彭碧蓮,劉銘龍,隋鳳鳳,潘志平,李戀卿,潘根興,程琨
(南京農(nóng)業(yè)大學(xué)農(nóng)業(yè)資源與生態(tài)環(huán)境研究所,南京 210095)
生物質(zhì)炭對(duì)小白菜吸收多環(huán)芳烴的影響
彭碧蓮,劉銘龍,隋鳳鳳,潘志平,李戀卿*,潘根興,程琨
(南京農(nóng)業(yè)大學(xué)農(nóng)業(yè)資源與生態(tài)環(huán)境研究所,南京 210095)
選取小麥秸稈、污泥、豬糞三種原料制備的生物質(zhì)炭為研究材料,通過(guò)盆栽試驗(yàn),探究不同原料生物質(zhì)炭對(duì)PAHs污染土壤中小白菜生長(zhǎng)情況及對(duì)PAHs吸收積累的影響。結(jié)果表明:三種生物質(zhì)炭對(duì)小白菜吸收PAHs均有一定的抑制作用,與對(duì)照相比,施用生物質(zhì)炭小白菜對(duì)PAHs的吸收量降低14.53%~49.41%,三種生物質(zhì)炭的抑制能力依次為麥秸炭>豬糞炭>污泥炭;相對(duì)于1%的施用量,施用2%的麥秸炭與豬糞炭小白菜中PAHs含量分別顯著降低32.02%和21.40%,而污泥炭不同施用量對(duì)小白菜中PAHs總含量的影響無(wú)明顯差異;生物質(zhì)炭對(duì)小白菜吸收2~3環(huán)的低分子量PAHs的降低率為0~30.81%,對(duì)4~6環(huán)的高分子量PAHs吸收的降低率為30.72%~68.07%;施用2%的麥秸炭和豬糞炭,使小白菜的生物量顯著提高20.03%和22.28%。因此,施用生物質(zhì)炭可作為一種降低污染土壤中作物吸收PAHs,同時(shí)保障作物產(chǎn)量的有效技術(shù)途徑。
生物質(zhì)炭;PAHs;污染土壤;小白菜;生物累積
多環(huán)芳烴(PAHs)是環(huán)境中普遍存在的一類(lèi)持久性有機(jī)污染物(POPs),主要源于化石燃料的不完全燃燒。PAHs可通過(guò)大氣沉降和污水灌溉進(jìn)入土壤而被植物吸收,進(jìn)而通過(guò)食物鏈進(jìn)入人體。PAHs具有較強(qiáng)的“三致”(致癌、致畸、致突變)作用[1-2],會(huì)對(duì)人體健康造成嚴(yán)重威脅,治理PAHs污染土壤以減少PAHs在作物體內(nèi)的累積已成為大家關(guān)注的熱點(diǎn)[3-5]。生物質(zhì)炭(Biochar)是生物質(zhì)在限氧條件下,250~750℃之間發(fā)生熱裂解作用而得到的固態(tài)物質(zhì)[6]。生物質(zhì)炭具有的特殊的多孔性結(jié)構(gòu)賦予了其較強(qiáng)的吸附性能,作為一種新型環(huán)境修復(fù)材料已廣泛應(yīng)用于重金屬及有機(jī)污染物的修復(fù)[7-8]。目前已有很多關(guān)于生物質(zhì)炭用于多環(huán)芳烴吸附的研究,如史兵方等[9]研究了麻瘋樹(shù)籽殼生物質(zhì)炭對(duì)4種PAHs的吸附效果及機(jī)理,結(jié)果表明在25℃、添加生物質(zhì)炭0.15 g、吸附時(shí)間60 min的條件下,萘、蒽、芘和菲的去除率均高達(dá)90%以上。Beesley等[10]研究發(fā)現(xiàn),經(jīng)過(guò)60 d場(chǎng)地試驗(yàn),加入生物質(zhì)炭吸附后土壤中PAHs生物有效性含量顯著降低。目前,雖然已有一些關(guān)于生物質(zhì)炭抑制植物對(duì)多環(huán)芳烴吸收的研究,如花莉等[11]研究發(fā)現(xiàn)生物質(zhì)炭的輸入使黑麥草中多環(huán)芳烴的累積量顯著減少了27%~34%。但此類(lèi)研究多是將一種或幾種有機(jī)污染物人為添加到土壤中進(jìn)行的[12-13],而長(zhǎng)期污染的土壤中多環(huán)芳烴的遷移轉(zhuǎn)化特性與人為添加的短期效應(yīng)存在著很大的差別[14-15],且不同原料的生物質(zhì)炭對(duì)多環(huán)芳烴的吸附能力也存在差異[16-17]。孫璇等[18]研究發(fā)現(xiàn),玉米秸稈炭對(duì)芘的飽和吸附量分別是麥秸炭和花生殼炭的2.3倍和4.5倍。因此,本文選取作物秸稈、畜禽糞便及污泥等不同種類(lèi)的生物質(zhì)原料,以工業(yè)區(qū)周邊長(zhǎng)期污染土壤為對(duì)象,通過(guò)盆栽試驗(yàn)研究麥秸炭、豬糞炭和污泥炭對(duì)小白菜生長(zhǎng)及富集PAHs的影響,以期為降低污染土壤中作物PAHs吸收提供有效途徑。
1.1 供試材料
供試土壤于4月中旬在南京市郊某工業(yè)園區(qū)周邊菜地采集,GPS定位點(diǎn)為31°54′21″N,118°37′37″E,采土深度為0~20 cm。采集的土壤于室內(nèi)自然風(fēng)干,剔除植物殘根、砂石后,粉碎過(guò)5 mm篩混勻備用。土壤為黃棕壤,土壤pH 8.36,有機(jī)質(zhì)37.07 g·kg-1,全氮1.11 g·kg-1,速效磷24.09 mg·kg-1,速效鉀161.55 mg·kg-1。土壤中PAHs總含量為2.57 mg·kg-1,其中萘(Nap)301.38 μg·kg-1、苊(Ace)315.67 μg·kg-1、芴(Flu)4.00 μg·kg-1、菲(Phe)162.85 μg·kg-1、蒽(Ant)41.17 μg·kg-1、熒蒽(Fla)352.82 μg·kg-1、芘(Pyr)379.00 μg·kg-1、苗屈(Chry)141.33 μg·kg-1、苯并(b)熒蒽(BbF)191.33 μg·kg-1、苯并(k)熒蒽(BkF)177.81 μg·kg-1、苯并(a)芘(BaP)99.2 μg·kg-1、二苯并(a,h)蒽(DahA)214.03 μg·kg-1、茚并(1,2,3-c,d)芘(InP)191.09 μg·kg-1。
根據(jù)Maliszewska[19]對(duì)土壤PAHs污染狀況的分級(jí)方法,供試土壤屬于嚴(yán)重污染土壤。三種生物質(zhì)炭分別由小麥秸稈、豬糞、污泥在450℃下便攜式炭化機(jī)中(編號(hào):SSBP-5000,江蘇銀鼎生物質(zhì)科技有限公司)限氧熱裂解而成,分別標(biāo)記為WBC、PBC、SBC,其基本性質(zhì)見(jiàn)表1。
表1 供試生物質(zhì)炭的基本性質(zhì)Table1 Basic properties of biochar
1.2 試驗(yàn)設(shè)計(jì)
試驗(yàn)共設(shè)七個(gè)處理,每個(gè)處理三個(gè)重復(fù)。將粉碎后過(guò)20目篩的三種生物質(zhì)炭分別按0%、1%、2%比例與土壤混合均勻,每盆裝土2 kg。各處理分別標(biāo)記為CK、1%WBC、2%WBC、1%SBC、2%SBC、1%PBC、2%PBC。裝盆結(jié)束后,沿盆壁加入去離子水,使得土壤濕度達(dá)到最大田間持水量,靜置24 h后播種。本試驗(yàn)在南京農(nóng)業(yè)大學(xué)資源與環(huán)境學(xué)院溫室大棚中進(jìn)行,供試小白菜品種為四月蔓。2016年5月2日播種,待出苗一周后間苗,每盆保留5株,45 d后采收。小白菜生長(zhǎng)期間定時(shí)澆水,使之保持在田間持水量的70%左右。隨機(jī)調(diào)整盆栽擺放位置。
1.3 試劑和儀器
Waters 1525高效液相色譜儀,配備Waters-PAHs專(zhuān)用色譜柱C18(4.6×250 mm,5 μm)及Waters 474FLD、Waters 2487UVD雙檢測(cè)器。KH-300DB醫(yī)用數(shù)控超聲波清洗器,RE52-98旋轉(zhuǎn)濃縮蒸發(fā)儀。
試劑二氯甲烷、正己烷、丙酮均為分析純,乙腈為色譜純。多環(huán)芳烴標(biāo)準(zhǔn)物質(zhì)為美國(guó)EPA要求的16種優(yōu)先檢測(cè)的PAHs混合標(biāo)樣,包括萘(Nap)、苊(Ace)、苊烯(Acy)、芴(FI)、菲(Phe)、蒽(Ant)、熒蒽(Fla)、芘(Pyr)、苯并(a)蒽(BaA)、苗屈(Chry)、苯并(b)熒蒽(BbF)、苯并(k)熒蒽(BkF)、苯并(a)芘(BaP)、二苯并(a,h)蒽(DahA)、苯并(g,h,i)芘(BghiP)和茚并(1,2,3-c,d)芘(InP),購(gòu)自美國(guó)Supelco公司。
1.4 分析項(xiàng)目和方法
小白菜生物量采取直接稱(chēng)量法,生物質(zhì)炭灰分含量的測(cè)定參照農(nóng)業(yè)行業(yè)標(biāo)準(zhǔn)NY/T 1881.5—2010[20],土壤、其余生物質(zhì)炭性質(zhì)測(cè)定按鮑士旦推薦方法[21]。土壤、小白菜中PAHs的提取、純化參見(jiàn)文獻(xiàn)[22-23]。在樣品分析過(guò)程中進(jìn)行方法空白、平行樣以及加標(biāo)回收率測(cè)定,土壤加標(biāo)回收率為79%~112%(萘為64%),植物加標(biāo)回收率為70%~104%,符合樣品分析要求。高效液相色譜分析條件參見(jiàn)文獻(xiàn)[23],流動(dòng)相為乙腈和水,初始乙腈∶水=60∶40,經(jīng)15 min后變?yōu)?00∶0,再經(jīng)6 min后又回到初始狀態(tài)。紫外檢測(cè)器檢測(cè)波長(zhǎng)設(shè)置為254 nm。熒光檢測(cè)器程序設(shè)置為0~6.5 min:λEx=270 nm,λEm=330 nm;6.5~14.5 min:λEx= 245 nm,λEm=390 nm;14.5~26 min:λEx=290 nm,λEm= 430 nm。
1.5 數(shù)據(jù)分析
采用軟件Microsoft Excel 2013對(duì)試驗(yàn)數(shù)據(jù)進(jìn)行統(tǒng)計(jì)處理,采用SPSS 13.0進(jìn)行單因素方差分析和多重比較(LSD檢驗(yàn)),顯著性檢驗(yàn)在α=0.05概率水平下進(jìn)行。
2.1 生物質(zhì)炭對(duì)小白菜生物量的影響
各處理小白菜生長(zhǎng)45 d后每盆生物量在49.71~61.19 g之間(圖1),三種供試生物質(zhì)炭對(duì)盆栽小白菜生物量的影響與其施用量有關(guān)。與CK比較,施炭量在1%水平下,三種供試生物質(zhì)炭對(duì)小白菜生物量均無(wú)顯著性影響,施用2%的麥秸炭和豬糞炭小白菜的生物量分別提高20.03%和22.28%,而施用污泥炭沒(méi)有顯著性差異。
2.2 生物質(zhì)炭對(duì)小白菜PAHs總含量的影響
不同生物質(zhì)炭及施用量對(duì)小白菜吸收PAHs總量的影響見(jiàn)圖2。與CK相比,施用生物質(zhì)炭可顯著降低小白菜中ΣPAHs含量,降低幅度為13.92%~ 49.41%。不同類(lèi)型和施用量的生物質(zhì)炭對(duì)小白菜PAHs吸收的影響不同。施用量在1%水平時(shí),麥秸炭對(duì)小白菜PAHs吸收的降低幅度最大,達(dá)33.21%;豬糞炭和污泥炭則分別顯著降低21.35%及17.24%,二者之間無(wú)顯著差異。與1%的施用量相比,2%施用量的麥秸炭和豬糞炭對(duì)小白菜PAHs吸收分別降低了24.26%和30.57%,而污泥炭不同施用量處理間小白菜PAHs的吸收無(wú)顯著差異。
2.3 生物質(zhì)炭對(duì)小白菜不同種類(lèi)PAHs含量的影響
生物質(zhì)炭對(duì)小白菜吸收不同種類(lèi)PAHs的影響不同(圖3、表2)。生物質(zhì)炭施用量在1%水平時(shí),麥秸炭、豬糞炭對(duì)小白菜吸收所有環(huán)類(lèi)的PAHs均顯著降低,其中麥秸炭、豬糞炭和污泥炭對(duì)五環(huán)類(lèi)PAHs的抑制率均為最高,分別達(dá)67.13%、56.14%和50.03%。麥秸炭和豬糞炭對(duì)二環(huán)、三環(huán)、四環(huán)和六環(huán)的抑制率分別在23.91%~37.44%和10.83%~27.69%之間;污泥炭顯著降低小白菜中四環(huán)芳烴含量達(dá)32.41%,而對(duì)二環(huán)、三環(huán)、六環(huán)沒(méi)有顯著影響。施用量在2%水平時(shí),麥秸炭、豬糞炭對(duì)四環(huán)、五環(huán)類(lèi)PAHs的抑制率相對(duì)較高,分別為72.43%、57.16%和68.30%、63.50%,對(duì)二環(huán)、三環(huán)、六環(huán)的抑制范圍分別為28.53%~41.27%和19.25%~48.00%。污泥炭對(duì)四環(huán)、五環(huán)降低率分別為29.82%、46.51%,對(duì)二、三、六環(huán)類(lèi)PAHs烴均無(wú)顯著影響。
圖1 不同生物質(zhì)炭處理對(duì)小白菜生物量的影響Figure 1 Effect of different biochar treatments on cabbage biomass
圖2 不同生物質(zhì)炭處理對(duì)小白菜ΣPAHs含量的影響Figure 2 Effects of biochar treatments on cabbage ΣPAHs content
從不同的PAHs來(lái)看,1%和2%麥秸炭處理下小白菜的二環(huán)芳烴Nap含量較對(duì)照分別降低23.85%及34.27%,而對(duì)于Ace,僅在2%麥秸炭處理下,小白菜中Ace的含量較對(duì)照顯著降低72.53%,其余處理則均無(wú)顯著差異。
從三環(huán)芳烴來(lái)看,與CK相比,生物質(zhì)炭對(duì)Fl、Phe和Ant的吸收抑制率分別為0~52.94%、0~ 16.94%和0~81.98%。1%和2%的豬糞炭處理下小白菜Ant含量顯著降低31.63%和85.55%;1%和2%污泥炭處理下Fl含量顯著降低45.00%和52.94%;1%和2%麥秸炭處理下小白菜的Phe、Ant含量分別降低15.34%、77.34%和16.94%、78.52%。
從四環(huán)芳烴來(lái)看,生物質(zhì)炭對(duì)Fla、Pyr和Chr的吸收抑制率分別為0~71.45%、0~85.55%和49.48%~ 83.02%。三種生物質(zhì)炭中麥秸炭對(duì)小白菜Fla和Chr吸收的抑制效果較好,施用量為1%和2%條件下小白菜中Fla和Chr含量較對(duì)照分別顯著降低48.80%、71.45%和33.96%、76.10%。豬糞炭對(duì)小白菜Pyr吸收有較好的抑制效果,施用1%和2%豬糞炭Pyr的含量顯著降低61.79%和81.98%。
從五環(huán)芳烴來(lái)看,生物質(zhì)炭對(duì)小白菜BbF、BkF、BaP、DahA和IcdP的吸收與CK相比分別降低55.19% ~83.92%、0~45.17%、31.35%~93.73%、0~64.83%和0~ 35.59%。三種生物質(zhì)炭處理下小白菜BbF含量均顯著降低,其中豬糞炭抑制率最高,1%和2%處理水平小白菜BbF含量顯著降低75.50%和83.92%。1%麥秸炭小白菜的BkF含量降低最高,達(dá)45.16%。三種生物質(zhì)炭對(duì)小白菜吸收BaP的抑制能力為麥秸炭>豬糞炭>污泥炭,其中施用1%和2%麥秸炭小白菜BaP含量顯著降低93.73%和79.20%。
圖3 不同生物質(zhì)炭處理對(duì)小白菜不同環(huán)類(lèi)PAHs的影響Figure 3 Effects of biochar treatments on cabbage PAHs content of different species
表2 施加生物質(zhì)炭處理對(duì)小白菜中PAH含量的影響(μg·kg-1)Table 2 Effects of the biochar treatments on cabbage PAH content(μg·kg-1)
從六環(huán)芳烴來(lái)看,施用1%和2%麥秸炭小白菜DahA的含量較CK降低程度最高,分別為57.12%和64.83%。豬糞炭施用量為1%和2%時(shí)小白菜IcdP的含量分別顯著降低35.59%和39.01%。
目前已有很多文獻(xiàn)報(bào)道生物質(zhì)炭可提高作物的產(chǎn)量[24-25]和品質(zhì)[26-27]。本試驗(yàn)發(fā)現(xiàn),在2%施用量下,小麥秸稈炭及豬糞炭均能顯著提高小白菜的生物量,可能是由于生物質(zhì)炭能改善土壤理化性質(zhì)[28],如降低土壤容重、增強(qiáng)土壤通透性、提高保水功能及養(yǎng)分有效性等[29-30],且生物質(zhì)炭本身可提供植物部分營(yíng)養(yǎng)物質(zhì),從而可促進(jìn)作物生長(zhǎng),增加作物的產(chǎn)量。
本研究結(jié)果顯示,生物質(zhì)炭可有效抑制污染土壤中小白菜對(duì)多環(huán)芳烴的吸收。Brennan等[31]研究也發(fā)現(xiàn)添加玉米茬生物質(zhì)炭和活性炭均能有效降低玉米根對(duì)土壤中多環(huán)芳烴的富集,Waqas等[32]研究也表明添加污泥炭后,黃瓜中的PAHs含量顯著減少。這可能是因?yàn)樯镔|(zhì)炭具有發(fā)達(dá)的孔隙結(jié)構(gòu)和巨大的比表面積,對(duì)芳香性物質(zhì)有較高的親和力[33-34],從而可通過(guò)吸附和固定作用大幅提高PAHs在土壤體系中的固液分配系數(shù),降低其生物可利用度,減少PAHs在植物體內(nèi)的富集[35-36]。
本研究結(jié)果表明,小白菜中PAHs含量隨生物質(zhì)炭施用量的增加而降低。Khan等[37]在研究花生殼生物質(zhì)炭等四種生物質(zhì)炭對(duì)污染土壤中PAHs生物有效性的影響時(shí)發(fā)現(xiàn),5%的施炭量比2%能更有效地降低蘿卜中PAHs的含量。這可能與施用量增大可加強(qiáng)生物質(zhì)炭對(duì)PAHs的吸附有關(guān)。Kumari等[38]研究發(fā)現(xiàn)生物質(zhì)炭對(duì)菲的吸附強(qiáng)度隨用量的增加而增強(qiáng),原因可能是與生物質(zhì)炭和土壤礦物之間的相互作用有關(guān)。Liang等[39]研究表明,土壤中的礦物可能會(huì)與生物質(zhì)炭相互作用,遮蔽其吸附位點(diǎn),因而在較高的施用量下,生物質(zhì)炭可用于吸附的空位點(diǎn)的數(shù)目會(huì)更高,吸附作用會(huì)更強(qiáng)。此外,不同原料的生物質(zhì)炭對(duì)小白菜吸收PAHs的影響存在差異。生物質(zhì)炭對(duì)PAHs的吸附過(guò)程受多種因素的影響[40-42],有機(jī)碳含量及表面特性是主要影響因素。有研究[43]表明,吸附劑的有機(jī)碳含量決定了吸附劑對(duì)疏水性吸附質(zhì)的吸附作用。本試驗(yàn)三種生物質(zhì)炭中以麥秸炭有機(jī)碳含量最高,因此麥秸炭中有機(jī)碳對(duì)土壤中PAHs的吸附貢獻(xiàn)可能要高于豬糞炭和污泥炭。生物質(zhì)炭比表面積的大小一定程度上也影響了其吸附污染物的能力[44]。徐仁扣等[45]研究發(fā)現(xiàn)4種生物質(zhì)炭吸附亞甲基藍(lán)能力的大小順序?yàn)榈静萏?大豆秸稈炭>花生秸稈炭>稻殼炭,并且這一順序與生物質(zhì)炭表面負(fù)電荷數(shù)量和生物質(zhì)炭比表面的大小順序基本一致。本研究中麥秸和豬糞生物質(zhì)炭的比表面積遠(yuǎn)高于污泥炭,對(duì)于降低小白菜吸收PAHs起著重要的作用。此外,生物質(zhì)炭表面灰分的存在可能會(huì)嚴(yán)重影響生物質(zhì)炭的表面結(jié)構(gòu)特性及吸附能力。王月瑛等[46]研究玉米秸稈生物質(zhì)炭酸洗處理去除表面灰分表明,酸洗能有效去除附著在生物質(zhì)炭表面的無(wú)機(jī)鹽、焦油等物質(zhì),增加生物質(zhì)炭的表面吸附位點(diǎn),顯著提高生物質(zhì)炭的吸附性能。供試生物質(zhì)炭中的污泥炭灰分含量遠(yuǎn)高于麥秸炭和豬糞炭,可能也是污泥炭對(duì)小白菜吸收PAHs抑制效率較低的影響原因。
本研究還表明,生物質(zhì)炭對(duì)小白菜吸收高分子量PAHs的抑制大于低分子量PAHs。Waqas等[47]也曾報(bào)道,施加污泥炭后西紅柿對(duì)高分子量PAHs累積的降低幅度比低分子量的高。低分子量PAHs一般由兩個(gè)或三個(gè)苯環(huán)組成,親脂性較低,而高分子量PAHs一般由3~6個(gè)苯環(huán)組成,油水分配系數(shù)更高,依據(jù)相似相溶的原理,高分子量PAHs可能更容易與土壤中的生物質(zhì)炭結(jié)合,從而降低其在土壤中的生物有效性[48]。此外,Colombo等[49]指出多種混合物同時(shí)存在時(shí),PAH之間產(chǎn)生的協(xié)同或拮抗作用會(huì)促進(jìn)或抑制其他組分的生物降解速率。因此,本研究的供試土壤中多種PAHs之間的復(fù)雜作用也可能是引起小白菜對(duì)不同種類(lèi)PAHs吸收存在差異的原因之一。綜上,土壤中PAHs組分在植物中的富集作用不僅取決于生物質(zhì)炭類(lèi)型,同時(shí)與PAHs以及土壤自身理化性質(zhì)等諸多因素有關(guān)[50-51]。
三種生物質(zhì)炭均可有效抑制小白菜吸收PAHs污染物(14.53%~49.41%),明顯降低PAHs污染土壤利用的風(fēng)險(xiǎn)。麥秸炭、豬糞炭2%施用量處理比1%處理下抑制小白菜吸收PAHs效果更顯著,三種生物質(zhì)炭抑制能力的大小順序總體表現(xiàn)為麥秸炭>豬糞炭>污泥炭。相對(duì)于2~3環(huán)的低分子量PAHs,生物質(zhì)炭對(duì)小白菜中4~6環(huán)的高分子量PAHs普遍具有更好的降低效果。此外,2%的麥秸和豬糞炭可提高作物生物量,促進(jìn)蔬菜作物生長(zhǎng)。因此,施用生物質(zhì)炭為污染土壤中保障作物產(chǎn)量、降低作物PAHs吸收提供了有效的技術(shù)途徑。
[1]Madhavan N D,Naidu K A.Polycyclic aromatic hydrocarbons in placenta,maternal blood,umbilical cord blood and milk of Indian women. [J].Human&Experimental Toxicology,1995,14(6):503-506.
[2]Gondek K,Kopec M,Chmiel M,et al.Response of Zea maize and microorganisms to soil pollution with polycyclic aromatic hydrocarbons(PAHs)[J].Polish J Environ Stud,2008,17(6):875-880.
[3]Lamichhane S,Krishna K C B,Sarukkalige R.Polycyclic aromatic hydrocarbons(PAHs)removalbysorption:Areview[J].Chemosphere,2016, 148:336-353.
[4]Smol M,W?odarczykmaku?a M,W?óka D.Adsorption of polycyclic aromatic hydrocarbons(PAHs)from aqueous solutions on different sorbents [J].Civil&Environmental Engineering Reports,2014,13(2):87-96.
[5]Abdel-Shafy H I,Mansour M S M.A review on polycyclic aromatic hydrocarbons:Source,environmental impact,effect on human health and remediation[J].Egyptian Journal of Petroleum,2016,25(1):107-123.
[6]潘根興,李戀卿,劉曉雨,等.熱裂解生物質(zhì)炭產(chǎn)業(yè)化:秸稈禁燒與綠色農(nóng)業(yè)新途徑[J].科技導(dǎo)報(bào),2015,33(13):92-101.
PAN Gen-xing,LI Lian-qing,LIU Xiao-yu,et al.Industrialization of biochar from biomass pyrolysis:A new option for straw burning ban and green agriculture of China[J].Science&Technology Review,2015,33(13):92-101.
[7]Ogbonnaya U,Semple K T.Impact of biochar on organic contaminants in soil:A tool for mitigating risk?[J].Semigroup Forum,2013,3(2):349-375.
[8]Beesley L,Moreno-Jiménez E,Gomez-Eyles J L,et al.A review of biochars′potential role in the remediation,revegetation and restoration of contaminated soils[J].Environmental Pollution,2011,159(12):3269-3282.
[9]史兵方,仝海娟,左衛(wèi)元,等.麻瘋樹(shù)籽殼生物質(zhì)炭的制備及其吸附水中PAHs性能研究[J].中國(guó)環(huán)境科學(xué),2016,36(4):1059-1066.
SHI Bing-fang,TONG Hai-juan,ZUO Wei-yuan,et al.Biochar prepared by the husk ash ofJatropha curcasseeds and its sorption ability for polycyclic aromatic hydrocarbons in water[J].China Environmental Science,2016,36(4):1059-1066.
[10]Beesley L,Moreno-Jiménez E,Gomez-Eyles J L.Effects of biochar and greenwaste compost amendments on mobility,bioavailability and toxicity of inorganic and organic contaminants in a multi-element polluted soil[J].Environmental Pollution,2010,158(6):2282-2287.
[11]花莉,陳英旭,吳偉祥,等.生物質(zhì)炭輸入對(duì)污泥施用土壤-植物系統(tǒng)中多環(huán)芳烴遷移的影響[J].環(huán)境科學(xué),2009,30(8):2419-2424.
HUA Li,CHEN Ying-xu,WU Wei-xiang,et al.Effect of biochar on the trans of polycyclic aromatic hydrocarbons in soil-plant system with composted sludge application[J].Environmental Science,2009,30(8):2419-2424.
[12]史明,胡林潮,黃兆琴,等.生物質(zhì)炭的加入對(duì)土壤吸附菲能力以及玉米幼苗對(duì)菲吸收量的影響[J].農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2011,30(5):912-916.
SHI Ming,HU Lin-chao,HUANG Zhao-qin,et al.The influence of bio-char inputting on the adsorption of phenanthrene by soils and by maize seedlings[J].Journal of Agro-Environment Science,2011,30(5):912-916.
[13]Cao Y,Yang B,Song Z,et al.Wheat straw biochar amendments on the removal of polycyclic aromatic hydrocarbons(PAHs)in contaminated soil[J].Ecotoxicology&Environmental Safety,2016,130:248-255.
[14]Smith M J,Flowers T H,Duncan H J,et al.Effects of polycyclic aromatic hydrocarbons on germination and subsequent growth of grasses and legumes in freshly contaminated soil and soil with aged PAHs residues [J].Environmental Pollution,2006,141(3):519-525.
[15]Bourceret A,Cébron A,Tisserant E,et al.The bacterial and fungal diversity of an aged PAH-and heavy metal-contaminated soil is affected by plant cover and edaphic parameters[J].Microbial Ecology,2016,71(3):711-724.
[16]Holm T R,Machesky M L,Scott J W.Sorption of polycyclic aromatic hydrocarbons(PAHs)to biochar and estimates of PAH bioavailability [R].Champaign IL:Illinois Sustainable Technology Center,2014.
[17]Xu R K,Xiao S C,Yuan J H,et al.Adsorption of methyl violet from aqueous solutions by the biochars derived from crop residues[J].Bioresource Technology,2011,102(22):10293-10298.
[18]孫璇,李戀卿,潘根興,等.不同作物原料生物質(zhì)炭對(duì)溶液芘的吸附特性[J].農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2014,33(8):1637-1643.
SUN Xuan,LI Lian-qing,PAN Gen-xing,et al.Adsorption of pyrene from aqueous solution by biochars produced from different crop residues[J].Journal of Agro-Environment Science,2014,33(8):1637-1643.
[19]Maliszewska K B.Polycyclic aromatic hydrocarbons in agricultural soils in Poland:Preliminary proposals for criteria to evaluate the level of soil contamination[J].Applied Geochemistry,1996,11(2):121-127.
[20]中華人民共和國(guó)農(nóng)業(yè)部.NY/T1881.5—2010生物質(zhì)固體成型燃料試驗(yàn)方法第5部分:灰分[S].北京:中國(guó)標(biāo)準(zhǔn)出版社,2010.
Ministry of Agriculture of the PRC.NY/T1881.5—2010 Densified biofuel-test methods Part 5:Ash content[S].Beijing:China Standard Press,2010.
[21]鮑士旦.土壤農(nóng)化分析[M].北京:中國(guó)農(nóng)業(yè)出版社,2000.
BAO Shi-dan.Soil and agro-chemistry analysis[M].Beijing:China Agricultural Press,2000.
[22]王海翠,胡林林,李敏,等.多環(huán)芳烴(PAHs)對(duì)油菜生長(zhǎng)的影響及其積累效應(yīng)[J].植物生態(tài)學(xué)報(bào),2013,37(12):1123-1131.
WANG Hai-cui,HU Lin-lin,LI Min,et al.Growth effects and accumulations of polycyclic aromatic hydrocarbons(PAHs)in rape[J].Chinese Journal of Plant Ecology,2013,37(12):1123-1131.
[23]韓曉君,李戀卿,潘根興,等.生活垃圾堆填區(qū)周邊農(nóng)田土壤中多環(huán)芳烴的污染特征[J].生態(tài)環(huán)境學(xué)報(bào),2009,18(4):1251-1255.
HAN Xiao-jun,LI Lian-qing,PAN Gen-xing,et al.Pollution characteristics of polycyclic aromatic hydrocarbons in soils from farmland around the domestic refuse dump[J].Ecology and Environment,2009, 18(4):1251-1255.
[24]Graber E R,Harel Y M,Kolton M,et al.Biochar impact on development and productivity of pepper and tomato grown in fertigated soillessmedia[J].Plant&Soil,2010,337(1/2):481-496.
[25]孫雪,劉琪琪,郭虎,等.豬糞生物質(zhì)炭對(duì)土壤肥效及小白菜生長(zhǎng)的影響[J].農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2016,35(9):1756-1763.
SUN Xue,LIU Qi-qi,GUO Hu,et al.Effects of swine manure biochar on soil fertility and cabbage(Brassicachinensis)growth[J].Journal of Agro-Environment Science,2016,35(9):1756-1763.
[26]Major J,Rondon M,Molina D,et al.Maize yield and nutrition during 4 years after biochar application to aColombian savannaoxisol[J].Plant &Soil,2010,333(1):117-128.
[27]Liu Y,Lu H,Yang S,et al.Impacts of biochar addition on rice yield and soil properties in a cold waterlogged paddy for two crop seasons[J].Field Crops Research,2016,191:161-167.
[28]Vanja Alling,Hale S E,Martinsen V,et al.The role of biochar in retaining nutrients in amended tropical soils[J].Journal of Plant Nutrition &Soil Science,2014,177(5):671-680.
[29]Zhang A,Bian R,Pan G,et al.Effects of biochar amendment on soil quality,crop yield and greenhouse gas emission in a Chinese rice paddy:A field study of 2 consecutive rice growing cycles[J].Field Crops Research,2012,127:153-160.
[30]Jeffery S,Abalos D,Spokas K,et al.Biochar Effects on crop yield[M]// Biochar for Environmental management,Science,Technology and Implementation,2015.
[31]Brennan A,Alburquerque J A,Knapp C W,et al.Effects of biochar and activated carbon amendment on maize growth and the uptake and measured availability of polycyclic aromatic hydrocarbons(PAHs)and potentially toxic elements(PTEs)[J].Environmental Pollution,2014, 193:79-87.
[32]Waqas M,Khan S,Qing H,et al.The effects of sewage sludge and sewage sludge biochar on PAHs and potentially toxic element bioaccumulation inCucumis sativaL.[J].Chemosphere,2014,105(3):53-61.
[33]Liu L,Chen P,Sun M,et al.Effect of biochar amendment on PAH dissipation and indigenous degradation bacteria in contaminated soil[J].Journal of Soils&Sediments,2015,15(2):313-322.
[34]Kookana R S.The role of biochar in modifying the environmental fate, bioavailability,and efficacy of pesticides in soils:A review[J].Australian Journal of Soil Research,2010,48(7):627-637.
[35]Oleszczuk P,Zielińska A,Cornelissen G.Stabilization of sewage sludge by different biochars towards reducing freely dissolved polycyclic aromatic hydrocarbons(PAHs)content[J].Bioresource Technology,2014, 156:139-145.
[36]Hale S E,Elmquist M,Br?ndli R,et al.Activated carbon amendment to sequester PAHs in contaminated soil:A lysimeter field trial[J].Chemosphere,2012,87(2):177-184.
[37]Khan S,Waqas M,Ding F,et al.The influence of various biochars on the bioaccessibility and bioaccumulation of PAHs and potentially toxic elements to turnips(Brassica rapa L.)[J].Journal of Hazardous Materials,2015,300:243-253.
[38]Kumari K,Moldrup P,Paradelo M,et al.Phenanthrene sorption on biochar-amended soils:Application rate,aging,and physicochemical properties of soil[J].Water Air&Soil Pollution,2014,225(9):1-13.
[39]Liang B,Lehmann J,Solomon D,et al.Stability of biomass-derived black carbon in soils[J].Geochimica Et Cosmochimica Acta,2008,72(24):6069-6078.
[40]周尊隆,盧媛,孫紅文.菲在不同性質(zhì)黑炭上的吸附動(dòng)力學(xué)和等溫線(xiàn)研究[J].農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2010,29(3):476-480.
ZHOU Zun-long,LU Yuan,SUN Hong-wen.Sorption kinetics and isotherms of phenanthrene in charcoals with different properties[J].Journal of Agro-Environment Science,2010,29(3):476-480.
[41]Chen B,Yuan M.Enhanced sorption of polycyclic aromatic hydrocarbons by soil amended with biochar[J].Journal of Soils and Sediments, 2011,11(1):62-71.
[42]Sun K.Impact of deashing treatment on biochar structural properties and potential sorption mechanisms of phenanthrene[J].Environmental Science&Technology,2013,47(20):11473-11481.
[43]Garcíajaramillo M,Cox L,Cornejo J,et al.Effect of soil organic amendments on the behavior of bentazone and tricyclazole[J].Science of the Total Environment,2014,466/467(1):906-913.
[44]Wang Z,Han L,Sun K,et al.Sorption of four hydrophobic organic contaminants by biochars derived from maize straw,wood dust and swine manure at different pyrolytic temperatures[J].Chemosphere,2015,144:285-291.
[45]徐仁扣,趙安珍,肖雙成,等.農(nóng)作物殘?bào)w制備的生物質(zhì)炭對(duì)水中亞甲基藍(lán)的吸附作用[J].環(huán)境科學(xué),2012,33(1):142-146.
XU Ren-kou,ZHAO An-zhen,XIAO Shuang-cheng,et al.Adosorption of methylene blue from water by biochars generated from crop residues[J].Environmental Science,2012,33(1):142-146.
[46]王月瑛,呂貽忠.酸洗處理對(duì)生物質(zhì)炭表面吸附特性及光譜特性的影響[J].光譜學(xué)與光譜分析,2016,36(10):3292-3296.
WANG Yue-ying,Lü Yi-zhong.Effect of acid elution on the surface structure characteristics and spectral characteristics of biochars[J].Spectroscopy and Spectral Analysis,2016,36(10):3292-3296.
[47]Waqas M,Li G,Khan S,et al.Application of sewage sludge and sewage sludge biochar to reduce polycyclic aromatic hydrocarbons(PAH)and potentially toxic elements(PTE)accumulation in tomato[J].Environmental Science&Pollution Research,2015,22(16):12114-12123.
[48]Arp H P H,Azzolina N A,Cornelissen G,et al.Predicting pore water EPA-34 PAH concentrations and toxicity in pyrogenic-impacted sediments using pyrene content[J].Environmental Science&Technology, 2011,45(12):5139-5146.
[49]Colombo M,Cavalca L,Bernasconi S,et al.Bioremediation of polyaromatic hydrocarbon contaminated soils by native microflora and bioaugmentation withSphingobium chlorophenolicumstrain C3R:A feasibility study in solid-and slurry-phase microcosms[J].International Biodeterioration&Biodegradation,2011,65(1):191-197.
[50]Wilcke W.Polycyclic aromatic hydrocarbons(PAHs)in soil:A review. [J].Journal of Plant Nutrition&Soil Science,2000,163(3):229-248.
[51]Chiou C T,And M G,Kile D E.Partition characteristics of polycyclic aromatic hydrocarbons on soils and sediments[J].Environmental Science&Technology,1998,32(2):264-269.
Effects of biochar on polycyclic aromatic hydrocarbons(PAHs)bioaccumulation in Chinese cabbage
PENG Bi-lian,LIU Ming-long,SUI Feng-feng,PAN Zhi-ping,LI Lian-qing*,PAN Gen-xing,CHENG Kun
(Institute of Resource Ecosystem and Environment of Agriculture,Nanjing Agricultural University,Nanjing 210095,China)
Biochar technology provides a potential approach to mitigate soil pollution in agricultural production.However,limited studies have focused on the effects of different kinds of biochar on polycyclic aromatic hydrocarbons(PAHs)bioaccumulation.To address this issue,three kinds of biochar including wheat straw biochar(WBC),sludge biochar(SBC)and pig manure biochar(PBC)were prepared through the technology of oxygen limited pyrolysis,and a spot experiment was conducted to assess the mitigation effects of three kinds of biochar with the application rates of 1%and 2%on PAH transfer from contaminated urban soil to Chinese cabbage.The results showed that addition of different kinds of biochar significantly reduced the concentrations of all PAHs by 14.53%~49.41%in the Chinese cabbage compared to the control soil(P<0.05),and the mitigation effectiveness was observed in order of WBC>PBC>SBC.Compared with the 1%application rate,the concentrations of PAHs were decreased by 32.02%and 21.40%under 2%WBC and 2%PBC amendments,respectively, though no significant difference was observed between the application rates of SBC.For different PAHs,the 2~3 rings and 4~6 rings PAHs bioaccumulation were reduced by 0~30.81%and 30.72%~68.07%under biochar application.In addition,the production of Chinese cabbage was significantly increased by 20.03%and 22.28%under 2%WBC and PBC,respectively.Therefore,biochar amendments could be an effective approach to reduce crop uptake of PAHs while ensuring crop yield in contaminated soil.
biochar;PAHs;contaminated soil;Chinese cabbage;bioaccumulation
X53
A
1672-2043(2017)04-0702-07
10.11654/jaes.2016-1564
2016-12-06
彭碧蓮(1990—),女,湖南湘西人,碩士研究生,從事生物質(zhì)炭應(yīng)用研究。E-mail:94735131@qq.com
*通信作者:李戀卿E-mail:lqli@njau.edu.cn
公益性行業(yè)(農(nóng)業(yè))科研專(zhuān)項(xiàng)經(jīng)費(fèi)項(xiàng)目子課題(201303095-11);江蘇省農(nóng)業(yè)科技自主創(chuàng)新資金項(xiàng)目(CX(12)3039)(江蘇省有機(jī)固體廢棄物資源化協(xié)同創(chuàng)新中心)
Project supported:Subproject of Special Funds for Public Welfare Industry(Agriculture)(201303095-11);Jiangsu Agricultural Science and Technology Independent Innovation Fund Project(CX(12)3039)(Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization)
彭碧蓮,劉銘龍,隋鳳鳳,等.生物質(zhì)炭對(duì)小白菜吸收多環(huán)芳烴的影響[J].農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2017,36(4):702-708.
PENG Bi-lian,LIU Ming-long,SUI Feng-feng,et al.Effects of biochar on polycyclic aromatic hydrocarbons(PAHs)bioaccumulation in Chinese cabbage[J]. Journal of Agro-Environment Science,2017,36(4):702-708.