方立軍,楊 雪,,張桂英,郭 峰,孫立超
(1. 華北電力大學(xué) 能源動(dòng)力與機(jī)械工程學(xué)院,河北 保定 071003; 2. 國(guó)核電力規(guī)劃設(shè)計(jì)研究院,北京 100095)
方立軍1,楊 雪1,2,張桂英2,郭 峰2,孫立超1
(1. 華北電力大學(xué) 能源動(dòng)力與機(jī)械工程學(xué)院,河北 保定 071003; 2. 國(guó)核電力規(guī)劃設(shè)計(jì)研究院,北京 100095)
太陽能聚熱技術(shù)已被證實(shí)是完全可以與傳統(tǒng)化石能源競(jìng)爭(zhēng)的可再生能源技術(shù)。太陽能熱發(fā)電技術(shù)按聚光技術(shù)有槽式、塔式、蝶式、線性菲涅爾式4種。其中,槽式太陽能熱發(fā)電技術(shù)已趨于成熟,塔式太陽能熱發(fā)電技術(shù)由于其高聚光比、易得到較高的工作溫度、能量集中過程一次完成以及吸熱器散熱小等優(yōu)點(diǎn)受到人們廣泛關(guān)注[1]。
太陽能熱發(fā)電采用布雷頓循環(huán)技術(shù)最早見于20世紀(jì)70年代的塔式太陽能熱發(fā)電,使用空氣做傳熱和動(dòng)力工質(zhì)[2]。太陽能布雷頓循環(huán)分為開式和閉式2種,開式布雷頓循環(huán)熱效率一般在38%左右,閉式布雷頓循環(huán)熱效率在20%~50%之間[3]。2011年,美國(guó)推出的Sun Shot計(jì)劃首次提出將閉式布雷頓循環(huán)熱發(fā)電技術(shù)應(yīng)用于太陽能熱發(fā)電中,但由于科研示范難度大,至今未見實(shí)際應(yīng)用[4]。
Turchi等對(duì)幾個(gè)超臨界CO2(S-CO2)布雷頓循環(huán)進(jìn)行熱分析,得出S-CO2布雷頓循環(huán)比傳統(tǒng)朗肯循環(huán)效率高,當(dāng)入口溫度超過650 ℃時(shí)能夠達(dá)到50%左右。帶有中間冷卻或再熱的再壓縮式布雷頓循環(huán)具有更高的循環(huán)效率以及更大的換熱器溫差,更適用于顯熱蓄熱的集中式太陽能熱電站[5]。Harvego等對(duì)直接加熱和間接加熱的S-CO2再壓縮布雷頓循環(huán)進(jìn)行優(yōu)化分析,得出直接加熱過程的動(dòng)力循環(huán),具有更高的效率和輸出功[6]。Turchi等指出有再熱的布雷頓循環(huán)的循環(huán)熱效率普遍比無再熱的布雷頓循環(huán)熱效率高1~2個(gè)百分點(diǎn)。提高再熱溫度可以提高循環(huán)的熱效率,但是再熱溫度的提高受到膨脹機(jī)以及入口管材料的限制,通常會(huì)選擇再熱溫度等于膨脹機(jī)的入口溫度[7]。
圖1是S-CO2部分冷卻循環(huán)示意圖,圖2是其T-S圖。
圖1 具有一級(jí)再熱的S-CO2部分冷卻循環(huán)示意圖
圖2 具有一級(jí)再熱的S-CO2部分冷卻循環(huán)T-S圖
循環(huán)采用S-CO2作為傳熱和動(dòng)力流體。整個(gè)循環(huán)由3個(gè)壓縮機(jī)、2個(gè)回?zé)崞鳌?個(gè)透平、2個(gè)冷凝器組成。采用主壓縮機(jī)、預(yù)壓壓縮機(jī)以及再壓縮機(jī)的目的是:一方面為了使流體進(jìn)行分流,減少低溫回?zé)崞鞯摹皧A點(diǎn)”問題;另一方面是減少進(jìn)入冷凝器的工質(zhì)流量,減少冷源溫差,提高熱效率。循環(huán)流程主要有:1-2為高溫流體進(jìn)入第一透平(T1)做功。當(dāng)高溫流體做一部分功后,溫度、壓力降低,壓力降低到一定程度時(shí),進(jìn)入2-3再熱器進(jìn)行吸熱;3-4為吸收熱量后的高溫流體進(jìn)入第二透平(T2)做功;4-5為做功后的高溫流體進(jìn)入高溫回?zé)崞?HTR)將熱量傳遞給低溫流體;5-6為從高溫回?zé)崞鞒鰜淼牧黧w還保留一定的能量經(jīng)過低溫回?zé)崞?LTR)放熱;6-7為經(jīng)過低溫回?zé)崞鞒鰜淼牧黧w進(jìn)入預(yù)冷器中進(jìn)行放熱,使通過預(yù)冷器出口的流體溫度、壓力達(dá)到預(yù)壓壓縮機(jī)入口所需的溫度、壓力;7-8為預(yù)冷器出來的流體進(jìn)入到預(yù)壓壓縮機(jī)(C1)中進(jìn)行壓縮,從預(yù)壓壓縮機(jī)出口的流體進(jìn)行分流,8-9為一部分進(jìn)入中間冷卻器進(jìn)行放熱,使中間冷卻器的出口溫度、壓力達(dá)到主壓縮機(jī)(C2)的入口溫度、壓力;另一部分進(jìn)入8-12再壓縮機(jī)(C3)中進(jìn)行壓縮;9-10為一部分流體進(jìn)入主壓縮機(jī)中進(jìn)行壓縮;10-11為從主壓縮機(jī)出來的流體進(jìn)行低溫回?zé)崞髦羞M(jìn)行加熱,并在低溫回?zé)崞鞒隹谂c從再壓縮機(jī)出來的流體進(jìn)行匯合;13-14為匯合后的流體進(jìn)入高溫回?zé)崞鬟M(jìn)行加熱;14-1為從高溫回?zé)崞鞒鰜淼牧黧w在加熱器中進(jìn)行加熱。
2.1 循環(huán)熱力學(xué)模型
模型主要假設(shè):1)不考慮儲(chǔ)熱系統(tǒng);2)循環(huán)所有過程都已經(jīng)處于穩(wěn)定狀態(tài);3)忽略管道內(nèi)壓降;4)循環(huán)中的各設(shè)備絕熱。
表1 S-CO2部分冷卻布雷頓循環(huán)數(shù)學(xué)模型
2.2 相關(guān)參數(shù)的確定
本文選用主壓縮機(jī)入口為初始點(diǎn),相關(guān)參數(shù)如表2。
表分析的輸入?yún)?shù)
圖3 壓縮機(jī)出口壓力對(duì)循環(huán)效率的影響
圖4 循環(huán)壓比比對(duì)循環(huán)效率的影響
圖5 再熱壓力對(duì)循環(huán)效率的影響
圖6 透平入口溫度對(duì)壓縮機(jī)損系數(shù)的影響
圖7 透平入口溫度對(duì)透平損系數(shù)的影響
圖8 透平入口溫度對(duì)回?zé)崞鲹p系數(shù)的影響
圖9 透平入口溫度對(duì)冷卻器損系數(shù)的影響
3.3 最優(yōu)工況點(diǎn)
表3 最優(yōu)循環(huán)工作參數(shù)
[1] 鐘史明. 塔式太陽能熱發(fā)電介紹[J]. 區(qū)域供熱, 2015(1):3-8.
[2] SARKAR J. Second law analysis of supercritical CO2recompression Brayton cycle[J]. Energy, 2009, 34(9): 1172-1178.
[3] KIM Y M, KIM C G, FAVRAT D. Transcritical or supercritical CO2cycles using both low-and high-temperature heat sources[J]. Energy, 2012, 43(1): 402-415.
[4] SIENICKI J J, MOISSEYTSEV A, FULLER R L, et al. Scale dependencies of supercritical carbon dioxide Brayton cycle technologies and the optimal size for a next-step supercritical CO2cycle demonstration[C]//2011 Supercritical CO2Power Cycle Symposium, Boulder, CO. 2011.
[5] TURCHI C S, MA Z, NEISES T W, et al. Thermodynamic study of advanced supercritical carbon dioxide power cycles for concentrating solar power systems[J]. Journal of Solar Energy Engineering, 2013, 135(4): 041007.
[6] HARVEGO E A, MCKELLAR M G. Optimization and comparison of direct and indirect supercritical carbon dioxide power plant cycles for nuclear applications[C]//ASME 2011 International Mechanical Engineering Congress and Exposition,American Society of Mechanical Engineers, 2011: 75-81.
[7] TURCHI C S, MA Z, NEISES T, et al. Thermodynamic study of advanced supercritical carbon dioxide power cycles for high performance concentrating solar power systems[C]//ASME International Conference on Energy Sustainability collocated with the ASME 2012 International Conference on Fuel Cell Science, Engineering and Technology, 2012: 1928-1936.
[8] 吳毅,王佳瑩,王明坤,等. 基于超臨界CO2布雷頓循環(huán)的塔式太陽能集熱發(fā)電系統(tǒng)[J]. 西安交通大學(xué)學(xué)報(bào),2016,50(5):108-113.
[9] 黃雯婷,趙航,鄧清華,等. 超臨界CO2部分預(yù)冷循環(huán)特性分析及優(yōu)化研究[J]. 工程熱物理學(xué)報(bào),2016,37(2):235-239.
[10] IVERSON B D, CONBOY T M, PASCH J J, et al. Supercritical CO2Brayton cycles for solar-thermal energy[J]. Applied Energy, 2013, 111: 957-970.
[11] PADILLA R V, TOO Y C S, BENITO R, et al. Exergetic analysis of supercritical CO2Brayton cycles integrated with solar central receivers[J]. Applied Energy, 2015, 148(6): 348-365.
[12] KULHANEK M, DOSTAL V. Thermodynamic analysis and comparison of supercritical carbon dioxide cycles[C]//Proceedings of Supercritical CO2Power Cycle Symposium 2011, Boulder, CO, 2011: 24-25.
[13] SARKAR J, BHATTACHARYYA S. Optimization of recompression S-CO2power cycle with reheating[J]. Energy Conversion and Management, 2009, 50(8): 1939-1945.
Exergy Analysis of Supercritical CO2Partial Cooling Brayton Cycle
FANG Lijun1,YANG Xue1,2,ZHANG Guiying2,GUO Feng2,SUN Lichao1
(1. School of Energy Power and Mechanical Engineering,North China Electric Power University,Baoding 071003,China; 2. State Nuclear Electric Power Planning Design&Research Institute,Beijing 100095,China)
In order to determine the energy-saving potential of the equipments that apply to the partial cooling brayton cycle, the optimal working parameters that are applied to concentrated solar thermal power plants (CSP) are summarized which could provide some references for the solar thermal power plants of the construction of supercritical CO2(S-CO2) brayton cycle. The engineering equation solver (EES) is used to carry out the exergy analysis of a 100 MW S-CO2partial cooling brayton cycle which is used in CSP. By analyzing the influence of the turbine inlet temperature and cycle pressure ratio on the circulating exergy efficiency and the influence of the different turbine inlet temperature on the exergy loss coefficient of each equipment, the result that the maximum exergy loss exists in condensers compared with other equipments is obtained. Therefore, by taking advantage of the useful exergy of the condensers, the bottom cycles can be greatly bettered. When the turbine inlet temperature is 700 ℃, the reheat pressure is 9.5 MPa, and the cyclic pressure ratio is 0.4, and the circulating exergy efficiency is 33.73% and cycle thermal efficiency is 50.90%.
concentrating solar power; supercritical carbon dioxide; partial cooling brayton cycle; exergy efficiency; exergy loss coefficient
10.3969/j.ISSN.1672-0792.2017.04.008
2016-12-26。
河北省自然科學(xué)基金(B2014502056)。
TK123
A
1672-0792(2017)04-0043-06
方立軍(1971-),男,副教授,工學(xué)博士,主要從事大氣污染物控制和潔凈煤技術(shù)方面的研究工作。