z查后,直接進(jìn)行網(wǎng)絡(luò)空間分析。比如對(duì)于河網(wǎng)中軸可進(jìn)行連通性分析。由于本文所選數(shù)據(jù)為河網(wǎng)數(shù)據(jù),以下將對(duì)中軸提取結(jié)果建立網(wǎng)絡(luò)拓?fù)洳⑦M(jìn)行連通性分析。

    In Fig.4,the hot and cold composite curves are shifted on theQ-axis and close to each other.Until the two composite curves reach to the predetermined target position(ΔTmin)in a vertical direction,the lower right corner area indicates the minimum entransy of hot utility requirements(Eh,min),which means the cold streams can be entirely heated to target temperature.The lower left corner area indicates the minimum entransy of cold utility requirements(Ec,min),which means the hot streams can be entirely cooled to target temperature.And the overlapped area between the composite curves represents the maximum entransy recovery and the minimum entransy dissipation.

    Fig.3.The property diagram in heat transfer processes between hot and cold streams.Meanwhile,the amount of entransy dissipation and entransy recovery are shown in this diagram.

    Fig.2.Example of formation of the hot composite curve:(a)A T-Q diagram of three hot streams;(b)The process of forming a hot composite curve through three hot streams.

    Entropy,which is another kind of physical quantity in thermodynamics,is a measure of the irreversibility of a process and the randomness of a system.The entropy theory is mainly applied to the heat-work conversion optimization in reversible process,but there is an“entropy paradox”[27].That is with the increase of heat exchanger effectiveness,the entropy generation number is also increased.In addition,entropy cannot be used to describe energy quality.However,entransy is developed to describe heat transfer ability of a real system.The entransy dissipation number,which is introduced by the theory of entransy dissipation,can resolve entropy generation paradox.The entransy dissipation number can correctly describe the global performance of the heatexchangers with three different flow arrangements simultaneously[28].Compared with the entropy analysis,the entransy analysis has obvious advantages.

    Fig.4.The property diagram in heat transfer processes of all hot and cold streams in the HENs.

    4.Case Study

    The diesel oil hydrogenation unit of one petrochemical company includes reaction,fractionation,acid gas desulfurization,and the design scale is 3.4 million tons per year.According to limits and measurement methods for emission from light-duty vehicles(China 5),part of the transformation ofthe unitis to meetthe requirements ofthe production of diesel oil.To reduce the external hot utility usage,the optimization of heatexchanger network has a practical significance.The data of hot and cold streams are shown in Tables 1,2.The process flow diagram of the units is shown in Fig.5 and the hot and cold streams are simultaneously represented(red represents hot stream and blue represents cold stream).

    Table 1The data of hot streams

    Table 2The data of cold streams

    4.1.Before setting the energy target of diesel oil hydrogenation unit

    According to Table 1,the hot and cold composite curves are shown in Fig.6.As a result,the entransy of hot streams is 6.762×107kW·K while the entransy of cold streams is 6.352×107kW·K.There is no overlapped area between the composite curves,which means the quantity of entransy that the hot streams release is not absorbed by the cold streams.Hence,there are no entransy recovery,the minimum entransy dissipation is 1.311×108kW·K.

    4.2.After setting the energy target of diesel oil hydrogenation unit

    Itis assumed thatthe minimum approach temperatureΔTminis 10 K.The cold and hot stream composite curves are shown in Fig.7.

    As a result,the entransy of hot streams is 6.762×107kW·K,the entransy ofcold streams is 6.352×107kW·K,the entransy of hot utility is 8.543×106kW·K,the entransy of cold utility is 7.428×106kW·K,so the entransy recovery is 5.498×107kW·K,the entransy dissipation is 5.212×106kW·K,and the entransy transfer efficiency is 92.29%.

    Using the similar methods mentioned,one can obtain the optimization results of three different minimum approach temperatures:10 K,15 K,and 20 K.The results of comparing three different energy targets are listed in Table 3.

    From the results of calculation,we can see that the quantity of entransy is influenced by the variation of temperature difference.Corresponding to the minimum temperature difference,ΔTminis given as 10 K,15 K,and 20 K while the entransy recovery is 5.498× 107kW·K,5.377× 107kW·K,and 5.257× 107kW·K,respectively.The entransy dissipation is 5.212× 106k W·K,5.661×106kW·K,and 6.093×106kW·K.Therefore,the entransy transfer efficiency is 92.29%,91.63%,and 90.99%.It is obvious that the larger the temperature difference,the more hot and cold the utility requirements,the less the entransy recovery,the more the entransy dissipation,and the lower the entransy transfer efficiency.

    The heat transfer rate equation could be expressed as.

    whereAis the heat transfer area,Uis heat transfer coefficient.ΔTLMis the log mean temperature difference,which expression is

    It is found that the heat exchanger area is inversely proportional to the temperature difference.For an actual heat exchanger,the lower values of ΔTmincan lead to larger area and more capital cost.Therefore,in the design of heat exchanger network,we need a comprehensive consideration of operating and capital costs,heat exchanger surface area,process conditions,etc.Finally,the optimal minimum approach temperature,ΔTminand the effective energy utilization can be obtained.

    Fig.5.The process flow diagram of diesel oil hydrogenation unit.In the diagram,red represents hot streams and blue represents cold streams.

    5.Conclusions

    This paper has presented a novel method based on entransy theory forsetting energy targets ofHENs inT-Qdiagram.The hotand cold composite curves can be obtained in theT-Qdiagram.

    Fig.6.The heat transfer property diagram of the diesel oil hydrogenation unit before setting the energy target.

    Fig.7.The heattransfer property diagram of the diesel oilhydrogenation unitafter setting the energy target.

    Table 3The results of setting different energy targets,ΔT min=10 K,15 K,20 K

    Therefore,the shaded area between the hot and cold composite curves stood for the entransy dissipation.The effectofdifferent temperature differences on entransy recovery was researched.It was found that the higher values of ΔTmincan lead to more hot and cold utility requirements,the more entransy dissipation,the less entransy recovery and the lower entransy transferefficiency.Steps to setthe optimalenergy target of heat exchange network inT-Qdiagram based on entransy theory were determined.

    The diesel oil hydrogenation unit of the industrial case study was shown in this paper.Comparing the three different temperature difference results,the optimalenergy targetwas obtained.The entransy recovery was 5.498× 107kW·K,5.377× 107kW·K,and 5.257×107kW·K,and the entransy transfer efficiency was 92.29%,91.63%,and 90.99%in 10 K,15 K,and 20 K,respectively.The higher values of ΔTmincan lead to less entransy recovery,and the entransy transfer efficiency was obviously reduced.Therefore,the entransy theory is more suitable for the analysis of HENs energy efficient use.

    Thismethod can be used asa criterion forthe maximum entransy recovery of HENs.This paper has an important guideline value for setting the optimal minimum approach temperature of a heat exchanger network.It is worth making a further study on the synthesis of HENs of entransy theory.The principle and strategy of the synthesis of HENs can be proposed in the future.

    Nomenclature

    Aheat transfer area,m2

    CPheat capacity flowrate,kW·K-1

    cvspecific heat at constant volume,kJ·kg-1·K-1

    cpspecific heat at constant pressure,kJ·kg-1·K-1

    Evhentransy,kW·K

    Gsystem entransy,kW·K

    mmass,kg·s-1

    Q·heat flow rate,W

    Qtthe total heat transfer,W

    Qvhthermal capacity of an object,J

    q·heat flux,W·m-2

    Ttemperature,K

    Uheat transfer coefficient,kW·m-2·K-1

    Uhthermal potential,K

    Wwork,J

    η entransy transfer efficiency,%

    ΔTLMthe log mean temperature difference,K

    ΔTminminimum approach temperature,K

    Subscripts

    c cold stream

    h hot stream

    in inlet state

    outlet outlet state

    rev reversible condition

    [1]H.Hu,X.H.Zhang,L.L.Lin,The interactions between China's economic growth,energy production and consumption and the related air emissions during 2000–2011,Ecol.Indic.46(46)(2014)38–51.

    [2]K.C.Furman,N.V.Sahinidis,A critical review and annotated bibliography for heat exchanger network synthesis in the 20th century,Ind.Eng.Chem.Res.41(10)(2002)2335–2370.

    [3]A.E.Bergles,Heat transfer enhancement—The encouragement and accommodation of high heat fluxes,J.Heat Transf.119(1)(1997)8–19.

    [4]Z.Y.Guo,H.Y.Zhu,X.G.Liang,Entransy—A physical quantity describing heat transfer ability,Int.J.Heat Mass Transf.50(13)(2007)2545–2556.

    [5]X.G.Cheng,Z.X.Li,Z.Y.Guo,Variational principles in heat conduction,J.Eng.Thermophys.25(3)(2004)457–459.(in Chinese)

    [6]X.G.Cheng,Entransy and Its Application in Heat Transfer Optimization Ph.D.Thesis Tsinghua University,Beijing,2004.(in Chinese)

    [7]Z.H.Xie,L.G.Chen,F.R.Sun,Constructal optimization on T-shaped cavity based on entransy dissipation minimization,Chin.Sci.Bull.54(23)(2009)4418–4427.

    [8]S.H.Wei,L.G.Chen,F.R.Sun,Constructal entransy dissipation minimization for“volume-point”heat conduction based on triangular element,Therm.Sci.14(4)(2010)1075–1088.

    [9]X.T.Cheng,X.H.Xu,X.G.Liang,Homogenization of temperature field for the thermal radiator in space,J.Eng.Thermophys.31(6)(2010)1031–1033.(in Chinese)

    [10]J.A.Meng,Z.J.Chen,Z.X.Li,Z.Y.Guo,Field-coordination analysis and numerical study on turbulent convective heat transfer enhancement,J.Enhanc.Heat Transf.12(1)(2005)73–84.

    [11]X.B.Liu,J.A.Meng,Z.Y.Guo,Entropy generation extremum and entransy dissipation extremum for heat exchanger optimization,Chin.Sci.Bull.54(6)(2009)943–947.

    [12]Q.H.Xiao,L.G.Chen,F.R.Sun,Constructal entransy dissipation rate minimization for umbrella-shaped assembly of cylindrical fins,Sci.China Technol.Sci54(1)(2011)211–219.

    [13]Q.Chen,J.X.Ren,Z.Y.Guo,The extremum principle of mass entransy dissipation and its application to decontamination ventilation designs in space station cabins,Chin.Sci.Bull.54(16)(2009)2862–2870.

    [14]S.J.Xia,L.G.Chen,F.R.Sun,Entransy dissipation minimization for liquid–solid phase processes,Sci.China Technol.Sci.53(4)(2010)960–968.

    [15]J.Wu,X.G.Liang,Application ofentransy dissipation extremum principle in radiative heat transfer optimization,Sci.China51(8)(2008)1306–1314.

    [16]S.J.Xia,L.G.Chen,F.R.Sun,Optimalpaths for minimizing entransy dissipation during heat transfer processes with generalized radiative heat transfer law,Appl.Math.Model.34(8)(2010)2242-225.

    [17]S.P.Wang,Q.L.Chen,B.J.Zhang,An equation of entransy and its application,Chin.Sci.Bull.54(19)(2009)3572–3578.

    [18]A.Bejan,Street network theory of organization in nature,J.Adv.Transp.30(2)(1996)85–107.

    [19]Q.Chen,Y.C.Xu,Z.Y.Guo,The property diagram in heat transfer and its applications,Chin.Sci.Bull.57(57)(2012)4646–4652.

    [20]J.Wu,Z.Y.Guo,Application ofentransy analysis in self-heatrecuperation technology,Ind.Eng.Chem.Res.53(3)(2013)1274–1285.

    [21]Z.Y.Guo,X.B.Liu,W.Q.Tao,R.K.Shah,Effectiveness thermal resistance method for heat exchanger design and analysis,Int.J.Heat Mass Transf.53(13–14)(2010)2877–2884.

    [22]VDI-Gesellschaft,VDI Heat Atlas,Springer,Berlin,2010.

    [23]Z.Y.Guo,X.G.Cheng,Z.Z.Xia,Least dissipation principle of heat transport potential capacity and its application in heat conduction optimization,Chin.Sci.Bull.48(4)(2003)406–410.(in Chinese)

    [24]X.T.Cheng,X.G.Liang,Z.Y.Guo,Entransy decrease principle of heat transfer in an isolated system,Chin.Sci.Bull.56(9)(2011)847–854.

    [25]G.J.Hu,B.Y.Cao,Z.Y.Guo,Entransy and entropy revisited,Chin.Sci.Bull.56(27)(2011)2974–2977.

    [26]I.C.Kemp,Pinch Analysis and Process Integration,Elsevier Ltd.,Oxford,2006.

    [27]A.Bejan,Advanced Engineering Thermodynamics,Wiley,New York,1988.

    [28]J.F.Guo,L.Cheng,M.T.Xu,Entransy dissipation number and its application to heat exchanger performance,Chin.Sci.Bull.54(15)(2009)2974–2977.

    [29]L.Xia,Y.L.Feng,S.G.Xiang,Progress and application of entransy theory in energy saving of chemical processes,CIESC J.67(12)(2016)4915–4921.

    猜你喜歡
    中軸河網(wǎng)中軸線
    漫畫北京中軸線(三)
    《穿越北京中軸線》簡介
    基于小世界網(wǎng)絡(luò)的海河流域河網(wǎng)結(jié)構(gòu)及功能響應(yīng)
    行走中軸線 尋找城市靈魂
    中國收藏(2023年6期)2023-06-08 21:13:31
    一線中軸,承古通今
    金橋(2022年7期)2022-07-22 08:33:08
    灣區(qū)樞紐,四心匯聚! 廣州中軸之上,發(fā)現(xiàn)全新城市中心!
    城市中軸之上,“雙TOD”超級(jí)綜合體塑造全新城市中心!
    數(shù)字經(jīng)濟(jì)+中軸力量,廣州未來十年發(fā)展大動(dòng)脈在這!
    基于PSR模型的上海地區(qū)河網(wǎng)脆弱性探討
    不同引水水源對(duì)平原河網(wǎng)影響分析
    成人免费观看视频高清| 狂野欧美激情性bbbbbb| 午夜激情av网站| 不卡一级毛片| 午夜免费观看性视频| 国产伦理片在线播放av一区| 69av精品久久久久久 | 美女大奶头黄色视频| 丝袜人妻中文字幕| 日本vs欧美在线观看视频| 亚洲精品国产一区二区精华液| 黄频高清免费视频| 18禁裸乳无遮挡动漫免费视频| 美女扒开内裤让男人捅视频| 久久人人爽av亚洲精品天堂| 亚洲午夜精品一区,二区,三区| 国产高清视频在线播放一区 | 国产精品免费大片| 一本综合久久免费| 91字幕亚洲| 80岁老熟妇乱子伦牲交| 久久人妻熟女aⅴ| 国产av精品麻豆| 一区在线观看完整版| 夜夜夜夜夜久久久久| 制服人妻中文乱码| 丝袜脚勾引网站| 午夜影院在线不卡| 视频区欧美日本亚洲| 日韩人妻精品一区2区三区| 国产精品久久久久久人妻精品电影 | 黑人巨大精品欧美一区二区蜜桃| 深夜精品福利| 亚洲精品自拍成人| av网站在线播放免费| 夜夜骑夜夜射夜夜干| 久久久精品区二区三区| 国产精品久久久人人做人人爽| 亚洲国产精品999| 欧美精品人与动牲交sv欧美| 少妇的丰满在线观看| 天堂8中文在线网| av在线播放精品| 亚洲精品第二区| av在线app专区| 免费在线观看完整版高清| 亚洲成av片中文字幕在线观看| 午夜福利在线观看吧| 菩萨蛮人人尽说江南好唐韦庄| 国产成人一区二区三区免费视频网站| 国产人伦9x9x在线观看| 黄色视频在线播放观看不卡| 色综合欧美亚洲国产小说| 国产成人av激情在线播放| 热99国产精品久久久久久7| 国产精品1区2区在线观看. | 麻豆av在线久日| 欧美日韩亚洲国产一区二区在线观看 | 日韩一区二区三区影片| 久久亚洲国产成人精品v| 亚洲国产精品一区二区三区在线| 操美女的视频在线观看| 99久久精品国产亚洲精品| 啦啦啦中文免费视频观看日本| a级毛片黄视频| 好男人电影高清在线观看| 久久久欧美国产精品| 人人妻人人澡人人爽人人夜夜| 日韩大码丰满熟妇| 日韩大片免费观看网站| 亚洲成人手机| 中文字幕制服av| videosex国产| 99热国产这里只有精品6| 美女扒开内裤让男人捅视频| 91精品国产国语对白视频| 男人爽女人下面视频在线观看| 伊人久久大香线蕉亚洲五| 久久中文看片网| av有码第一页| 最新在线观看一区二区三区| 99久久99久久久精品蜜桃| 国产精品一二三区在线看| 欧美97在线视频| 日韩,欧美,国产一区二区三区| 如日韩欧美国产精品一区二区三区| 熟女少妇亚洲综合色aaa.| 王馨瑶露胸无遮挡在线观看| 91老司机精品| 亚洲熟女毛片儿| 日韩精品免费视频一区二区三区| 老司机影院毛片| 国产黄频视频在线观看| 免费av中文字幕在线| 亚洲欧洲精品一区二区精品久久久| 9色porny在线观看| 高清视频免费观看一区二区| 亚洲国产日韩一区二区| avwww免费| 高清视频免费观看一区二区| 国产日韩欧美在线精品| 手机成人av网站| 欧美日韩亚洲高清精品| 国产精品免费大片| 国产成人啪精品午夜网站| 欧美久久黑人一区二区| 青青草视频在线视频观看| 中文字幕av电影在线播放| 成人国语在线视频| 精品一区二区三区四区五区乱码| 免费观看a级毛片全部| 亚洲国产精品一区二区三区在线| 五月开心婷婷网| 婷婷成人精品国产| a 毛片基地| 老司机在亚洲福利影院| 国产老妇伦熟女老妇高清| 女人爽到高潮嗷嗷叫在线视频| 国产亚洲精品一区二区www | tube8黄色片| 久久精品国产亚洲av香蕉五月 | 亚洲成国产人片在线观看| 亚洲欧美日韩高清在线视频 | 国产精品1区2区在线观看. | 亚洲精品久久久久久婷婷小说| 高清在线国产一区| 亚洲五月色婷婷综合| 精品人妻在线不人妻| 亚洲精品美女久久久久99蜜臀| 欧美日韩成人在线一区二区| 亚洲国产精品一区三区| 动漫黄色视频在线观看| 免费高清在线观看日韩| 国产激情久久老熟女| 岛国在线观看网站| 男女床上黄色一级片免费看| 最黄视频免费看| 久久久久久久久免费视频了| 伊人久久大香线蕉亚洲五| 五月开心婷婷网| 中文字幕人妻熟女乱码| 丰满迷人的少妇在线观看| 飞空精品影院首页| 日韩视频一区二区在线观看| 亚洲精品乱久久久久久| 亚洲中文字幕日韩| 十八禁网站免费在线| 国产精品成人在线| 欧美精品av麻豆av| 丰满饥渴人妻一区二区三| 久久久欧美国产精品| 久久天躁狠狠躁夜夜2o2o| 青青草视频在线视频观看| 久久久久久免费高清国产稀缺| 蜜桃在线观看..| 亚洲欧美一区二区三区黑人| 老司机午夜福利在线观看视频 | 精品第一国产精品| 下体分泌物呈黄色| 一区二区日韩欧美中文字幕| 日韩大码丰满熟妇| 黄色片一级片一级黄色片| 久久国产亚洲av麻豆专区| 久久久久久人人人人人| 俄罗斯特黄特色一大片| 法律面前人人平等表现在哪些方面 | 免费在线观看完整版高清| 精品熟女少妇八av免费久了| 91精品伊人久久大香线蕉| 蜜桃国产av成人99| 精品免费久久久久久久清纯 | 亚洲精品成人av观看孕妇| 成年动漫av网址| 美女高潮到喷水免费观看| 国产国语露脸激情在线看| 精品少妇内射三级| 女人高潮潮喷娇喘18禁视频| 午夜福利免费观看在线| 高清在线国产一区| 性色av一级| 久久久欧美国产精品| 日本一区二区免费在线视频| 91精品伊人久久大香线蕉| 久久久久久久大尺度免费视频| 日本黄色日本黄色录像| 欧美中文综合在线视频| 蜜桃国产av成人99| 亚洲人成77777在线视频| 婷婷丁香在线五月| 美女国产高潮福利片在线看| 他把我摸到了高潮在线观看 | 成人国语在线视频| 午夜激情av网站| kizo精华| 亚洲精品日韩在线中文字幕| av天堂久久9| 另类精品久久| 午夜福利,免费看| 国产97色在线日韩免费| 成年人午夜在线观看视频| 深夜精品福利| 久久久久久亚洲精品国产蜜桃av| 岛国在线观看网站| 在线天堂中文资源库| 免费在线观看黄色视频的| 亚洲欧美日韩高清在线视频 | 国产成人免费无遮挡视频| 12—13女人毛片做爰片一| 岛国毛片在线播放| 自拍欧美九色日韩亚洲蝌蚪91| 国产无遮挡羞羞视频在线观看| 国产欧美日韩精品亚洲av| 日韩有码中文字幕| 手机成人av网站| 欧美黑人欧美精品刺激| 老司机午夜十八禁免费视频| 91九色精品人成在线观看| 久久毛片免费看一区二区三区| 青草久久国产| 91精品国产国语对白视频| 久久精品熟女亚洲av麻豆精品| 亚洲激情五月婷婷啪啪| 久久久久久久精品精品| 国产在线观看jvid| 99香蕉大伊视频| 热re99久久国产66热| 97在线人人人人妻| 亚洲精品日韩在线中文字幕| 超碰成人久久| 一区福利在线观看| 久久精品久久久久久噜噜老黄| 精品卡一卡二卡四卡免费| 国产野战对白在线观看| 欧美精品人与动牲交sv欧美| 丝袜美足系列| 午夜福利乱码中文字幕| 在线观看免费日韩欧美大片| 99国产精品一区二区三区| kizo精华| 99久久精品国产亚洲精品| 美女国产高潮福利片在线看| 日韩三级视频一区二区三区| 欧美另类亚洲清纯唯美| 国产一级毛片在线| 久久人妻福利社区极品人妻图片| 欧美大码av| 国产精品99久久99久久久不卡| 一本一本久久a久久精品综合妖精| 如日韩欧美国产精品一区二区三区| 欧美 亚洲 国产 日韩一| videos熟女内射| 两个人免费观看高清视频| 亚洲专区国产一区二区| 咕卡用的链子| 韩国高清视频一区二区三区| 在线观看免费视频网站a站| 97在线人人人人妻| 国产一区二区三区综合在线观看| 一级,二级,三级黄色视频| 精品国产乱子伦一区二区三区 | 亚洲成人国产一区在线观看| 一区二区av电影网| 亚洲va日本ⅴa欧美va伊人久久 | 纵有疾风起免费观看全集完整版| 脱女人内裤的视频| 精品亚洲成国产av| 亚洲五月婷婷丁香| 欧美人与性动交α欧美软件| 国产一卡二卡三卡精品| 性少妇av在线| 999久久久精品免费观看国产| 老司机影院毛片| 大码成人一级视频| 亚洲专区中文字幕在线| 1024视频免费在线观看| 国产精品 欧美亚洲| 嫩草影视91久久| 纵有疾风起免费观看全集完整版| 国产免费视频播放在线视频| 国产一卡二卡三卡精品| 一本—道久久a久久精品蜜桃钙片| 午夜激情av网站| 精品国产乱码久久久久久男人| 国产男人的电影天堂91| 亚洲精品国产区一区二| 国产成人精品无人区| 欧美久久黑人一区二区| 一区福利在线观看| 久久久精品94久久精品| 国产精品一区二区免费欧美 | 永久免费av网站大全| 日本av手机在线免费观看| 亚洲精品一区蜜桃| 在线观看免费日韩欧美大片| 无限看片的www在线观看| www.av在线官网国产| 国产有黄有色有爽视频| av在线播放精品| 悠悠久久av| 亚洲av日韩精品久久久久久密| 久久九九热精品免费| 一本久久精品| 人人妻人人爽人人添夜夜欢视频| 国产麻豆69| 飞空精品影院首页| 18在线观看网站| 精品少妇久久久久久888优播| 国产精品香港三级国产av潘金莲| 在线观看免费午夜福利视频| 亚洲va日本ⅴa欧美va伊人久久 | 在线观看免费午夜福利视频| 欧美日韩av久久| 国产又色又爽无遮挡免| 国产精品秋霞免费鲁丝片| 下体分泌物呈黄色| 精品乱码久久久久久99久播| 欧美中文综合在线视频| 新久久久久国产一级毛片| 大陆偷拍与自拍| 国产片内射在线| 18禁观看日本| www.av在线官网国产| 国产精品一区二区免费欧美 | 多毛熟女@视频| 国产欧美日韩一区二区三区在线| 又大又爽又粗| 亚洲欧美精品综合一区二区三区| 成在线人永久免费视频| 91老司机精品| 国产一区二区三区综合在线观看| 久久ye,这里只有精品| 日韩电影二区| 午夜老司机福利片| 欧美日韩亚洲高清精品| 丝袜人妻中文字幕| 亚洲专区字幕在线| 精品国产一区二区三区久久久樱花| 国产片内射在线| 黑人巨大精品欧美一区二区蜜桃| bbb黄色大片| 日韩中文字幕欧美一区二区| 久久人妻福利社区极品人妻图片| 搡老熟女国产l中国老女人| 精品乱码久久久久久99久播| 久久久久视频综合| 在线观看一区二区三区激情| 三级毛片av免费| 一区二区三区乱码不卡18| 久久久欧美国产精品| 亚洲av男天堂| 国产成人a∨麻豆精品| 国产一区二区激情短视频 | 美女国产高潮福利片在线看| 欧美变态另类bdsm刘玥| 又紧又爽又黄一区二区| 狠狠精品人妻久久久久久综合| 亚洲,欧美精品.| 国产成人精品无人区| 久久久久国产一级毛片高清牌| 国产成人精品久久二区二区免费| 99久久人妻综合| 最近中文字幕2019免费版| 美女主播在线视频| 免费久久久久久久精品成人欧美视频| 热re99久久国产66热| 另类精品久久| 亚洲人成77777在线视频| 国产成人欧美在线观看 | 亚洲av片天天在线观看| 老司机影院成人| 日韩视频在线欧美| 亚洲一码二码三码区别大吗| 国产一区二区在线观看av| 夜夜骑夜夜射夜夜干| 黑人巨大精品欧美一区二区mp4| 美女午夜性视频免费| 99国产精品一区二区蜜桃av | 精品高清国产在线一区| 欧美另类一区| 91老司机精品| 亚洲欧美一区二区三区久久| 极品少妇高潮喷水抽搐| 国产亚洲欧美在线一区二区| 精品国产乱码久久久久久小说| 日日爽夜夜爽网站| 午夜两性在线视频| www.999成人在线观看| 精品国产一区二区久久| 国产1区2区3区精品| 丰满饥渴人妻一区二区三| a级片在线免费高清观看视频| 中文欧美无线码| 国产在视频线精品| 美女高潮喷水抽搐中文字幕| 中文字幕色久视频| 天天躁夜夜躁狠狠躁躁| 最近最新免费中文字幕在线| 丝袜美足系列| 人人妻人人爽人人添夜夜欢视频| 老司机午夜福利在线观看视频 | 丰满迷人的少妇在线观看| 91成人精品电影| 天天操日日干夜夜撸| 国产麻豆69| 黄色毛片三级朝国网站| 精品一品国产午夜福利视频| 1024视频免费在线观看| av国产精品久久久久影院| 极品少妇高潮喷水抽搐| 母亲3免费完整高清在线观看| 一本—道久久a久久精品蜜桃钙片| 欧美国产精品va在线观看不卡| 亚洲第一av免费看| 女人精品久久久久毛片| 国产精品影院久久| 少妇的丰满在线观看| videos熟女内射| 18禁黄网站禁片午夜丰满| 嫩草影视91久久| 波多野结衣一区麻豆| 97精品久久久久久久久久精品| 又大又爽又粗| 黄色视频在线播放观看不卡| 亚洲人成77777在线视频| 免费一级毛片在线播放高清视频 | 精品少妇黑人巨大在线播放| 国产高清国产精品国产三级| 一个人免费看片子| 国产成人欧美在线观看 | 菩萨蛮人人尽说江南好唐韦庄| 18禁观看日本| 精品熟女少妇八av免费久了| 飞空精品影院首页| 亚洲国产av新网站| 国产深夜福利视频在线观看| 在线观看免费日韩欧美大片| 亚洲国产成人一精品久久久| 欧美日韩视频精品一区| 欧美精品亚洲一区二区| 色精品久久人妻99蜜桃| 色老头精品视频在线观看| 免费观看av网站的网址| 国产精品久久久久久精品电影小说| 国产免费福利视频在线观看| 99国产精品一区二区三区| 亚洲精华国产精华精| 色婷婷久久久亚洲欧美| 黄频高清免费视频| 手机成人av网站| 免费女性裸体啪啪无遮挡网站| 国产成人a∨麻豆精品| 亚洲精品粉嫩美女一区| 女人爽到高潮嗷嗷叫在线视频| 人人妻人人澡人人爽人人夜夜| 高潮久久久久久久久久久不卡| 午夜福利免费观看在线| 丰满少妇做爰视频| 男女床上黄色一级片免费看| 国精品久久久久久国模美| 岛国毛片在线播放| 久久青草综合色| 美女脱内裤让男人舔精品视频| 国产成人免费无遮挡视频| www.999成人在线观看| netflix在线观看网站| 五月开心婷婷网| 亚洲精品av麻豆狂野| 国产在线视频一区二区| 啦啦啦在线免费观看视频4| 久久久精品免费免费高清| 亚洲精品国产一区二区精华液| 国产真人三级小视频在线观看| 国产麻豆69| 精品国产一区二区三区四区第35| 高清av免费在线| 午夜影院在线不卡| 搡老乐熟女国产| 蜜桃在线观看..| 免费av中文字幕在线| 欧美日本中文国产一区发布| 人人澡人人妻人| 一区福利在线观看| 国产精品一区二区免费欧美 | 性少妇av在线| 女人高潮潮喷娇喘18禁视频| 免费人妻精品一区二区三区视频| 建设人人有责人人尽责人人享有的| 交换朋友夫妻互换小说| 秋霞在线观看毛片| 亚洲人成电影观看| 妹子高潮喷水视频| 国产黄频视频在线观看| 亚洲国产欧美日韩在线播放| 99热国产这里只有精品6| 亚洲专区国产一区二区| 国产精品 国内视频| 不卡av一区二区三区| 久久人妻福利社区极品人妻图片| 黄色怎么调成土黄色| 国产一区二区三区综合在线观看| 啦啦啦视频在线资源免费观看| 久久天堂一区二区三区四区| 青青草视频在线视频观看| 91精品三级在线观看| 亚洲av电影在线观看一区二区三区| 成人亚洲精品一区在线观看| 大片免费播放器 马上看| 精品少妇黑人巨大在线播放| 亚洲自偷自拍图片 自拍| 狠狠婷婷综合久久久久久88av| 免费在线观看视频国产中文字幕亚洲 | 国产精品秋霞免费鲁丝片| 免费在线观看影片大全网站| 最新在线观看一区二区三区| 啦啦啦免费观看视频1| 99久久精品国产亚洲精品| 久久亚洲精品不卡| 国产片内射在线| 精品一区二区三卡| 亚洲欧洲精品一区二区精品久久久| 亚洲av成人不卡在线观看播放网 | 97人妻天天添夜夜摸| 美女大奶头黄色视频| 免费在线观看视频国产中文字幕亚洲 | 久久久国产成人免费| 12—13女人毛片做爰片一| 少妇的丰满在线观看| 一区福利在线观看| 成人影院久久| www.999成人在线观看| 国产成人啪精品午夜网站| 他把我摸到了高潮在线观看 | 亚洲人成77777在线视频| 欧美日韩av久久| 这个男人来自地球电影免费观看| 超碰97精品在线观看| 成年女人毛片免费观看观看9 | 国产熟女午夜一区二区三区| 国产欧美日韩一区二区三区在线| 午夜激情久久久久久久| 少妇被粗大的猛进出69影院| 国产成人欧美在线观看 | 一区二区三区乱码不卡18| 日韩欧美一区二区三区在线观看 | 精品少妇久久久久久888优播| 久久精品国产亚洲av香蕉五月 | cao死你这个sao货| 欧美日韩av久久| 欧美日韩一级在线毛片| 午夜福利视频在线观看免费| 爱豆传媒免费全集在线观看| 亚洲av美国av| 一区二区三区四区激情视频| 在线天堂中文资源库| 国产亚洲精品一区二区www | 欧美精品啪啪一区二区三区 | 亚洲欧洲精品一区二区精品久久久| 国产精品国产av在线观看| 午夜免费鲁丝| 满18在线观看网站| 国产视频一区二区在线看| 电影成人av| 欧美日韩亚洲高清精品| 夜夜夜夜夜久久久久| av天堂在线播放| 欧美国产精品一级二级三级| 深夜精品福利| 岛国毛片在线播放| 国产精品免费视频内射| 汤姆久久久久久久影院中文字幕| av线在线观看网站| av网站在线播放免费| 欧美在线黄色| 欧美大码av| 国产欧美日韩精品亚洲av| 自拍欧美九色日韩亚洲蝌蚪91| 国产日韩欧美在线精品| 正在播放国产对白刺激| 午夜福利视频在线观看免费| 大片电影免费在线观看免费| 国产xxxxx性猛交| 搡老乐熟女国产| 亚洲精品粉嫩美女一区| 99国产精品一区二区三区| 成年人免费黄色播放视频| 狂野欧美激情性bbbbbb| 中亚洲国语对白在线视频| 精品国产超薄肉色丝袜足j| 老司机福利观看| 精品乱码久久久久久99久播| av一本久久久久| 日韩熟女老妇一区二区性免费视频| 丝袜美足系列| 亚洲美女黄色视频免费看| 亚洲精品一区蜜桃| svipshipincom国产片| h视频一区二区三区| 久久精品国产综合久久久| 啦啦啦 在线观看视频| 亚洲国产精品一区三区| 一边摸一边抽搐一进一出视频| 免费在线观看视频国产中文字幕亚洲 | 色播在线永久视频| 在线永久观看黄色视频| 久久久久久亚洲精品国产蜜桃av| 动漫黄色视频在线观看| 亚洲一区二区三区欧美精品| 岛国在线观看网站| 在线天堂中文资源库| 精品国内亚洲2022精品成人 | 大型av网站在线播放| 国产成人a∨麻豆精品| 亚洲国产日韩一区二区| 一级毛片电影观看| 日韩欧美国产一区二区入口|