吳占濤+程軍圣+李寶慶+鄭近德
摘 要:針對(duì)局部特征尺度分解(Local Characteristic-scale Decomposition,LCD)方法中均值曲線插值點(diǎn)的屬性主要由相鄰兩同類(lèi)極值點(diǎn)的屬性決定,不能很好地體現(xiàn)數(shù)據(jù)的整體變化趨勢(shì),從而可能引起分解精度降低,提出了基于Lagrange插值的局部特征尺度分解(Lagrange Interpolation based Local Characteristic-scale Decomposition,LILCD)方法.該方法采用Lagrange插值取代LCD中的線性插值,且均值曲線的插值點(diǎn)是由相鄰的3個(gè)同類(lèi)極值點(diǎn)構(gòu)成的Lagrange插值多項(xiàng)式計(jì)算產(chǎn)生.引入了對(duì)稱(chēng)系數(shù)的概念,并給出了最優(yōu)對(duì)稱(chēng)系數(shù)評(píng)價(jià)準(zhǔn)則.研究了LILCD方法的原理及最優(yōu)對(duì)稱(chēng)系數(shù)評(píng)價(jià)準(zhǔn)則,通過(guò)仿真信號(hào)將LILCD方法與LCD方法進(jìn)行了對(duì)比,結(jié)果表明LILCD在提高分量精確性和正交性方面具有一定的優(yōu)越性.將LILCD方法應(yīng)用于轉(zhuǎn)子不對(duì)中故障的診斷,結(jié)果表明了方法的有效性.
關(guān)鍵詞:局部特征尺度分解;Lagrange插值;故障診斷;不對(duì)中故障;時(shí)頻分析
中圖分類(lèi)號(hào):TH165;TH911.7 文獻(xiàn)標(biāo)識(shí)碼:A
The Method of Lagrange Interpolation Based Local Characteristic-scale Decomposition and Its Application
WU Zhantao1, CHENG Junsheng1, LI Baoqing1, ZHENG Jinde2
(1. State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082, China;
2. School of Mechanical Engineering, Anhui Univetsity of Technology, Maanshan 243032, China)
Abstract:A new non-stationary signal method——Lagrange Interpolation based Local Characteristic-scale Decomposition (LILCD) was proposed to improve the LCD method, in which the property of mean curve interpolation points was mainly decided by adjacent similar extremum points which cannot properly reflect the overall trends of signal, and the decomposition precision was lowered. To improve the LCD method, Lagrange interpolation was used in LILCD to replace the linear interpolation in LCD, and the mean curve interpolation points were computed with the Lagrange interpolation polynomial generated by three adjacent similar extremum points. Symmetric coefficient was introduced, and the optimal evaluation criteria of symmetric coefficient were given. The paper firstly studied the theory of LILCD, and then, simulation experiments were done to compare LILCD with LCD. The results have indicated that LILCD is more efficient in improving the veracity and orthogonality in components than LCD. Finally, the proposed method was applied to diagnose the rotor with misalignment fault, which indicates the effectiveness of LILCD.
Key words:local characteristic-scale decomposition(LCD); Lagrange interpolation; fault diagnosis; misalignment fault; time-frequency analysis
當(dāng)機(jī)械設(shè)備發(fā)生故障時(shí),其振動(dòng)信號(hào)一般是非平穩(wěn)、非線性信號(hào),由于時(shí)頻分析方法能同時(shí)提供非平穩(wěn)信號(hào)在時(shí)域和頻域的局部化信息而得到了廣泛的應(yīng)用[1].自適應(yīng)時(shí)頻分析方法的特點(diǎn)主要表現(xiàn)在不需要對(duì)被分析信號(hào)的形態(tài)特征或者信息做出預(yù)測(cè)和限制的前提下,可以在對(duì)信號(hào)進(jìn)行分解的過(guò)程中根據(jù)信號(hào)本身的特性自動(dòng)產(chǎn)生基線信號(hào),從而使得分解結(jié)果具有一定的物理意義[2].近年來(lái)最具代表性的自適應(yīng)時(shí)頻分析方法是經(jīng)驗(yàn)?zāi)B(tài)分解(Empirical Mode Decomposition,EMD)方法[3-4],EMD方法自提出后在很多領(lǐng)域得到了廣泛的應(yīng)用[5-6].然而,EMD方法存在包絡(luò)過(guò)沖和欠包絡(luò)、迭代計(jì)算量大、端點(diǎn)效應(yīng)以及模態(tài)混淆等問(wèn)題[7].作為對(duì)EMD方法的改進(jìn),程軍圣等人[8]提出了另一種自適應(yīng)時(shí)頻分析方法——局部特征尺度分解(LCD).LCD能夠自適應(yīng)地將一個(gè)復(fù)雜信號(hào)分解為若干個(gè)瞬時(shí)頻率具有物理意義內(nèi)稟尺度分量(Intrinsic Scale Component,ISC)之和,從而得到原始信號(hào)完整的時(shí)頻分布.與EMD相比,LCD避免了MED中采用三次樣條擬合極值點(diǎn)生成包絡(luò)線的方式來(lái)定義均值曲線,而是基于數(shù)據(jù)本身的特征尺度參數(shù),不但減小了分解誤差,提高了計(jì)算速度,而且在一定程度上也抑制了模態(tài)混淆,已被應(yīng)用于信號(hào)分析和機(jī)械故障診斷等領(lǐng)域,取得了較好的效果[9-11].
EMD和LCD等這類(lèi)基于篩分的信號(hào)分解方法有共同的分解思路,即在定義瞬時(shí)頻率具有物理意義的單分量信號(hào)的基礎(chǔ)上,定義一種基于均值曲線的篩分過(guò)程,通過(guò)篩分過(guò)程不斷從原始信號(hào)中分離出相對(duì)高頻的分量.因此,在這類(lèi)基于篩分過(guò)程分解方法中核心問(wèn)題是如何定義合理的均值曲線,均值曲線的定義優(yōu)劣直接決定了方法的有效性和精確性[12].LCD均值曲線的插值點(diǎn)是由連接兩相鄰?fù)?lèi)極值點(diǎn)的連線計(jì)算產(chǎn)生,雖然相對(duì)EMD減小了迭代計(jì)算量、提高了分解精度,但由于均值曲線插值點(diǎn)的屬性主要由相鄰兩同類(lèi)極值點(diǎn)的屬性決定,不能很好地體現(xiàn)數(shù)據(jù)的整體變化趨勢(shì),從而可能引起分解精度降低,因此有待進(jìn)一步改進(jìn).本文提出了基于Lagrange插值的局部特征尺度分解(Lagrange Interpolation based Local Characteristic-scale Decomposition,LILCD),采用Lagrange插值[13-14]取代LCD中的線性插值,且均值曲線的插值點(diǎn)是由相鄰的3個(gè)同類(lèi)極值點(diǎn)構(gòu)成的Lagrange插值多項(xiàng)式計(jì)算產(chǎn)生,可以更好地體現(xiàn)數(shù)據(jù)的整體屬性;引入了對(duì)稱(chēng)系數(shù)的概念,并給出了最優(yōu)對(duì)稱(chēng)系數(shù)評(píng)價(jià)準(zhǔn)則,選取最優(yōu)對(duì)稱(chēng)系數(shù),提高LCD分解精度.
本文研究了LILCD方法的原理及最優(yōu)對(duì)稱(chēng)系數(shù)評(píng)價(jià)準(zhǔn)則,通過(guò)仿真信號(hào)將LILCD與LCD進(jìn)行分析對(duì)比,結(jié)果表明,LILCD在提高分量精確性等方面具有一定的優(yōu)越性,并采用LILCD方法對(duì)具有不對(duì)中故障的轉(zhuǎn)子振動(dòng)位移信號(hào)進(jìn)行了分析,結(jié)果表明LILCD能夠有效地將高頻不對(duì)中故障成分與轉(zhuǎn)頻等成分進(jìn)行分離,從而實(shí)現(xiàn)轉(zhuǎn)子故障診斷.
1 LILCD
1.1 LILCD均值曲線
對(duì)稱(chēng)系數(shù)λ取不同的值,則可得到不同的均值曲線,進(jìn)而得到不同的ISC分量.選取最優(yōu)的對(duì)稱(chēng)系數(shù)λ可以改善LCD均值曲線,以在迭代過(guò)程中消除趨勢(shì),降低篩分誤差,提高分解精度.
由于Ak和Lk值的下標(biāo)k值從4變化到K-1,采用端點(diǎn)延拓方法[15],求得L1,L2,L3和Lk的值.實(shí)際上,LCD方法中Ak和Lk的值也可以看作是由相鄰極值點(diǎn)采用Lagrange插值產(chǎn)生的曲線計(jì)算產(chǎn)生的,區(qū)別在于Lagrange插值階次和插值點(diǎn)個(gè)數(shù)不同.
1.2 LILCD分解過(guò)程
對(duì)實(shí)信號(hào)x(t),對(duì)稱(chēng)系數(shù)λ在取值范圍內(nèi),以一定步長(zhǎng)改變,得到的一系列值記為λj,j=1,2,…,J,J為λ的總個(gè)數(shù).LILCD分解步驟如下:
1.3 最優(yōu)對(duì)稱(chēng)系數(shù)評(píng)價(jià)準(zhǔn)則
為了評(píng)價(jià)對(duì)稱(chēng)系數(shù)λ取不同值時(shí),分解得到的ISC分量精確性,需要確定一個(gè)最優(yōu)λ評(píng)價(jià)準(zhǔn)則.參考文獻(xiàn)[3]提出了正交性性質(zhì),文獻(xiàn)[16]在對(duì)EMD方法改進(jìn)時(shí)提出了正交性檢驗(yàn)準(zhǔn)則,本文使用正交性評(píng)價(jià)指標(biāo)選取最優(yōu)的對(duì)稱(chēng)系數(shù)λ(opt).理想狀態(tài)下,單個(gè)ISC分量正交于其余的ISC成分,則單個(gè)ISC也正交于其余的ISC成分的和,即要滿(mǎn)足:
式中:x(t)為原始信號(hào)的真實(shí)值;ISCi(t)為分解得到的單分量信號(hào);T為信號(hào)長(zhǎng)度;N為ISC分量總數(shù).定義式(10)為單個(gè)ISC分量與其余ISC成分之和的正交性評(píng)價(jià)指標(biāo)(Evaluation Index of Orthogonality, EIO).
1.4 仿真信號(hào)分析
為了說(shuō)明所提出的LILCD方法的優(yōu)越性,不失一般性,考慮式(11)所示的混合信號(hào):
分別采用LILCD和LCD對(duì)仿真信號(hào)x(t)進(jìn)行分解,2種方法均采用端點(diǎn)延拓方法處理端點(diǎn)效應(yīng).采用LILCD分解時(shí),對(duì)稱(chēng)系數(shù)λ∈[0.5,2],步長(zhǎng)為0.05.圖3是λ分別為0.50,1.25和2.00時(shí),LILCD分解得到的各ISCj1(t)和ISCj2(t)分量的分解絕對(duì)誤差.分解絕對(duì)誤差定義為分解得到的ISC分量與真實(shí)分量之差的絕對(duì)值.圖4是λ∈[0.5,2]時(shí)得到的各ISCji(t)分量對(duì)應(yīng)的EIOji值變化情況,i=1,2.
從圖3可以看出,當(dāng)λ取不同值時(shí),對(duì)LILCD得到的2組ISC分量的分解絕對(duì)誤差均有一定的影響,對(duì)ISCj1(t)分量的分解絕對(duì)誤差影響相對(duì)更明顯些,這說(shuō)明λ值的選取會(huì)影響LILCD的分解精度.由圖4可知,LILCD在分解第1個(gè)分量時(shí),λ(opt)1=0.95,對(duì)應(yīng)的EIO值為1.775×10-5;在分解第2個(gè)分量時(shí),λ取不同的值,EIO值均較小,λ(opt)2=2,對(duì)應(yīng)的EIO值為0.005 7.
2種方法對(duì)仿真信號(hào)x(t)的分解結(jié)果分別如圖5和圖6所示,2種方法的分解絕對(duì)誤差如圖7所示.
由圖5~圖7可以看出,LILCD的分解結(jié)果比較理想,分解分量與真實(shí)分量非常接近,分解絕對(duì)誤差較??;LCD的分解分量I1與真實(shí)分量也比較接近,但分量I2與R2的局部波形失真,與真實(shí)分量分解絕對(duì)誤差較大.
為了進(jìn)一步比較2種方法的分解效果,本文還考察了2種分解方法的分解正交性指標(biāo)(IO)[3],以及2種分解方法得到的前2個(gè)分量與真實(shí)分量的均方根誤差(RMSE)和相關(guān)系數(shù)(CC)[3].IO值越小,表示所有分解分量之間的正交性越好;RMSE值越小,表示分解誤差越??;CC值越大,表示分解的準(zhǔn)確性越高.各評(píng)價(jià)指標(biāo)值如表1所示,其中RMSEi和CCi分別表示第i個(gè)分解分量與其對(duì)應(yīng)真實(shí)分量的均方根誤差和相關(guān)系數(shù),i=1,2.
由表1可以看出,與LCD方法相比,LILCD方法的正交性指標(biāo)和均方根誤差指標(biāo)值都更小,相關(guān)系數(shù)指標(biāo)值都更大,說(shuō)明LILCD方法在正交性和精確性等方面表現(xiàn)出一定的優(yōu)越性.
2 應(yīng)用實(shí)例
為了進(jìn)一步說(shuō)明LILCD方法的有效性與實(shí)用性,將其應(yīng)用于由彎曲變形引起的不對(duì)中故障的轉(zhuǎn)子振動(dòng)位移實(shí)驗(yàn)信號(hào)分析,實(shí)驗(yàn)裝置示意圖如圖8所示.轉(zhuǎn)子轉(zhuǎn)速為3 000 r/min,轉(zhuǎn)頻fr=50 Hz,實(shí)驗(yàn)采樣頻率為fs=2 048 Hz,采樣時(shí)長(zhǎng)為0.5 s.其中調(diào)速電機(jī)為直流并勵(lì)電動(dòng)機(jī),功率為250 W;轉(zhuǎn)子徑向位移振動(dòng)信號(hào)由垂直和水平安裝的電渦流傳感器拾?。绘I相傳感器采用電渦流傳感器,可以提供相位和轉(zhuǎn)速信號(hào);這些信號(hào)經(jīng)過(guò)信號(hào)調(diào)理箱處理后,送入數(shù)據(jù)采集系統(tǒng).實(shí)驗(yàn)數(shù)據(jù)的時(shí)域波形如圖9所示,其幅值譜如圖10所示.轉(zhuǎn)子發(fā)生由彎曲變形引起的不對(duì)中故障時(shí),由于轉(zhuǎn)軸內(nèi)阻現(xiàn)象以及轉(zhuǎn)軸表面與旋轉(zhuǎn)體內(nèi)表面之間的摩擦而產(chǎn)生的相對(duì)滑動(dòng),使轉(zhuǎn)子產(chǎn)生自激旋轉(zhuǎn)周期性振動(dòng),轉(zhuǎn)子振動(dòng)位移信號(hào)會(huì)產(chǎn)生一個(gè)以轉(zhuǎn)頻為幅值調(diào)制頻率的高頻分量,其振動(dòng)頻率為轉(zhuǎn)子轉(zhuǎn)頻fr的兩倍,常伴頻率為轉(zhuǎn)頻fr的1倍頻及高次諧波[17-19].由圖9可以看出高頻的分量信號(hào)被淹沒(méi)在強(qiáng)大的背景信號(hào)中.從圖10中主要看到的是與轉(zhuǎn)頻fr相關(guān)的基頻分量,看不出不對(duì)中故障信息.為提取高頻不對(duì)中信息,分別采用LILCD和LCD對(duì)實(shí)驗(yàn)數(shù)據(jù)進(jìn)行分解,分解結(jié)果如圖11和圖12所示,2種方法分量I2包絡(luò)譜分別如圖13和圖14所示.
由圖11可以看出,LILCD方法對(duì)實(shí)驗(yàn)數(shù)據(jù)分解得到的第1個(gè)分量I1是高頻背景噪聲信號(hào),第2個(gè)分量I2具有明顯的調(diào)制特征,分量I3是與轉(zhuǎn)頻有關(guān)的背景信號(hào),剩余信號(hào)R3是一些低頻噪聲.從圖12中可以看出,LCD方法對(duì)實(shí)驗(yàn)數(shù)據(jù)分解得到的第1個(gè)分量I1也是高頻背景噪聲信號(hào),第2個(gè)分量I2也能看出調(diào)制特征,第3個(gè)分量是與轉(zhuǎn)頻有關(guān)的背景信號(hào);但分量I2,I3和R3出現(xiàn)了嚴(yán)重的波形失真.由圖13所示LILCD分量I2的包絡(luò)譜圖可以看到明顯的轉(zhuǎn)頻fr的2倍頻和轉(zhuǎn)頻fr的1倍頻及高次諧波成分,這與轉(zhuǎn)子發(fā)生不對(duì)中故障時(shí)的頻率特征相符合,因此LILCD分量I2的主要成分是不對(duì)中故障信號(hào).圖14所示的LCD分量I2的包絡(luò)譜圖未出現(xiàn)明顯的轉(zhuǎn)頻2倍頻,無(wú)法有效識(shí)別實(shí)驗(yàn)數(shù)據(jù)所包含的故障類(lèi)型.
綜上,相對(duì)LCD方法,LILCD能更為有效地將高頻不對(duì)中信號(hào)從強(qiáng)大的背景信號(hào)中提取出來(lái),實(shí)現(xiàn)不對(duì)中故障信號(hào)、背景信號(hào)和噪聲信號(hào)的分離,從而實(shí)現(xiàn)轉(zhuǎn)子故障診斷.
3 結(jié) 論
提出了基于Lagrange插值的局部特征尺度分解(LILCD)方法,給出了最優(yōu)對(duì)稱(chēng)系數(shù)評(píng)價(jià)準(zhǔn)則,對(duì)仿真信號(hào)和實(shí)驗(yàn)數(shù)據(jù)的分析結(jié)果表明:
1)使用仿真信號(hào)將LILCD方法與LCD方法進(jìn)行對(duì)比,分析結(jié)果表明,LILCD方法在分量的正交性、精確性等方面要優(yōu)于LCD方法.
2)將LILCD方法應(yīng)用于轉(zhuǎn)子不對(duì)中故障信號(hào)的分析,能將高頻不對(duì)中故障信號(hào)從強(qiáng)大的背景信號(hào)和噪聲中提取出來(lái),有效地實(shí)現(xiàn)了轉(zhuǎn)子不對(duì)中故障的診斷.
3)LILCD不需要預(yù)測(cè)和限制待分析信號(hào)的形態(tài)特征或信息,是一種自適應(yīng)時(shí)頻分析方法.
論文提出的LILCD方法可有效地應(yīng)用于機(jī)械設(shè)備故障診斷.盡管如此,該方法仍有其不足之處,如LILCD方法存在運(yùn)行效率相對(duì)較低等問(wèn)題,作者將進(jìn)一步深入完善該方法的理論.
參考文獻(xiàn)
[1] 程軍圣, 馬利, 潘海洋, 等. 基于EEMD和改進(jìn)的VPMCD的滾動(dòng)軸承故障診斷方法[J]. 湖南大學(xué)學(xué)報(bào):自然科學(xué)版, 2014, 41(10): 22-26.
CHENG Junsheng, MA Li, PAN Haiyang, et al. A fault diagnosis mehtod for rolling bearing based on EEMD and improved VPMCE[J]. Journal of Hunan University:Natural Sciences,2014,41(10):22-26.(In Chinese)
[2] 楊宇,曾鳴,程軍圣.局部特征尺度分解方法及其分解能力研究[J].振動(dòng)工程學(xué)報(bào),2012,25(5):602-609.
YANG Yu,ZENG Ming,CHENG Junsheng.Research on local characteristic-scale decomposition and its capacities[J].Journal of Vibration Engineering,2012, 25(5):602-609.(In Chinese)
[3] HUANG N E,SHEN Z,LONG S R,et al.The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society of London,Series A: Mathematical, Physical and Engineering Sciences, 1998, 454(1971): 903-995.
[4] HUANG N E,WU Z. A review on Hilbert Huang transform: method and its applications to geophysical studies[J]. Reviews of Geophysics,2008,47(2):1-23.
[5] PEGRAM G G S,PEEL M C,MCMAHON T A.Empirical mode decomposition using rational splines: an application to rainfall time series[J].Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science, 2008,464(2094):1483-1501.
[6] LEI Y,LIN J,HE Z,et al.A review on empirical mode decomposition in fault diagnosis of rotating machinery[J]. Mechanical Systems and Signal Processing,2013,35(1): 108-126.
[7] 孟宗, 顧海燕, 李?yuàn)檴? 基于神經(jīng)網(wǎng)絡(luò)集成的B樣條經(jīng)驗(yàn)?zāi)B(tài)分解端點(diǎn)效應(yīng)抑制方法[J].機(jī)械工程學(xué)報(bào),2013,49(9):106-112.
MENG Zong,GU Haiyan,LI Shanshan. Restraining method for end effect of B-spline empirical mode decomposition based on neural network ensemble[J]. Journal of Mechanical Engineering,2013,49(9):106-112. (In Chinese)
[8] 程軍圣,鄭近德,楊宇.一種新的非平穩(wěn)信號(hào)處理方法——局部特征尺度分解法[J].振動(dòng)工程學(xué)報(bào),2012,25(2): 215-220.
CHENG Junsheng,ZHENG Jinde,YANG Yu. A nonstationary signal analysis approach—the local characteristic-scale decomposition method[J].Journal of Vibration Engineering,2012,25(2):215-220.(In Chinese)
[9] ZHENG Jinde, CHENG Junsheng, YANG Yu. A rolling bearing fault diagnosis approach based on LCD and fuzzy entropy[J]. Mechanism and Machine Theory, 2013, 70: 441-453.
[10]ZHENG Jinde,CHENG Junsheng,YANG Yu.Generalized empirical mode decomposition and its applications to rolling element bearing fault diagnosis[J]. Mechanical Systems and Signal Processing,2013,40(1):136-153.
[11]楊宇,曾鳴,程軍圣.一種新的時(shí)頻分析方法——局部特征尺度分解[J].湖南大學(xué)學(xué)報(bào):自然科學(xué)版,2012,39(6): 35-39.
YANG Yu, ZENG Ming, CHENG Junsheng. A new time-frequency analysis method—the local characteristic-scale decomposition[J].Journal of Hunan University:Natural Sciences,2012,39(6):35-39.(In Chinese)
[12]ZHENG Jinde,CHENG Junsheng,YANG Yu. Generalized empirical mode decomposition and its applications to rolling element bearing fault diagnosis[J]. Mechanical Systems and Signal Processing, 2013, 40(1): 136-153.
[13]梁立孚,宋海燕,郭慶勇.應(yīng)用Lagrange方程研究剛彈耦合動(dòng)力學(xué)[J]. 哈爾濱工程大學(xué)學(xué)報(bào), 2015, 36(4): 1-6.
LIANG Lifu,SONG Haiyan,GUO Qingyong.Research on rigid-elastic coupling dynamics using Lagrange equation[J]. Journal of Harbin Engineering University, 2015,36(4):1-6.(In Chinese)
[14]GUI Qiaoxu.The average errors for lagrange interpolation on the wiener space[J]. Acta Mathematica Sinica,2012,28(8):1581-1596.
[15]RILLING G, FLANDRIN P, GONCALVES P.On empirical mode decomposition and its algorithms[J]. IEEE-Eurasip Workshop on Nonlinear Signal and Image Processing NSIP,2003,3:8-11.
[16]秦磊,馬景義,謝邦昌.含有自適應(yīng)篩選系數(shù)的廣義經(jīng)驗(yàn)?zāi)B(tài)分解方法[J].數(shù)理統(tǒng)計(jì)與管理,2013,32(6): 1002-1011.
QIN Lei,MA Jingyi,XIE Bangchang.Generalized empirical mode decomposition with adaptive sifting parameter[J].Journal of Applied Statistics and Management,2013,32(6):1002-1011.(In Chinese)
[17]孫斌,劉立遠(yuǎn),雷偉.基于正交局部保持映射的轉(zhuǎn)子故障診斷方法[J].中國(guó)機(jī)械工程, 2014, 25(16): 2219-2224.
SUN Bin,LIU Liyuan,LEI Wei.Rotor fault diagnosis method on orthogonal locality preserving projection[J]. China Mechanical Engineering,2014,25(16):2219-2224. (In Chinese)
[18]劉楊,太興宇,趙倩,等.轉(zhuǎn)子系統(tǒng)不對(duì)中碰摩耦合故障的動(dòng)力學(xué)特性[J].東北大學(xué)學(xué)報(bào):自然科學(xué)版,2013,34(4): 564-568.
LIU Yang,TAI Xingyu,ZHAO Qian,et al.Dynamic characteristics of misalignment-rubbing coupling fault for rotor system[J].Journal of Northeastern University:Natural Science,2013,34(4):564-568.(In Chinese)
[19]楊宇,楊麗湘,程軍圣.基于LMD和AR模型的轉(zhuǎn)子系統(tǒng)故障診斷方法[J].湖南大學(xué)學(xué)報(bào):自然科學(xué)版,2010, 37(9): 24-28.
YANG Yu,YANG Lixiang,CHENG Junsheng.Fault diagnosis approach for rotor systems based on LMD and AR model[J]. Journal of Hunan University:Natural Sciences,2010,37(9):24-28.(In Chinese)