• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Polymorphism of D-mannitol:Crystal structure and the crystal growth mechanism☆

    2017-05-28 07:29:14WeiyiSuNaJiaHongshiLiHongxunHaoChunliLi
    關(guān)鍵詞:冷藏顯示器倉庫

    Weiyi Su ,Na Jia ,Hongshi Li,Hongxun Hao ,Chunli Li,*

    1 School of Chemical Engineering and Technology,Hebei University of Technology,Tianjin 300130,China

    2 School of Chemical Engineering and Technology,Tianjin University,Tianjin 300072,China

    1.Introduction

    Polymorphism,defined as the ability of a material to crystallize in different crystal structures,has gained more and more attention especially in the field of pharmaceuticals[1].It has been reported that 80%of the marketed pharmaceuticals exhibit polymorphs under experimentally accessible conditions[2],and some of them even showed different functionalities and bioavailabilities from the previously launched products.D-mannitol(mannitol)is a natural hexahydric alditol which has been widely used in pharmaceutical industry as a nephropathy treatment medicine and also an excipient in the formulation of various tablets and granulated powders[3].In addition to those,mannitol is a commonly used sugar replacer in food industry.The molecular structure of D-mannitol is shown in Fig.1.

    It has been reported that mannitol has three anhydrous polymorphs[4–6]and a hemihydrate[7].However the nomenclature of mannitol polymorphs is often diverse in different literatures[8,9]in despite of some similar unit cell parameters based on X-ray powder diffraction(XRPD).Therefore a review of mannitol polymorphism is initially presented along with the preparation procedures of different forms.

    Crystallization kinetics is more complicated when polymorphism is involved since on one hand,all polymorphs compete to nucleate at certain supersaturation[10,11],and on the other hand,a metastable form has thermodynamic tendency to transform to the stable one[12],which could somehow affect the crystal growth process[13–15].Therefore it is difficult to investigate the crystal growth kinetics especially for a metastable polymorph[16–18].For example,in the research of Schollet al.[19]a traditional desupersaturation was used to determine the growth kinetics of metastable α-glutamic acid,but it only worked at low temperature when the solvent-mediated polymorphic transformation(SMPT)could be ignored.Thus the research to the crystal growth of mannitol polymorphs was reviewed in this work for a clear perspective.Furthermore a method reported by Kuldipkumar[20]was extended to show the growth mechanism of metastable δ mannitol based on our previously collected data.

    2.Polymorphism of D-mannitol

    It has been con firmed that there are only three pure anhydrous polymorphs of mannitol even though numerous names have been given[6,8].Hereby,for clarity and to avoid any confusion,the unite cell parameters of these mannitol polymorphs are summarized in Table 1.It is clear in Table 1 that the first six β references have a similar structure,which is named β in our work.While focusing on the polymorphs from the 7th to 9th in Table 1,the parameters were nearly the same disregarding what they were called in the original literature.So this form is referred to as α mannitol here.Finally,the last three items are significantly distinct from the others,and they are referred to as the δ form of mannitol in this paper.

    The polymorphism of D-mannitol was firstly reported in Groth's work[27]in 1910.Then as X-ray technology started to be introduced into the analysis of crystal structures,Marwick[21]examined the X-ray pattern of the stable β form in 1931 as shown in Table 1.The results were consistent with those in a subsequent paper[22]in 1952.Then in 1968,the single crystal data of the β form crystallized from an aqueous ethanol solution were con firmed by X-ray diffraction(XRD)with CuKαradiation by Bermanet al.[23]Following,a new XRD instrument(with MoKαradiation)was used by Kaminsky[24]to determine and refine the same polymorph in 1997,and the similar crystal lattice parameters and an improvedR-value were obtained.Thus based on the consistent crystal unit cell parameters and mostly used names in the literatures shown in Table 1,it is reasonable to name these structures β form.

    The α form of mannitol was also mentioned by Groth[27]in 1910,but the unit cell parameters were first given by Walter-Levy[4]in 1968 as shown in Table 1.In the same year,a slow evaporation of mannitol and boric acid solution in methanol was applied to get the α form(namedKin the original literature)by Kimet al.[25]In addition to the similar unit cell parameters in Table 1,a thermoanalytical study performed by Pitkanenet al.[28]also con firmed that the α form in Walter-Levy's work is the same with theKform in Kim's work.Moreover,the unit cell data are also found consistent with those collected by Fronczeket al.[5]in 2003.It is worth noting that Reyet al.[22]obtained a mannitol polymorph named α in 1952,while Bermanet al.[23]prepared one named α′in 1968.The two substances have similar structure according to Bermanet al.[23],but they should not be the α form of mannitol defined in our work since Grindleyet al.[29]have testified by C-MNR that those two forms have different structures with the classical α form in Walter-Levy's work.Grindleyet al.also mentioned that those two forms might be the δ form produced by Walter-Levy,but we think it is not appropriate due to the different crystal symmetry between these two(monoclinic)and the δ form(orthorhombic).Therefore it is reasonable to believe that these two forms might be mixtures.Based on Table 1,it is clear that the β and α forms of mannitol belong to the same crystal system(orthorhombic)and the same P212121space group with only a little difference on the length of the unit cell edges.Thus the two forms should have the same molecular conformation but different orientations of the hydrogen in the hydroxyl groups and hydrogen bonds[28].

    The δ form of mannitol is difficult to isolate compared to the other two.It was firstly obtained by Walter-Levy[4]by gradual evaporation of a mannitol aqueous solution in a watch glass in 1968,where the calculated crystal lattice parameters from the XRPD data showed that it belongs to P21space group as illustrated in Table 1.However this procedure was found difficult to follow as other researchers[30]could only obtain a mixture of the δ and α forms instead of pure δ mannitol with the same method.Pitkanenet al.[28]then prepared δ mannitol by slow cooling a pure melt in 1993,still different polymorphs or mixtures were obtained while the cooling rate fluctuated.Then a freeze-dryer was finally applied to get the δ form with high reproducibility[26,31].After that,a handy anti-solvent crystallization[6]was reported to produce the δ form(named form III in the original literature),during which the solid had to befiltered and dried immediately in order to prevent any polymorphic transformation.Recently,Sullivanet al.[32]successfully produced δ mannitol by cooling a saturated solution rapidly in dilute aqueous ethanol to below 0°C.In all the work mentioned above,the unit cell parameters or XRPD patterns of δ form are consistent to those shown in Table 1.It is also clear in Table 1 that the δ form displayed significant difference in the hydrogen bond situation from the previously known α and β forms.In 2003,the XRD patterns of the three forms were again determined by Fronczeket al.[5]at 100 K.The results indicate that the parameters in Table 1 are accurate for each of the mannitol polymorph.

    Even though different nomenclatures have been used in various literatures for mannitol polymorphs or their mixtures,such asCandDin Giron's work[33]or γ in Rye's work[22](all should be mixtures),the summarization based on the crystal structural parameters in this paper should provide a clear perspective for the polymorphism of mannitol.

    3.Crystal Growth Kinetics of Mannitol Polymorphs

    The crystal growth process is difficult to follow for polymorphic material due to the potential transformation tendency as mentioned before.As in mannitol polymorphs,limited researches have been reported on the growth kinetics in different crystallization processes.

    Nakagawaet al.[34]studied the crystal behavior of mannitol polymorphs in a freezing solution,and found that the amount of each polymorph was correlated to the ice crystal nucleation temperature and the cooling rate.To elucidate the results,they did a qualitative estimation to the crystal growth at the liquid–solid interface.Even though it was reasonable to believe that the cooling rate could influence both the polymorphic transition and crystal growth and then cause the amount difference of various polymorphs along the freezing-dried cake,it didn't provide detailed growth kinetics to each polymorphs.In another freeze drying process,Liaoet al.[35]found that annealing could facilitate both mannitol nucleation and crystal growth even when a crystallization inhibitor,an active pharmaceutical ingredient,was present.Similarly,Dixonet al.[36]investigated the influence of protein on the polymorphism of mannitol during lyophilization,and the results illustrated that more δ and less β mannitol were produced when the protein concentration increased from 1 to 5 mg·ml?1.But as the protein concentration was above 10 mg·ml?1,the nucleation and growth of all mannitol forms were inhibited.

    Fig.1.Molecular structure of D-mannitol.

    Table 1The review of unit cell parameters and nomenclature of D-mannitol anhydrous polymorphs in literatures

    In addition to freezing experiments,the crystallization mechanism of mannitol in a microdroplet evaporation was discussed by Poornacharyet al.[37],where the growth rate along the needle axis was firstly identified as(1.5 ± 0.2)μm·s?1and(0.3 ± 0.1)μm·s?1for the δ and β forms,respectively.Typically the faster growth rate was considered the reason to cause the appearance of the δ mannitol in the solution–substrate contact line where the local supersaturation was usually high due to the Marangni-driven convection.Moreover,while focusing on the nano-cystalline cluster of mannitol,Hammondet al.[38]found that the conformational variability was higher for the stable β form in the early stages of crystal growth compared to the metastable δ form.

    In bulk aqueous solution,the solvent-mediated polymorphic transformation is quite obvious for mannitol metastable forms[39,40]especially when the temperature is not low,which makes it even more difficult to clarify the growth mechanism.Crispet al.[41]reported that the growth of mannitol polymorphs could be affected by the preferred orientation effects,thus the amount of δ form increased with the content of the antisolvent(e.g.acetone)during crystallization.In another study,Cornelet al.[8]used the growth rates of these mannitol polymorphs for a transformation model,but the parameters were only selected qualitatively to satisfy the nucleation experiments without any precise calculation.Additionally,O′Sullivanet al.[40]detected the growth of the metastable δ form clearly by focused beam reflectance measurement(FBRM)in a polymorphic transformation process,but unfortunately the kinetics were not con firmed.According to the literatures,it is obvious that the growth kinetics of mannitol,especially of the metastable forms,haven't been investigated clearly even though bulk crystallization is quite common in industry to produce mannitol polymorphs.Thus in order to enlarge the acquaintance to the growth of δ mannitol,the induction time measured in our previous work[42]was reanalyzed here to provide the growth mechanism following a reported method by Kuldiplumaret al.[20].

    4.Crystal Growth Mechanism of δ Mannitol by Induction Time Measurement

    4.1.Theory

    Generally the induction time can be considered as being made up of several parts,such as[43]the times for the system to achieve a quasi-steady state distribution of molecular clusters,for the formation of a stable nucleus,and for the nucleus to grow to a detectable size.Thus it is related to the rates of both nucleation and growth of crystals:

    whereJis the rate of nucleation,Vis the volume of the system,α is the volume fraction of the new formed phase,Gis the rate of crystal growth,anis a factor related to the crystal shape withn=mν+1(mindicates the dimensionality of growth while ν equals 0.5 or 1 depending on the crystal growth is controlled by volume diffusion or surface reaction,respectively).Generally the first term is usually negligible compared to the second especially when the supersaturation is not too low as in our case,which leaves Eq.(1)to the following:

    In this scenario,the steady state nucleation rate is usually described as below:

    wheresis the supersaturation,KJis the nucleation rate constant,andBis a constant composed of the shaper factors(fs,the surface shape factor,andfv,the volume shape factor),molecular volume(v),and the interfacial free energy(γ).

    whereKGis the growth rate constant andf(s)is a function of supersaturation depending on specific growth mechanism.Combining Eqs.(2),(3)and(4),it can be obtained:

    It is clear that the induction time(tind)and supersaturation(s)can be related to Eq.(5)once the crystal growth mechanism is fixed.Generally there are four kinds of growth mechanismsf(s)in the literature[20]as listed in Table 2.

    Since the δ form of mannitol is thin rod like[39],the dimensionality of growth is set tom=1.In the normal growth mechanism,the spiral growth mechanism,and the 2D nucleation-mediated mechanism,the growth rate is technically determined by the surface reaction in a growth unit,thus ν=1 and the factornis correspondingly 2 as displayed in Table 2.While the growth is controlled by the transport of growth units through the solution to the crystal surface as in the volume diffusion-controlled mechanism,one can accordingly get that ν=0.5 andnis 1.5 as shown in Table 2.

    By introducing differentf(s)in Table 2 to Eq.(5),it is possible to relate the supersaturation and the induction time under different mechanisms[44].To easily do this,another functionF(s)[20]was derived by rearranging Eq.(5)for normal,spiral,and volume diffusion-controlled growth:

    Thus the plot ofF(s)versus 1/(lns)can be fitted by a parabolic curve.Depending on the goodness of the fit to Eqs.(6)or(7),it should be identified the growth mechanism as one of the four above once the correlation index(R2)is in the tolerant range.The expressions ofF(s)for different operating mechanisms are also shown in Table 2.

    4.2.Results and discussion

    The determination of induction time for metastable polymorph is difficult due to the transition tendency,that is why thein situRaman spectroscopy and FBRM were combined to distinguish the polymorph and measure the induction time simultaneously in our previous work[42].Here in this paper,the induction time and supersaturation data were reanalyzed in order to fulfill different growth mechanisms.Specifically the calculatedF(s)are plotted against1/(ln2s)for the normal,spiral,and volume diffusion-controlled growth mechanism as shown in Fig.2,whileF(s)against1/(lns)is plotted in Fig.3 following the 2D nucleation-mediated growth mechanism.

    Table 2Functions and parameters for different crystal growth mechanisms

    Fig.2.Plots of F(s)versus 1/ln2s for δ form of mannitol under(a)the normal growth mechanism,(b)the spiral growth mechanism,(c)the volume diffusion controlled growth mechanism.

    Fig.3.Plot of F(s)versus 1/ln s for δ form of mannitol under the 2D nucleation-mediated growth mechanism.

    It is clear that the three linear fittings in Fig.2 are quite different.The correlation coefficient is as poor as 0.9058 in Fig.2(b),which means that the growth of the δ form of mannitol is barely following the spiral growth mechanism.The data points in Fig.2(a)are fitted to the normal growth mechanism while those in Fig.2(c)are fitted to the volume diffusion controlled growth mechanism.It can be seen that the correlation coefficients of these two fittings are better than that in the spiral growth mechanism.But the largestR2of 0.9912 appears when the data are fitted to the 2D nucleation-mediated mechanism as shown in Fig.3.Therefore it is reasonable to believe that the growth mechanism of the metastable δ form of mannitol should be 2D nucleation-mediated in a cooling crystallization.Since δ mannitol only nucleates at high initial concentration in aqueous solution as mentioned in our previous paper[42],it seems that once this metastable form nucleates from the solution,the growth is mediated by the formation and spread of numerous 2D nuclei.

    The method used in this work for crystal growth mechanism investigation has only been used in material without polymorphism phenomenon in the literature[20,44].However the high correlation index indicates that it should be suitable for polymorphic materials.To testify this,more detailed and microscopic work will be done in the future.

    6.2.2.3 冷藏冷凍商品貯存?zhèn)}庫、陳列柜和熱熟食展示柜都有功能正常的溫度顯示器,并且溫度滿足產(chǎn)品要求,定時做好冷藏冷凍庫(柜)和熱展示柜的溫度監(jiān)控記錄。熱展示柜的溫度在60℃以上,冷藏溫度應(yīng)為0℃~8℃;冷凍溫度應(yīng)為-20℃~-1℃, 宜低于-12℃。

    5.Conclusions

    The nomenclature of D-mannitol polymorphs is summarized in this paper due to the confusion of polymorph identification.It was con firmed that there are three pure anhydrous forms of mannitol based on the unit cell parameters even though some of them have been given various names in different literatures.The three pure mannitol polymorphs are named β,α,and δ in this work based on the review to many publications.Moreover the literatures on crystal growth of mannitol polymorphs are reviewed,and it was found the growth can kinetically be affected by many factors.After that,the induction time previously determined by us is applied to investigate the crystal growth mechanism of the δ mannitol polymorph of mannitol in a bulk crystallization.And it was found that the growth of the metastable δ form should be 2D nucleation-mediated.

    Nomenclature

    athe molecular area,m2

    ana factor related to the crystal shape in the expression of induction time

    Ba constant related to the nucleation rate

    Dxcrystal density,kg·m?3

    fsthe surface shape factor

    fvthe volume shape factor

    Grate of crystal growth,m·s?1

    Jrate of nucleation,m?3·s?1

    KGgrowth rate constant,m·s?1

    KJnucleation rate constant,m?3·s?1

    mthe dimensionality of growth

    sSupersaturation(s=c/c*)

    tindinduction time,s

    Vsystem volume,m3

    vmolecular volume,m3

    α volume fraction of the new formed phase

    β2Da numerical 2D shape factor

    γ interfacial free energy,J·m?2

    κ specific edge free energy of the nuclei,J·m?2

    [1]J.Bernstein,Polymorphism in Molecular Crystals,Oxford University Press,USA,2002.

    [2]S.Datta,D.J.W.Grant,Crystal structures of drugs:Advances in determination,prediction and engineering,Nat.Rev.Drug Discov.3(1)(2004)42–57.

    [3]B.O'Sullivan,The Application of In situ Analysis to Crystallization Process Development.Ph.D.Thesis University College Dublin,Ireland,2005.

    [4]L.Walter-Levy,The crystalline varieties of D-mannitol,C.R.Acad.Sc.Paris,Ser.C.267(1968)1779.

    [5]F.R.Fronczek,H.N.Kamel,M.Slattery,Three polymorphs(alpha,beta and delta)of D-mannitol at 100 K,Acta Crystallogr.Sect.C:Cryst.Struct.Commun.59(10)(2003)o567–o570.

    [6]A.Burger,J.O.Henck,S.Hetz,J.M.Rollinger,A.A.Weissnicht,H.Stottner,Energy temperature diagram and compression behavior of the polymorphs of D-mannitol,J.Pharm.Sci.89(4)(2000)457–468.

    [7]C.Nunes,R.Suryanarayanan,C.E.Botez,P.W.Stephens,Characterization and crystal structure of D-mannitol hemihydrate,J.Pharm.Sci.93(11)(2004)2800–2809.

    [8]J.Cornel,P.Kidambi,M.Mazzotti,Precipitation and transformation of the three polymorphs of D-mannitol,Ind.Eng.Chem.Res.49(12)(2010)5854–5862.

    [9]W.Su,C.Li,H.Hao,J.Whelan,M.Barrett,B.Glennon,Monitoring the liquid phase concentration by Raman spectroscopy in a polymorphic system,J.Raman Spectrosc.46(11)(2015)1150–1156.

    [10]I.S.Lee,A.Y.Lee,A.S.Myerson,Concomitant polymorphism in con fined environment,Pharm.Res.25(4)(2008)960–968.

    [11]M.Svard,F.L.Nordstrom,T.Jasnobulka,A.C.Rasmuson,Thermodynamics and nucleation kinetics of m-Aminobenzoic acid polymorphs,Cryst.Growth Des.10(2010)195–204.

    [12]W.Ostwald,Uber die vemeintliche Isomerie des roten und gelben quecksilberoxyds und die ober flachen-spannung fester korper,Z.Phys.Chem.34(1900)495–512.

    [13]M.Kitamura,Crystallization behavior and transformation kinetics of L-histidine polymorphs,J.Chem.Eng.Jpn26(3)(1993)303–307.

    [14]T.Ono,H.J.M.Kramer,J.H.terHorst,P.J.Jansens,Process modeling of the polymorphic transformation of L-glutamic acid,Cryst.Growth Des.4(6)(2004)1161–1167.

    [15]M.W.Hermanto,N.C.Kee,R.B.H.Tan,M.S.Chiu,R.D.Braatz,Robust Bayesian estimation of kinetics for the polymorphic transformation of L-glutamic acid crystals,AIChE J54(12)(2008)3248–3259.

    [16]M.Kitamura,T.Ishizu,Growth kinetics and morphological change of polymorphs of L-glutamic acid,J.Cryst.Growth209(1)(2000)138–145.

    [17]N.C.S.Kee,P.D.Arendt,L.May Goh,R.B.H.Tan,R.D.Braatz,Nucleation and growth kinetics estimation for l-phenylalanine hydrate and anhydrate crystallization,CrystEngComm13(4)(2011)1197–1209.

    [18]L.Carpentier,K.Filali Rharrassi,P.Derollez,Y.Guinet,Crystallization and polymorphism of l-arabitol,Thermochim.Acta556(0)(2013)63–67.

    [19]J.Scholl,C.Lindenberg,L.Vicum,J.Brozio,M.Mazzotti,Precipitation of alpha L-glutamic acid determination of growth kinetics,Faraday Discuss.136(2007)247–264.

    [20]A.Kuldipkumar,G.S.Kwon,G.G.Z.Zhang,Determining the growth mechanism of tolazamide by induction time measurement,Cryst.Growth Des.7(2)(2007)234–242.

    [21]T.C.Marwick,An X-ray study of mannitol,dulcitol,and mannose,Proc.R.Soc.London,Ser.A131(818)(1931)621–633.

    [22]A.Rye,H.Sorum,Crystalline modifications of D-mannitol,Acta Chem.Scand.6(1952)1128–1129.

    [23]H.M.Berman,G.A.Jeffrey,R.D.Rosenstein,The crystal structures of the alpha and beta forms of D-mannitol,Acta Crystallogr.Sect.B:Struct.Sci.B24(1968)442–449.

    [24]W.Kaminsky,Crystal optics of D-mannitol,C6H14O6crystal growth,structure,basic physical properties,birefingence,optical activity,Faraday effect,electro-optic effects and model calculations,Z.Kristallogr.212(1997)283–296.

    [25]H.S.Kim,G.A.Jeffrey,R.D.Rosenstein,The crystal structure of the K form of D-mannitol,Acta Crystallogr.Sect.B:Struct.Sci.B24(1968)1449–1455.

    [26]C.E.Botez,P.W.Stephens,C.Nunes,R.Suryanarayanan,Crystal structure of anhydrous delta D-mannitol,Powder Diffract.18(3)(2003)214–218.

    [27]P.Groth,Chemical Crystallography,Part Three:Aliphatic and Aromatic Hydrocarbon Compounds,Verlag von Wilhelm Engelmann,Leipzig,1910.

    [28]I.Pitkanen,P.Perkkalainen,H.Rautiainen,Thermoanalytical studies on phases of D-mannitol,Thermochim.Acta214(1)(1993)157–162.

    [29]T.B.Grindley,M.S.McKinnon,R.E.Wasylishen,Towards understanding13C-NMR chemical shifts of carbohydrates in the solid state.The spectra of D-mannitol polymorphs and of DL-mannitol,Carbohydr.Res.197(1990)41–52.

    [30]B.Debord,C.Lefebvre,A.M.Guyot-Hermann,J.Hubert,R.Bouché,J.Guyot,Study of different crystalline forms of mannitol:Comparative behaviour under compression,Drug Dev.Ind.Pharm.13(9–11)(1987)1533–1546.

    [31]A.I.Kim,M.J.Akers,S.L.Nail,The physical state of mannitol after freeze-drying:Effects of mannitol concentration,freezing rate,and a noncrystallizing cosolute,J.Pharm.Sci.87(8)(1998)931–935.

    [32]B.O'Sullivan,P.Barrett,G.Hsiao,A.Carr,B.Glennon,In situ monitoring of polymorphic transitions,Org.Process.Res.Dev.7(2003)977–982.

    [33]D.Giron,Thermal-analysis and calorimetric methods in the characterization of polymorphs and solvates,Thermochim.Acta248(1995)1–59.

    [34]K.Nakagawa,W.Murakami,J.Andrieu,S.Vessot,Freezing step controls the mannitol phase composition heterogeneity,Chem.Eng.Res.Des.87(2009)1017–1027.

    [35]X.Liao,R.Krishnamurthy,R.Suryanarayanan,Influence of the active pharmaceutical ingredient concentration on the physical state of mannitol-implications in freezedrying,Pharm.Res.22(11)(2005)1978–1985.

    [36]D.Dixon,S.Tchessalov,A.Barry,N.Warne,The impact of protein concentration on mannitol and sodium chloride crystallinity and polymorphism upon lyophilization,J.Pharm.Sci.98(9)(2009)3419–3429.

    [37]S.K.Poornachary,J.V.Parambil,P.S.Chow,R.B.H.Tan,J.Y.Y.Heng,Nucleation of elusive crystal polymorphs at the solution–substrate contact line,Cryst.Growth Des.13(3)(2013)1180–1186.

    [38]R.B.Hammond,K.Pencheva,K.J.Roberts,Structural variability within,and polymorphic stability of,nano-crystalline molecular clusters of L-glutamic acid and D-mannitol,modelled with respect to their size,shape and ‘crystallisability’,CrystEngComm14(3)(2012)1069–1082.

    [39]W.Y.Su,H.X.Hao,M.Barrett,B.Glennon,The impact of operating parameters on the polymorphic transformation of D-mannitol characterized in situ with Raman spectroscopy,FBRM,and PVM,Org.Process.Res.Dev.14(6)(2010)1432–1437.

    [40]B.O'Sullivan,B.Glennon,Application ofin situ FBRMand ATR-FTIR to the monitoring of the polymorphic transformation of D-mannitol,Org.Process.Res.Dev.9(6)(2005)884–889.

    [41]J.L.Crisp,S.E.Dann,C.G.Blatchford,Antisolvent crystallization of pharmaceutical excipients from aqueous solutions and the use of preferred orientation in phase identification by powder X-ray diffraction,Eur.J.Pharm.Sci.42(5)(2011)568–577.

    [42]W.Su,H.Hao,B.Glennon,M.Barrett,Spontaneous polymorphic nucleation of D-mannitol in aqueous solution monitored with Raman spectroscopy and FBRM,Cryst.Growth Des.13(12)(2013)5179–5187.

    [43]J.W.Mullin,Crystallization,4th Ed,London,2001.

    [44]M.Zhi,Y.Wang,J.Wang,Determining the primary nucleation and growth mechanism of cloxacillin sodium in methanol–butyl acetate system,J.Cryst.Growth314(1)(2011)213–219.

    猜你喜歡
    冷藏顯示器倉庫
    倉庫里的小偷
    把顯示器“穿”在身上
    填滿倉庫的方法
    四行倉庫的悲壯往事
    一種新型點(diǎn)陣顯示器的設(shè)計
    電子制作(2019年24期)2019-02-23 13:22:32
    感應(yīng)式帶電顯示器抗干擾處理
    電子測試(2018年13期)2018-09-26 03:29:36
    食物冷藏不要超過多少天
    哪些應(yīng)該放冷藏?哪些應(yīng)該放冷凍?哪些不用放冰箱?
    媽媽寶寶(2017年2期)2017-02-21 01:21:04
    冷藏保溫車發(fā)展?jié)摿Ρ患ぐl(fā)
    專用汽車(2016年5期)2016-03-01 04:14:39
    再談冷藏保溫車:市場已升溫
    專用汽車(2016年5期)2016-03-01 04:14:38
    三级毛片av免费| 亚洲精品久久久久久婷婷小说| 亚洲第一青青草原| 日韩电影二区| 国产xxxxx性猛交| 日韩欧美国产一区二区入口| 丁香六月天网| 99国产极品粉嫩在线观看| 老汉色∧v一级毛片| 极品人妻少妇av视频| 久久女婷五月综合色啪小说| 国产一区有黄有色的免费视频| 亚洲av男天堂| 国产精品国产av在线观看| 国产免费一区二区三区四区乱码| 一本色道久久久久久精品综合| 久久精品成人免费网站| 天天添夜夜摸| 国产主播在线观看一区二区| 嫩草影视91久久| 久久国产精品影院| 精品国产国语对白av| av网站在线播放免费| 91国产中文字幕| 大型av网站在线播放| 在线天堂中文资源库| 免费黄频网站在线观看国产| 精品国产超薄肉色丝袜足j| 亚洲成人免费电影在线观看| 不卡一级毛片| 91字幕亚洲| 日本五十路高清| 国产又爽黄色视频| h视频一区二区三区| 欧美+亚洲+日韩+国产| 国产成人精品久久二区二区免费| 法律面前人人平等表现在哪些方面 | 高清视频免费观看一区二区| 中文字幕制服av| 亚洲精品在线美女| 国产亚洲一区二区精品| 五月天丁香电影| 九色亚洲精品在线播放| 天堂俺去俺来也www色官网| 亚洲精品在线美女| 国产欧美日韩一区二区三区在线| 无遮挡黄片免费观看| 欧美精品高潮呻吟av久久| 国产一区有黄有色的免费视频| a级片在线免费高清观看视频| 美女高潮喷水抽搐中文字幕| 国产在线免费精品| 免费黄频网站在线观看国产| 免费日韩欧美在线观看| 成人国产av品久久久| 久久久精品免费免费高清| 大片免费播放器 马上看| 美女主播在线视频| 国产成人精品在线电影| 日韩,欧美,国产一区二区三区| 国产亚洲av片在线观看秒播厂| 十八禁高潮呻吟视频| 国产成人系列免费观看| 天天影视国产精品| 国产精品久久久人人做人人爽| 精品人妻熟女毛片av久久网站| 精品少妇黑人巨大在线播放| 亚洲精品粉嫩美女一区| 免费高清在线观看日韩| 久久精品国产亚洲av高清一级| 91成年电影在线观看| 蜜桃在线观看..| 韩国高清视频一区二区三区| 久久久精品94久久精品| 久9热在线精品视频| 51午夜福利影视在线观看| 亚洲中文av在线| 午夜免费观看性视频| 乱人伦中国视频| 中文字幕制服av| 999精品在线视频| 国产精品一二三区在线看| 丝袜脚勾引网站| 成年人午夜在线观看视频| 黑人欧美特级aaaaaa片| 国产精品99久久99久久久不卡| 欧美黄色淫秽网站| 中国美女看黄片| 最新的欧美精品一区二区| 日韩有码中文字幕| 多毛熟女@视频| 亚洲国产欧美网| 色婷婷久久久亚洲欧美| 国产老妇伦熟女老妇高清| 妹子高潮喷水视频| www.自偷自拍.com| 美女中出高潮动态图| 午夜福利视频在线观看免费| 亚洲全国av大片| 国产日韩欧美视频二区| 欧美日韩亚洲高清精品| 蜜桃国产av成人99| 午夜视频精品福利| 久久久久久久大尺度免费视频| 国产深夜福利视频在线观看| 国内毛片毛片毛片毛片毛片| 12—13女人毛片做爰片一| 黑人巨大精品欧美一区二区mp4| 丰满饥渴人妻一区二区三| 亚洲三区欧美一区| 91字幕亚洲| 人妻 亚洲 视频| 精品人妻在线不人妻| 亚洲精品粉嫩美女一区| 交换朋友夫妻互换小说| 伊人亚洲综合成人网| 午夜福利在线免费观看网站| 电影成人av| bbb黄色大片| 成人黄色视频免费在线看| 好男人电影高清在线观看| 日日爽夜夜爽网站| 亚洲av欧美aⅴ国产| 黄频高清免费视频| 在线精品无人区一区二区三| 99久久人妻综合| 日本91视频免费播放| 无遮挡黄片免费观看| 欧美变态另类bdsm刘玥| 亚洲精品粉嫩美女一区| 国产成人精品久久二区二区91| 又大又爽又粗| 国产一区二区在线观看av| 亚洲综合色网址| 欧美亚洲 丝袜 人妻 在线| 亚洲国产av新网站| 欧美另类一区| 中国国产av一级| 黄色毛片三级朝国网站| 99热全是精品| 极品少妇高潮喷水抽搐| 亚洲精品中文字幕在线视频| 天天躁日日躁夜夜躁夜夜| 黄色a级毛片大全视频| 欧美少妇被猛烈插入视频| 正在播放国产对白刺激| 亚洲精品国产色婷婷电影| 国产精品免费大片| 777米奇影视久久| 欧美日韩亚洲国产一区二区在线观看 | 18在线观看网站| 久久香蕉激情| 最黄视频免费看| 国产熟女午夜一区二区三区| 中文字幕人妻熟女乱码| 青草久久国产| 两性夫妻黄色片| 成年人黄色毛片网站| 国产男人的电影天堂91| 精品一区在线观看国产| 一区二区三区乱码不卡18| 欧美日韩黄片免| h视频一区二区三区| 久久中文字幕一级| 久久性视频一级片| 成人国产av品久久久| a在线观看视频网站| 另类亚洲欧美激情| 免费少妇av软件| 久久精品aⅴ一区二区三区四区| 精品乱码久久久久久99久播| 51午夜福利影视在线观看| 欧美成狂野欧美在线观看| 黄色片一级片一级黄色片| 女警被强在线播放| svipshipincom国产片| 一区二区三区乱码不卡18| 久久久久国产精品人妻一区二区| 日本五十路高清| 婷婷色av中文字幕| 国产淫语在线视频| 一二三四社区在线视频社区8| 国产成人精品无人区| 极品人妻少妇av视频| av一本久久久久| 老司机影院成人| 久久精品国产a三级三级三级| 欧美激情 高清一区二区三区| 久久99一区二区三区| 亚洲av男天堂| 大香蕉久久成人网| 国产欧美日韩综合在线一区二区| 啪啪无遮挡十八禁网站| 黄频高清免费视频| 99国产精品一区二区蜜桃av | 国产成人精品久久二区二区免费| 成人影院久久| 国产男人的电影天堂91| 日韩制服骚丝袜av| 日本撒尿小便嘘嘘汇集6| 香蕉国产在线看| 老司机福利观看| 在线观看免费高清a一片| 亚洲五月色婷婷综合| 精品亚洲成a人片在线观看| 中文字幕人妻丝袜一区二区| 天天操日日干夜夜撸| 精品一区二区三区四区五区乱码| 一级毛片女人18水好多| 亚洲中文字幕日韩| 亚洲国产看品久久| 黄片小视频在线播放| 在线永久观看黄色视频| 精品少妇黑人巨大在线播放| 久久av网站| 久久久久久免费高清国产稀缺| xxxhd国产人妻xxx| 日韩大片免费观看网站| 性少妇av在线| 国产亚洲欧美精品永久| 亚洲精品国产色婷婷电影| 一级毛片女人18水好多| 女人爽到高潮嗷嗷叫在线视频| 美女国产高潮福利片在线看| 999久久久精品免费观看国产| 亚洲精品一区蜜桃| 久久精品aⅴ一区二区三区四区| 捣出白浆h1v1| 69av精品久久久久久 | 亚洲精品美女久久av网站| 成在线人永久免费视频| 亚洲精品日韩在线中文字幕| 黄色片一级片一级黄色片| 汤姆久久久久久久影院中文字幕| 99久久国产精品久久久| 久久久久久久久免费视频了| av免费在线观看网站| 男女无遮挡免费网站观看| 99精国产麻豆久久婷婷| 18禁黄网站禁片午夜丰满| 黄色怎么调成土黄色| 黑人巨大精品欧美一区二区mp4| 一区福利在线观看| 亚洲七黄色美女视频| 最近最新中文字幕大全免费视频| 老鸭窝网址在线观看| 久久精品亚洲av国产电影网| 午夜福利在线观看吧| 日韩中文字幕视频在线看片| 欧美日韩国产mv在线观看视频| 欧美日韩黄片免| 一区二区日韩欧美中文字幕| www.av在线官网国产| 国产一区二区三区av在线| 欧美另类一区| 在线十欧美十亚洲十日本专区| 伊人久久大香线蕉亚洲五| 女人久久www免费人成看片| 国产一区二区三区av在线| 高清av免费在线| 一本大道久久a久久精品| 伊人久久大香线蕉亚洲五| 99re6热这里在线精品视频| 汤姆久久久久久久影院中文字幕| 国产激情久久老熟女| 亚洲va日本ⅴa欧美va伊人久久 | 下体分泌物呈黄色| 黄色视频在线播放观看不卡| 亚洲精品成人av观看孕妇| 一级黄色大片毛片| 精品亚洲乱码少妇综合久久| 老熟女久久久| 午夜福利视频在线观看免费| 欧美黑人精品巨大| 国产不卡av网站在线观看| 中文字幕人妻丝袜制服| 亚洲天堂av无毛| 国产人伦9x9x在线观看| 亚洲成人免费电影在线观看| 免费在线观看完整版高清| 亚洲色图 男人天堂 中文字幕| √禁漫天堂资源中文www| 国产精品一区二区精品视频观看| h视频一区二区三区| 国产精品 国内视频| 亚洲国产中文字幕在线视频| 一级片免费观看大全| 欧美在线一区亚洲| 老司机午夜福利在线观看视频 | 欧美精品人与动牲交sv欧美| 91麻豆av在线| 国产高清国产精品国产三级| 亚洲欧美成人综合另类久久久| 成年女人毛片免费观看观看9 | 精品少妇久久久久久888优播| 欧美精品啪啪一区二区三区 | 欧美黑人欧美精品刺激| 国产免费福利视频在线观看| 亚洲欧美成人综合另类久久久| 精品第一国产精品| 天天躁夜夜躁狠狠躁躁| 成年人免费黄色播放视频| 欧美日韩成人在线一区二区| 欧美一级毛片孕妇| 国产亚洲精品一区二区www | 精品免费久久久久久久清纯 | 免费在线观看日本一区| 99久久99久久久精品蜜桃| 久久久久久久大尺度免费视频| 在线天堂中文资源库| 日本一区二区免费在线视频| 国产成人精品久久二区二区免费| 国产亚洲精品第一综合不卡| 男女下面插进去视频免费观看| 国产片内射在线| 久久久精品区二区三区| 亚洲成av片中文字幕在线观看| 十八禁人妻一区二区| 精品久久久久久电影网| 黑人操中国人逼视频| 蜜桃国产av成人99| 精品一品国产午夜福利视频| 十八禁高潮呻吟视频| 大香蕉久久网| av网站免费在线观看视频| 国产极品粉嫩免费观看在线| 在线观看免费高清a一片| 国产深夜福利视频在线观看| 日韩熟女老妇一区二区性免费视频| 日韩大码丰满熟妇| 91大片在线观看| 亚洲三区欧美一区| 久久久精品免费免费高清| 大香蕉久久成人网| 青青草视频在线视频观看| 999精品在线视频| 在线天堂中文资源库| 国产成人av教育| 91九色精品人成在线观看| 少妇精品久久久久久久| 交换朋友夫妻互换小说| 精品一区在线观看国产| 日韩一区二区三区影片| 国产在线免费精品| 18禁裸乳无遮挡动漫免费视频| 搡老乐熟女国产| 精品国产国语对白av| 国产视频一区二区在线看| 亚洲 国产 在线| 久久中文看片网| 国内毛片毛片毛片毛片毛片| 麻豆国产av国片精品| av又黄又爽大尺度在线免费看| 亚洲 欧美一区二区三区| 又黄又粗又硬又大视频| 国产欧美日韩一区二区三区在线| 亚洲久久久国产精品| 丝袜人妻中文字幕| 搡老乐熟女国产| 亚洲三区欧美一区| 国产精品九九99| 欧美一级毛片孕妇| 999精品在线视频| 国产精品一区二区在线观看99| 美女扒开内裤让男人捅视频| 婷婷色av中文字幕| 天天添夜夜摸| 夫妻午夜视频| 999精品在线视频| 国产精品av久久久久免费| 欧美中文综合在线视频| 999精品在线视频| 久久中文字幕一级| 久久久久精品国产欧美久久久 | 极品少妇高潮喷水抽搐| 国产亚洲精品久久久久5区| 正在播放国产对白刺激| 男人舔女人的私密视频| 久久久水蜜桃国产精品网| 99国产精品一区二区蜜桃av | 少妇 在线观看| 久久国产精品男人的天堂亚洲| 美女脱内裤让男人舔精品视频| 99热网站在线观看| 国产1区2区3区精品| 999久久久国产精品视频| 五月开心婷婷网| 亚洲国产av新网站| 国产成+人综合+亚洲专区| 欧美97在线视频| 电影成人av| 久久热在线av| 飞空精品影院首页| 女性生殖器流出的白浆| 国产成人一区二区三区免费视频网站| 久久国产亚洲av麻豆专区| 91字幕亚洲| 91av网站免费观看| av网站在线播放免费| 免费高清在线观看视频在线观看| 在线观看免费高清a一片| 亚洲 国产 在线| 免费观看人在逋| 91大片在线观看| 女人被躁到高潮嗷嗷叫费观| 精品人妻熟女毛片av久久网站| 在线看a的网站| 91大片在线观看| 9热在线视频观看99| 在线观看人妻少妇| 女性生殖器流出的白浆| 亚洲欧美色中文字幕在线| 黄色片一级片一级黄色片| 国精品久久久久久国模美| 12—13女人毛片做爰片一| 女性生殖器流出的白浆| 女人精品久久久久毛片| 曰老女人黄片| 考比视频在线观看| 精品熟女少妇八av免费久了| 老司机深夜福利视频在线观看 | 黄片大片在线免费观看| 免费在线观看视频国产中文字幕亚洲 | 日韩视频一区二区在线观看| 天天影视国产精品| 欧美黑人欧美精品刺激| 69精品国产乱码久久久| 亚洲精品久久午夜乱码| 亚洲全国av大片| 精品国产一区二区三区久久久樱花| 夫妻午夜视频| 亚洲 国产 在线| 一级片免费观看大全| 国产1区2区3区精品| 亚洲国产毛片av蜜桃av| 纵有疾风起免费观看全集完整版| 9色porny在线观看| 男女午夜视频在线观看| 最新的欧美精品一区二区| 搡老熟女国产l中国老女人| 国产又色又爽无遮挡免| 热99re8久久精品国产| 精品福利观看| 肉色欧美久久久久久久蜜桃| 国产高清国产精品国产三级| 嫩草影视91久久| 久久天躁狠狠躁夜夜2o2o| 亚洲国产欧美网| 欧美老熟妇乱子伦牲交| 国产成人免费观看mmmm| 欧美成人午夜精品| 99国产综合亚洲精品| 国产日韩一区二区三区精品不卡| 黑人操中国人逼视频| 中文精品一卡2卡3卡4更新| 动漫黄色视频在线观看| 中文字幕另类日韩欧美亚洲嫩草| 欧美精品av麻豆av| 精品亚洲成国产av| 国产精品偷伦视频观看了| 无限看片的www在线观看| 美女高潮喷水抽搐中文字幕| 亚洲成国产人片在线观看| 国产精品久久久久久精品古装| 满18在线观看网站| netflix在线观看网站| 亚洲国产精品999| 成人三级做爰电影| www.自偷自拍.com| 一级,二级,三级黄色视频| 亚洲国产欧美网| 亚洲第一青青草原| 最新在线观看一区二区三区| 国产精品久久久久久精品电影小说| 老汉色av国产亚洲站长工具| 老司机午夜十八禁免费视频| 欧美国产精品va在线观看不卡| 亚洲第一青青草原| 免费不卡黄色视频| 日韩中文字幕欧美一区二区| 亚洲中文av在线| 最新在线观看一区二区三区| 国产精品免费视频内射| 国产三级黄色录像| 欧美人与性动交α欧美精品济南到| 高清av免费在线| 热re99久久国产66热| 国产亚洲一区二区精品| 久久久精品免费免费高清| 51午夜福利影视在线观看| 菩萨蛮人人尽说江南好唐韦庄| 精品第一国产精品| 水蜜桃什么品种好| 天天影视国产精品| 少妇裸体淫交视频免费看高清 | 中文字幕另类日韩欧美亚洲嫩草| 99久久精品国产亚洲精品| 国产免费一区二区三区四区乱码| 中文字幕制服av| 亚洲久久久国产精品| 亚洲精品久久久久久婷婷小说| 亚洲欧洲精品一区二区精品久久久| 丰满饥渴人妻一区二区三| 午夜福利一区二区在线看| 欧美日韩成人在线一区二区| 色视频在线一区二区三区| 亚洲专区中文字幕在线| 亚洲精品中文字幕一二三四区 | 国产精品久久久久久人妻精品电影 | 永久免费av网站大全| 99九九在线精品视频| 日韩三级视频一区二区三区| 国产精品一区二区免费欧美 | 久久精品久久久久久噜噜老黄| 下体分泌物呈黄色| 日韩熟女老妇一区二区性免费视频| 亚洲欧洲日产国产| 亚洲第一av免费看| 少妇人妻久久综合中文| 好男人电影高清在线观看| 香蕉国产在线看| 黑人巨大精品欧美一区二区mp4| 亚洲av欧美aⅴ国产| 老司机深夜福利视频在线观看 | 久久久久精品国产欧美久久久 | 国产有黄有色有爽视频| 丁香六月欧美| 久久av网站| 国产高清国产精品国产三级| 日韩 欧美 亚洲 中文字幕| 色婷婷av一区二区三区视频| 亚洲国产成人一精品久久久| 免费观看a级毛片全部| 天堂俺去俺来也www色官网| 母亲3免费完整高清在线观看| 99国产精品一区二区三区| 国产av精品麻豆| 精品卡一卡二卡四卡免费| 亚洲精品美女久久av网站| 50天的宝宝边吃奶边哭怎么回事| 另类亚洲欧美激情| 法律面前人人平等表现在哪些方面 | 人妻一区二区av| 色综合欧美亚洲国产小说| 午夜福利视频在线观看免费| 日本vs欧美在线观看视频| 97精品久久久久久久久久精品| 91成年电影在线观看| 中文字幕av电影在线播放| 久久狼人影院| 黄色片一级片一级黄色片| 三上悠亚av全集在线观看| 亚洲国产精品一区二区三区在线| 色视频在线一区二区三区| 亚洲精品久久成人aⅴ小说| 黄色片一级片一级黄色片| 亚洲精品第二区| 国产免费现黄频在线看| 精品一区在线观看国产| 久久久国产欧美日韩av| 别揉我奶头~嗯~啊~动态视频 | 免费女性裸体啪啪无遮挡网站| 啦啦啦视频在线资源免费观看| 久久中文看片网| 国产高清国产精品国产三级| 久久亚洲国产成人精品v| 成人影院久久| 亚洲精品一二三| 正在播放国产对白刺激| 欧美变态另类bdsm刘玥| 多毛熟女@视频| 日韩欧美一区二区三区在线观看 | 97精品久久久久久久久久精品| 色精品久久人妻99蜜桃| 国产精品免费视频内射| 最新的欧美精品一区二区| 麻豆乱淫一区二区| 亚洲五月婷婷丁香| 国产精品久久久久久精品古装| 波多野结衣一区麻豆| 久久久久久久国产电影| 9191精品国产免费久久| 黄色视频,在线免费观看| 精品久久久精品久久久| 丝袜美腿诱惑在线| 王馨瑶露胸无遮挡在线观看| 最近中文字幕2019免费版| 高清欧美精品videossex| 狠狠婷婷综合久久久久久88av| 天天躁日日躁夜夜躁夜夜| 久久精品人人爽人人爽视色| 看免费av毛片| 日韩,欧美,国产一区二区三区| 黄色怎么调成土黄色| 捣出白浆h1v1| 国产99久久九九免费精品| www.999成人在线观看| 看免费av毛片| 捣出白浆h1v1| 亚洲精品久久午夜乱码| 91精品三级在线观看| 午夜免费鲁丝| 精品少妇黑人巨大在线播放| 天堂8中文在线网| 国产精品二区激情视频| 黄片播放在线免费| 99国产精品免费福利视频| 高潮久久久久久久久久久不卡| 精品少妇黑人巨大在线播放| 看免费av毛片| 老司机影院毛片| 不卡av一区二区三区| 51午夜福利影视在线观看| 老司机在亚洲福利影院| 精品福利永久在线观看|