趙雙雙++劉雷++何永剛++蔡海亞++章志宏
摘要:利用水稻(Oryza sativa L.)近等基因系NIL-IPA1和NIL-ipa1,研究在施氮與不施氮條件下,理想株型調(diào)控基因ipa1在水稻快速分蘗期對(duì)氮代謝的影響。結(jié)果發(fā)現(xiàn),在施氮條件下,相對(duì)于NIL-IPA1植株,NIL-ipa1水稻植株中谷氨酰胺合成酶(Glutamine synthetase,GS)、NADH谷氨酸合酶(NADH-glutamate synthase,NADH-GOGAT)的活性降低,葉片中游離氨基酸含量減少,但NADH谷氨酸脫氫酶(NADH-glutamate dehydrogenase,NADH-GDH)、NAD+谷氨酸脫氫酶(NAD+-glutamate dehydrogenase,NAD+-GDH)活性升高,表明ipa1能夠降低水稻植株氮素同化效率,同時(shí)提高氮素重復(fù)利用率。在不施氮條件下,NIL-IPA1和NIL-ipa1植株GS活性提高,NADH-GOGAT、NADH-GDH、NAD+-GDH活性降低,可溶性蛋白和游離氨基酸含量減少,同時(shí)發(fā)現(xiàn)在NIL-ipa1植株中GS、NADH-GOGAT活性變化相對(duì)較小,NAD+-GDH活性相對(duì)較低,游離氨基酸含量相對(duì)較高,表明ipa1能夠降低氮脅迫對(duì)水稻植株氮同化效率的影響,提高水稻植株對(duì)低氮脅迫的抗性。
關(guān)鍵詞:水稻(Oryza sativa L.);理想株型;ipa1基因;氮脅迫;分蘗;氮代謝
中圖分類號(hào):Q945.13;S511 文獻(xiàn)標(biāo)識(shí)碼:A 文章編號(hào):0439-8114(2017)08-1427-05
DOI:10.14088/j.cnki.issn0439-8114.2017.08.007
Effects of Ideal Plant Architecture Gene ipa1 on Nitrogen Metabolism under Nitrogen Stress Condition
ZHAO Shuang-shuang1,LIU Lei1,HE Yong-gang1,CAI Hai-ya2,ZHANG Zhi-hong1
(1.College of Life Sciences,Wuhan University, Wuhan 430072,China;2.Institute of Food Crops,Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement,Wuhan 430064,China)
Abstract: In the present study,under nitrogen deficiency and fertilization conditions,the effects of ipa1 on nitrogen metabolism at rapid tillering stage of rice near-isogenic lines NIL-IPA1 and NIL-ipa1 were analyzed. Under nitrogen fertilization condition, although the activities of glutamine synthetase(GS),NADH-glutamate synthase (NADH-GOGAT) and the content of free amino acid were significantly reduced,the activities of NADH-glutamate dehydrogenase(NADH-GDH) and NAD+-glutamate dehydrogenase(NAD+-GDH) were increased in the NIL-ipa1 plants when compared with NIL-IPA1 plants. This result indicated that ipa1 improved the nitrogen recycling efficiency,although the efficiency of nitrogen assimilation was reduced in NIL-ipa1 plants. When the rice plants were cultivated under the nitrogen deficiency condition,the GS activity was increased,the activities of NADH-GOGAT,NADH-GDH and NAD+-GDH were reduced. Meanwhile,although the contents of soluble protein,free amino acid were decreased in NIL-IPA1 and NIL-ipa1 plants,the change of GS,NADH-GOGAT activities were relatively limited,the NAD+-GDH activity was lower and the content of free amino acid was higher in NIL-ipa1 plants when compared with NIL-IPA1 plants. The result suggested that ipa1 gene could lighten the impact of nitrogen deficiency stress on the nitrogen assimilation ability of rice plants and enhance their resistance to nitrogen stress.
Key words: rice(Oryza sativa L.); ideal plant type; ipa1 gene; nitrogen stress; tiller; nitrogen metabolism
植物生長(zhǎng)所需的大量元素中,氮(N)是蛋白質(zhì)、核酸、葉綠素、酶和部分植物激素的重要組成部分,它決定了植物的形態(tài)特征,是影響植物生長(zhǎng)和產(chǎn)量形成的首要因素。在植物的生長(zhǎng)發(fā)育過(guò)程中,活細(xì)胞的各種代謝活動(dòng)以及細(xì)胞器的形成,都需要氮素的參與[1,2]。植物根部吸收的游離氮在轉(zhuǎn)化為有機(jī)氮后才能被植物體利用,該過(guò)程由一系列酶催化完成,研究表明谷氨酰胺合成酶(Glutamine synthetase,GS)和谷氨酸合酶(Glutamate synthase,GOGAT)是氮同化的關(guān)鍵酶。其中GS可以催化NH4+與谷氨酸結(jié)合形成谷氨酰胺,而GOGAT可以促使2-酮戊二酸(2-Oxoglutarate,2-OG)與谷氨酰胺之間的氨基相互轉(zhuǎn)換生成谷氨酸,在植物體內(nèi),這兩種反應(yīng)通常偶聯(lián)在一起,被稱為GS/GOGAT循環(huán)[3,4],通過(guò)該循環(huán)植物體將無(wú)機(jī)氮轉(zhuǎn)化為有機(jī)氮。此外,谷氨酸脫氫酶(Glutamate dehydrogenase,GDH)在維持植物體氮平衡中也起著重要作用,當(dāng)植物體內(nèi)氮素含量過(guò)高時(shí),GDH能催化NH4+與2-OG結(jié)合形成谷氨酸,并將谷氨酸轉(zhuǎn)運(yùn)到植物體其他組織內(nèi)貯存,以防止NH4+含量過(guò)高對(duì)植物產(chǎn)生毒害作用;當(dāng)植物體氮素含量降低時(shí),GDH分解谷氨酸為氮代謝反應(yīng)提供氮素[5,6],從而保證氮代謝的正常運(yùn)轉(zhuǎn)。在植物體內(nèi),游離氨基酸是含氮化合物的主要形式,其含量變化影響著植物體的各種代謝反應(yīng),對(duì)游離氨基酸含量的測(cè)定有助于了解植物體對(duì)氮素的吸收、運(yùn)輸和同化能力[7]。
水稻(Oryza sativa L.)理想株型調(diào)控基因IPA1含有小RNA(OsmiR156)的靶位點(diǎn),該靶位點(diǎn)突變后,擾亂了OsmiR156對(duì)IPA1基因轉(zhuǎn)錄本的剪切作用,顯著改變了水稻株型等一系列農(nóng)藝性狀。研究表明,當(dāng)IPA1突變?yōu)閕pa1后,水稻植株將表現(xiàn)出莖稈粗壯、分蘗減少、每穗穎花數(shù)增多等一系列理想株型的特點(diǎn)[8,9]。迄今為止,理想株型調(diào)控基因ipa1對(duì)水稻氮代謝的影響還不清楚。為此,本研究利用水稻理想株型調(diào)控基因IPA1/ipa1構(gòu)建了1對(duì)近等基因系(Near Isogenic Lines,NILs),通過(guò)分析施氮與不施氮條件下NILs植株中氮代謝關(guān)鍵酶活性及代謝產(chǎn)物的變化,揭示了氮脅迫條件下水稻理想株型調(diào)控基因ipa1對(duì)水稻氮代謝的影響。
1 材料與方法
1.1 供試材料
供試材料為含有水稻理想株型調(diào)控基因IPA1/ipa1的水稻1對(duì)近等基因系材料:NIL-IPA1和NIL-ipa1。該近等基因系來(lái)源于秈稻品種黃華占(含野生型IPA1)和粳稻品系少蘗粳(ipa1供體)雜交產(chǎn)生的F1代植株,黃華占/少蘗粳 F1植株與黃華占回交形成BC1F1,經(jīng)過(guò)連續(xù)自交后在黃華占/少蘗粳 BC1F6群體中篩選出IPA1位點(diǎn)雜合的單株,而后從該單株的后代中篩選出含有純合ipa1及IPA1的植株形成近等基因系NIL-ipa1及NIL-IPA1。
1.2 試驗(yàn)材料種植與處理
供試水稻材料于2015年1月7日直播于62.0 cm×36.5 cm×12.0 cm的塑料盆中,溫室培養(yǎng)(溫室控溫20~30 ℃,光照14 h/d,黑暗10 h/d)。并于播種后20 d(1月27日)根據(jù)單株基因型分類移栽種植,每穴1株,每盆共計(jì)15株,株行距為10.5 cm×12.0 cm。供試水稻材料設(shè)置施氮和不施氮兩個(gè)處理,每個(gè)處理采用3次重復(fù)。施氮組于播種后48 d(2月24日)、62 d(3月10日)施肥2次,施肥時(shí)每盆加入氮(N)肥6.8 g、磷(P2O5)肥3.4 g和鉀(K2O)肥3.8 g。不施氮組施肥時(shí)只加入等量磷(P2O5)、鉀(K2O)肥。期間根據(jù)土壤濕度補(bǔ)充水分,以保證水稻植株正常生長(zhǎng)。
1.3 取樣及測(cè)定方法
播種后51 d(2月27日)開(kāi)始統(tǒng)計(jì)單株莖蘗數(shù),隨后每7 d統(tǒng)計(jì)1次,每個(gè)處理統(tǒng)計(jì)45株,共統(tǒng)計(jì)4次。播種后58 d(3月6日)取樣,用于GS、NADH-GOGAT、NADH-GDH、NAD+-GDH活性及游離氨基酸、可溶性蛋白含量的測(cè)定。
粗酶液提取及保存參考盧永恩[10]的方法,谷氨酰胺合成酶(GS)活性檢測(cè)參考Rhodes等[11]報(bào)道的方法,NADH-GOGAT活性測(cè)定參照Hecht等[12]的方法進(jìn)行。NADH-GDH活性測(cè)定參照Turano等[13]的方法進(jìn)行,NAD+-GDH活性測(cè)定參照Loulakakis等[14]方法進(jìn)行??扇苄缘鞍踪|(zhì)、游離氨基酸的提取及檢測(cè)參考李合生[15]的方法進(jìn)行。
2 結(jié)果與分析
2.1 氮脅迫條件下ipa1對(duì)水稻植株分蘗的影響
在施氮與不施氮條件下,NIL-IPA1和NIL-ipa1植株在播種后51~65 d的莖蘗數(shù)均有所增長(zhǎng)(圖1)。在施氮條件下,NIL-IPA1植株莖蘗數(shù)從播種后51 d的6.9個(gè)增長(zhǎng)到播種后65 d的13.2個(gè),NIL-ipa1植株莖蘗數(shù)從播種后51 d的3.8個(gè)增長(zhǎng)到播種后65 d的5.4個(gè)。在不施氮條件下,NIL-IPA1植株莖蘗數(shù)從播種后51 d的5.4個(gè)增加到播種后65 d的6.0個(gè),NIL-ipa1植株莖蘗數(shù)從播種后51 d的2.9個(gè)增加到播種后65 d的3.1個(gè)。而在播種后65~72 d,NIL-IPA1和NIL-ipa1莖蘗數(shù)都停止增長(zhǎng)(圖1)。對(duì)比上述施氮與不施氮條件下NILs植株莖蘗數(shù)可以發(fā)現(xiàn),ipa1對(duì)水稻植株分蘗發(fā)生具有明顯的抑制作用。
同時(shí),在不施氮的條件下,NIL-IPA1莖蘗數(shù)在播種后65和72 d相比施氮分別減少了54.1%和55.6%;而NIL-ipa1莖蘗數(shù)在播種后65和72 d與施氮組相比僅減少了43.6%和45.2%;表明NIL-ipa1植株分蘗的發(fā)生受氮脅迫影響相對(duì)較小。
2.2 氮脅迫條件下ipa1對(duì)水稻植株GS、NADH-GOGAT活性的影響
GS、GOGAT是與氮同化相關(guān)的酶,其活性高低決定了植物對(duì)氮素的同化效率。從圖2可以看出,在施氮條件下,NIL-ipa1植株GS、NADH-GOGAT活性在播種后58 d均要顯著低于NIL-IPA1,其活性相對(duì)NIL-IPA1植株分別降低了9.5%和45.9%;在不施氮條件下,NIL-ipa1植株GS、NADH-GOGAT活性在播種后58 d均也要顯著低于NIL-IPA1,其活性相對(duì)NIL-IPA1植株分別降低了25.3%和30.2%,表明無(wú)論在施氮與不施氮條件下,ipa1降低了水稻植株對(duì)氮素的同化效率。
在氮脅迫條件下,NIL-IPA1和NIL-ipa1植株GS活性均顯著提高,其活性相對(duì)施氮處理分別增加了28.4%和6.1%,而NADH-GOGAT活性均顯著降低,相對(duì)施氮處理分別減少了46.4%和30.7%,表明氮脅迫提高了NIL-IPA1和NIL-ipa1植株將NH4+同化為谷氨酰胺的能力,同時(shí)降低了谷氨酸的合成能力。但與NIL-IPA1植株相比,NIL-ipa1植株GS、NADH-GOGAT活性受氮脅迫的影響較小,表明ipa1能夠提高水稻植株對(duì)于氮脅迫的耐受性。
2.3 氮脅迫條件下ipa1對(duì)水稻植株NADH-GDH、NAD+-GDH的影響
GDH在維持植物體內(nèi)氮代謝的平衡方面具有重要作用,它既可催化2-OG與NH4+縮合形成谷氨酸,也可以催化谷氨酸分解產(chǎn)生2-OG與NH4+。在施氮條件下,NIL-ipa1植株中NADH-GDH、NAD+-GDH的活性在播種后58 d都要顯著性高于NIL-IPA1植株(圖3),其活性相對(duì)NIL-IPA1植株分別提高了10.2%和11.6%;在不施氮條件下,NIL-ipa1植株NADH-GDH活性與NIL-IPA1植株不存在差異,但是NAD+-GDH活性減少了31.2%,由此可見(jiàn),在施氮條件下,ipa1植株的衰老組織和器官對(duì)含氮物質(zhì)的分解再利用能力較強(qiáng),而在不施氮條件下,ipa1植株對(duì)含氮化合物的分解能力降低。
在氮脅迫條件下,NIL-IPA1植株NADH-GDH、NAD+-GDH活性相比施氮條件下分別減少了29.8%和27.9%,而NIL-ipa1植株NADH-GDH、NAD+-GDH活性相比施氮組分別減少了39.1%和55.6%,表明氮脅迫下,ipa1植株對(duì)氮素的需求量較低,低活性NAD+-GDH分解谷氨酸所產(chǎn)生的少量NH4+即可滿足水稻植株對(duì)氮素的需求。
2.4 氮脅迫條件下ipa1對(duì)水稻植株氮代謝產(chǎn)物含量的影響
可溶性蛋白、游離氨基酸分別是植物體內(nèi)含氮化合物的主要貯存物和主要轉(zhuǎn)運(yùn)物;在施氮條件下,NIL-ipa1植株可溶性蛋白含量要顯著高于NIL-IPA1植株,游離氨基酸含量要顯著低于NIL-IPA1植株(圖4);在不施氮條件下,NIL-ipa1植株可溶性蛋白含量與NIL-IPA1植株不存在顯著性差異,但游離氨基酸含量要顯著性高于NIL-IPA1植株,表明ipa1植株在正常氮素條件下可將氮素以蛋白質(zhì)的形式貯存在葉片中,而在缺氮條件下,則氮素更多的以游離氨基酸的形式存于葉片中。
在不施氮條件下,NIL-IPA1和NIL-ipa1植株可溶性蛋白含量、游離氨基酸含量雖都有所減少,但NIL-IPA1植株可溶性蛋白含量相對(duì)施氮降低了15.8%,游離氨基酸含量相對(duì)施氮減少了42.6%,而NIL-ipa1植株可溶性蛋白量相對(duì)施氮減少了27.1%,游離氨基酸含量相對(duì)減少了25.5%,表明在氮脅迫條件下,ipa1能夠增強(qiáng)植株對(duì)于氮素的再利用能力。
3 討論
氮是影響水稻分蘗的重要因素,外界環(huán)境中的氮素主要通過(guò)影響植物體內(nèi)含氮化合物的水平來(lái)調(diào)節(jié)分蘗的發(fā)生,水稻某節(jié)位分蘗能否形成,及分蘗芽能否正常發(fā)育與水稻葉片、葉鞘中含氮量密切相關(guān)[16,17]。劉楊等[18]以不同水稻品系為材料進(jìn)行研究發(fā)現(xiàn),外界環(huán)境氮素水平降低,會(huì)導(dǎo)致水稻分蘗芽進(jìn)入休眠狀態(tài)。王曉宇等[19]以小麥為材料研究發(fā)現(xiàn),葉片氮含量、氨基酸含量降低不利于分蘗形成及幼穗分化。本研究表明,在氮脅迫條件下,NIL-IPA1和NIL-ipa1植株莖蘗數(shù)減少,可能就是由于游離氨基酸含量、可溶性蛋白含量降低引起的。此外,在氮脅迫條件下,NIL-ipa1中游離氨基酸含量減少量相對(duì)較少,可見(jiàn),ipa1能夠降低氮脅迫對(duì)植株氮代謝的影響。除了環(huán)境因素,基因是影響水稻分蘗的內(nèi)在因素。本研究表明,在施氮和不施氮條件下,NIL-ipa1植株的莖蘗數(shù)顯著少于NIL-IPA1植株,表明ipa1對(duì)水稻分蘗發(fā)生具有明顯的抑制作用,這點(diǎn)與Miura等[8]和Jiao等[9]的研究結(jié)果類似,其研究表明,OsSPL14/IPA1突變?yōu)閕pa1后,OsSPL14表達(dá)量升高,導(dǎo)致水稻分蘗數(shù)減少。但相比NIL-IPA1,氮脅迫對(duì)NIL-ipa1植株分蘗的發(fā)生影響較小,表明ipa1能夠顯著減少水稻分蘗發(fā)生對(duì)氮素的需求量。
氮代謝強(qiáng)弱是影響水稻分蘗的重要因素,GS、NADH-GOGAT在氮代謝中扮演著重要角色。其活性高低與水稻分蘗數(shù)多少密切相關(guān),在常氮條件下,GS和NADH-GOGAT活性缺失,將導(dǎo)致水稻體內(nèi)游離氨基酸、可溶性蛋白含量降低[20,21]。在本研究中,NIL-ipa1植株分蘗數(shù)減少的另一個(gè)原因可能是播種后58 d GS及NADH-GOGAT活性降低,引起NIL-ipa1植株游離氨基酸含量降低,減少了對(duì)分蘗發(fā)生所需氮素的供應(yīng),導(dǎo)致分蘗芽無(wú)法正常側(cè)生。另外,有研究表明,植株在出現(xiàn)氮饑餓時(shí)會(huì)使體內(nèi)2-OG含量升高[22],進(jìn)而提高其GS活性,增強(qiáng)植株對(duì)氮素的同化效率,提高植物體內(nèi)氮素水平[23,24],以滿足水稻快速分蘗對(duì)含氮化合物的需求。羅鳳等[25]以水稻為材料研究也表明,在短期缺氮的條件下,氮素缺乏會(huì)引起水稻地上部分GS活性升高,NADH-GOGAT活性降低。本研究表明,氮脅迫能夠提高NIL-IPA1和NIL-ipa1植株GS活性,同時(shí)降低NADH-GOGAT活性,但與NIL-IPA1植株相比,NIL-ipa1植株中這兩種酶活性變化量相對(duì)較小,說(shuō)明ipa1能夠降低水稻植株對(duì)于氮脅迫的敏感性,間接表明ipa1植株在快速分蘗期對(duì)氮素的需求量較低。
GDH是催化2-OG與NH4+可逆的縮合形成谷氨酸的酶[26],其在衰老組織和器官的氮素再利用上起著關(guān)鍵作用[27],同時(shí)GDH在植物抵御不良環(huán)境脅迫時(shí)也起到重要的調(diào)節(jié)作用[28]。通過(guò)轉(zhuǎn)基因等方式提高GDH活性可以增加植物對(duì)氮素的利用率,同時(shí)也能提高植物的生長(zhǎng)速率[29-31]。本研究表明,在施氮條件下,NIL-ipa1植株的NADH-GDH、NAD+-GDH活性較高,表明NIL-ipa1植株對(duì)氮素的重復(fù)利用能力較強(qiáng)。而在氮脅迫條件下,NIL-ipa1中NAD+-GDH活性相對(duì)降低,表明其通過(guò)谷氨酸分解產(chǎn)生NH4+的量相對(duì)較少,這也可能是其在氮脅迫條件下GS、NADH-GOGAT活性相對(duì)較低的原因之一,同時(shí)本研究也表明NIL-ipa1植株在快速分蘗期對(duì)氮素的需求量較少,不需要大量分解谷氨酸即可滿足水稻分蘗對(duì)氮素的需求。
參考文獻(xiàn):
[1] TABUCHI M,ABIKO T,YAMAYA T. Assimilation of ammonium ions and reutilization of nitrogen in rice(Oryza sativa L.)[J]. J Exp Bot,2007,58(9):2319-2327.
[2] CRAWFORD N M,F(xiàn)ORDE B G. Molecular and developmental biology of inorganic nitrogen nutrition[J].Arabidopsis Book,2002, 1:e0011.
[3] BAO A,ZHAO Z,DING G,et al. The stable level of glutamine synthetase 2 plays an important role in rice growth and in carbon-nitrogen metabolic balance[J].Int J Mol Sci,2015,16(6):12713-12736.
[4] YAMAYA T,KUSANO M.Evidence supporting distinct functions of three cytosolic glutamine synthetases and two NADH-glutamate synthases in rice[J].J Exp Bot,2014,65(19):5519-5525.
[5] DUBOIS F,TERC?魪-LAFORGUE T,GONZALEZ-MORO M B, et al. Glutamate dehydrogenase in plants:Is there a new story for an old enzyme?[J]. Plant Physiology & Biochemistry,2003, 41(s6-7):565-576.
[6] KUMAR R G,SHAH K,DUBEY R S. Salinity induced behavioural changes in malate dehydrogenase and glutamate dehydrogenase activities in rice seedlings of differing salt tolerance[J].Plant Science,2000,156(1):23-34.
[7] 盛 坤.兩種穗型冬小麥品種碳氮代謝與分蘗成穗關(guān)系的研究[D].鄭州:河南農(nóng)業(yè)大學(xué),2009.
[8] MIURA K,IKEDA M,MATSUBARA A,et al.OsSPL14 promotes panicle branching and higher grain productivity in rice[J].Nat Genet,2010,42(6):545-549.
[9] JIAO Y,WANG Y,XUE D,et al. Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice[J].Nat Genet,2010,42(6):541-544.
[10] 盧永恩.水稻谷氨酸合酶基因和胞質(zhì)異檸檬酸脫氫酶基因的功能研究以及氨基酸轉(zhuǎn)運(yùn)蛋白基因家族分析[D].武漢:華中科技大學(xué),2014.
[11] RHODES D,RENDO G A,STEWART G R. The control of glutamine synthetase level in Lemna minor L[J].Planta,1975, 125:201-211.
[12] HECHT U,OELMTTLLER R,SCHMIDT S,et al. Action of light, nitrate and ammonium on the levels of NADH- and ferredoxin-dependent glutamate synthases in the cotyledons of mustard seedlings[J].Planta,1988,175:130-138.
[13] TURANO F J,DASHNER R,UPADHYAYA A,et al. Purification of mitochondrial glutamate dehydrogenase from dark-grown soybean seedlings[J].Plant Physiol,1996,112:1357-1364.
[14] LOULAKAKIS K A,ROUBELAKIS-ANGELAKIS K A. Intracellular localization and properties of NADH-glutamate dehydrogenase form Vitis vinifera L.:Purification and characterization of the major leaf isoenzyme[J].Journal of Experimental Botany,1990,41:1223-1230.
[15] 李合生.植物生理生化實(shí)驗(yàn)原理及技術(shù)[M].北京:高等教育出版社,2006,182-194.
[16] 蔣彭炎,洪曉富.水培條件下氮濃度對(duì)水稻氮素吸收和分蘗發(fā)生的影響研究[J].作物學(xué)報(bào),1997,23(2):191-199.
[17] GUEYE T,BECKER H.Genetic variation in nitrogen efficiency among cultivars of irrigated rice in Senegal[J]. Journal of Agricultural Biotechnology & Sustainable Development,2011, 3(3):35-43.
[18] 劉 楊,王強(qiáng)盛,丁艷鋒,等.氮素和6-BA對(duì)水稻分蘗芽發(fā)育的影響及其生理機(jī)制[J].作物學(xué)報(bào),2009,35(10):1893-1899.
[19] 王曉宇,馮 偉,郭天財(cái),等.兩種穗型小麥品種分蘗衰亡進(jìn)程中莖蘗碳氮代謝的差異[J].西北農(nóng)業(yè)學(xué)報(bào),2010,19(11):38-42.
[20] BAO A,ZHAO Z,DING G,et al. Accumulated expression level of cytosolic glutamine synthetase 1 gene(OsGS1;1 or OsGS1;2) alter plant development and the carbon-nitrogen metabolic status in rice[J].PLoS One,2014,9(4):e95581.
[21] LU Y,LUO F,YANG M,et al. Suppression of glutamate synthase genes significantly affects carbon and nitrogen metabolism in rice(Oryza sativa L.)[J]. Sci China Life Sci, 2011,54(7):651-663.
[22] DOM1′NGUEZ-MART1′N M A,LO′PEZ-LOZANO A,DIEZ J,et al. Physiological regulation of isocitrate dehydrogenase and the role of 2-oxoglutarate in Prochlorococcus sp. Strain PCC 9511[J].Plos One,2014,9(7):e103380.
[23] 鮑世穎,袁永澤,周志鵬,等.2-酮戊二酸對(duì)水稻根部碳-氮代謝重要酶的活性影響[J].武漢大學(xué)學(xué)報(bào),2006,52(6):763-766.
[24] 包愛(ài)麗.超量表達(dá)氮代謝關(guān)鍵基因?qū)λ咎嫉x的影響[D].武漢:華中農(nóng)業(yè)大學(xué),2013.
[25] 羅 鳳,盧永恩,楊 猛,等.氮脅迫對(duì)水稻營(yíng)養(yǎng)生長(zhǎng)期氮代謝及相關(guān)基因表達(dá)量的影響[J].華中農(nóng)業(yè)大學(xué)學(xué)報(bào),2012,31(1):16-22.
[26] DU C,LIN J,YANG Y,et al. Molecular cloning, characterization and function analysis of a GDH gene from Sclerotinia sclerotiorum in rice[J].Mol Biol Rep,2014,41(6):3683-3693.
[27] REFOUVELET E,DAGUIN F. Polymorphic glutamate dehydrogenase inlilac vitroplants as revealed by combined preparative IEF and native PAGE:Effect of ammonium deprivation;darkness and atmospheric CO2 enrichment upon isomerization[J].Physiol Plant,1999,105:199-206.
[28] KWINTA J,BIELAWSKI W.Glutamate dehydrogenase in higher plants[J].Acta Physiologiae Plantarum,1998,20(4):453-463.
[29] ZHOU Y,LIU H, ZHOU X,et al. Over-expression of a fungal NADP(H)-dependent glutamate dehydrogenase PcGDH improves nitrogen assimilation and growth quality in rice[J]. Molecular Breeding,2014,34(2):335-349.
[30] ZHOU X,LIN J,ZHOU Y,et al. Overexpressing a fungal CeGDH gene improves nitrogen utilization and growth in rice[J].Crop Science,2015,55(2):811.
[31] KISAKA H,KIDA T,MIWA T. Transgenic tomato plants that overexpress a gene for NADH-dependent glutamate dehydrogenase (legdh1)[J].Breeding Science,2007,57(2):101-106.