• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Enantioseparation of 2-(substituted phenyl)propanoic acids with hydroxypropyl-β-cyclodextrin as a chiral additive:investigation of substituent influence on enantiorecognition

    2017-05-11 07:59:06WANGXiaopingLUMengxiaBUZhisiLiqiongTONGShengqiang
    色譜 2017年5期
    關(guān)鍵詞:芳基丙基手性

    WANG Xiaoping, LU Mengxia, BU Zhisi, Lü Liqiong, TONG Shengqiang

    (College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310032, China)

    Article

    Enantioseparation of 2-(substituted phenyl)propanoic acids with hydroxypropyl-β-cyclodextrin as a chiral additive:investigation of substituent influence on enantiorecognition

    WANG Xiaoping, LU Mengxia, BU Zhisi, Lü Liqiong, TONG Shengqiang*

    (CollegeofPharmaceuticalScience,ZhejiangUniversityofTechnology,Hangzhou310032,China)

    2-(Substituted phenyl)propanoic acids were successfully enantioseparated by reversed-phase high-performance liquid chromatography with hydroxypropyl-β-cyclodextrin as a mobile phase additive. The effect of the mobile phase composition, including the aqueous buffer, the organic modifier, and the concentration of the additive, were investigated. The aqueous buffer pH, the type and percentage of the organic modifier, and the additive concentration had a great influence on the retention time and peak resolution. Enantioseparations were achieved on an YMC ODS-C18(150 mm×4.6 mm, 5 μm) column. The mobile phase was composed of acetonitrile and 0.10 mol/L of phosphate buffer at pH 3.3 containing 25 mmol/L of the hydroxypropyl-β-cyclodextrin additive. The binding constants of the inclusion complex between each of the 2-(substituted phenyl) propanoic acids and hydroxypropyl-β-cyclodextrin were determined, and the formation of the inclusion complex was investigated. The results showed that the stoichiometries for all of the inclusion complexes between hydroxypropyl-β-cyclodextrin and enantiomers were 1∶1. It was found that the electron-donating group of the enantiomer was advantageous for enantiorecognition by hydroxypropyl-β-cyclodextrin. The results provide a useful reference for the influence of the enantiorecognitionfactors produced by hydroxypropyl-β-cyclodextrin.

    enantioseparation; high-performance liquid chromatography (HPLC); 2-(substituted phenyl)propanoic acids; hydroxypropyl-β-cyclodextrin

    2-(Substituted phenyl)propanoic acids are important intermediates for synthesis of non-steroidal phenyl propanoic acid antipyretic analgesic and anti-inflammatory drugs. Different pharmacological activities, mechanisms, and toxicities exist between theR- andS-enantiomers. Accordingly, the enantioseparation of 2-(substituted phenyl)propanoic acids has become an important issue [1]. An increasing number of studies regarding enantioseparation of 2-(substituted phenyl)propanoic acids by liquid chromatography have become available, such as enantioseparation by chiral stationary phases [2-7] and chiral mobile phase additives [8,9]. As chiral stationary phases are generally expensive, the application of a chiral mobile phase additive is an alternative method for enantioseparation owing to its relatively low cost. In the current work, a method is presented for enantioseparation of four racemic 2-(substituted phenyl)propanoic acids via high-performance liquid chromatography (HPLC) with the chiral mobile phase additive hydroxypropyl-β-cyclodextrin, including 2-(4-nitrophenyl)propanoic acid, 2-(4-methylphenyl)propanoic acid, 2-(4-hydroxyphenyl)propanoic acid, and 2-(4-chlorophenyl)propanoic acid.

    A method for enantioseparation of eight nonsteroidal anti-inflammatory drugs by reversed-phase HPLC has been established [9]. Hydroxypropyl-β-cyclodextrin was added as a chiral mobile phase additive, and stereoselective skin permeation of different enantiomers were investigated. All of the evaluated racemic drugs were 2-(substituted phenyl)propanoic acids. The major difference in their chemical structures was the substituent on the benzene ring of 2-phenylpropionic acid. Additionally, major variance in enantiorecognition for each racemate was found when investigating enantioseparation of these racemates by HPLC with hydroxypropyl-β-cyclodextrin as a chiral additive. Meanwhile, in our recent studies [10-12], high-speed countercurrent chromatography was used for preparative enantioseparation of some 2-(substituted phenyl)propanoic acids. We determined the distribution ratio and enantioseparation factor for all the racemates by enantioselective liquid-liquid extraction. It was found that the racemates with an electron-donating group on the benzene ring presented a higher enantiorecognition produced by the same chiral selector hydroxypropyl-β-cyclodextrin than that of racemates with an electron-withdrawing group on the benzene ring [10]. In the present work, in order to further verify the abovementioned results, enantioseparation of the four racemic 2-(substituted phenyl)propanoic acids along with four racemic nonsteroidal anti-inflammatory drugs (suprofen, ibuprofen, ketoprofen, and naproxen)were investigated. It was carried out by reversed-phase HPLC with hydroxypropyl-β-cyclodextrin as a chiral mobile phase additive. Enantiorecognition between the enantiomers and chiral additive was evaluated by determining binding constants for the different inclusion complexes. The separation mechanism of HPLC is different than that of high-speed countercurrent chromatography; yet, enantiorecognition between the enantiomers and hydroxypropyl-β-cyclodextrin could be well evaluated by the determination of binding constant ratios for the inclusion complexes from enantioseparation by liquid chromatography. The binding constant ratios of the inclusion complexes could be compared with enantioseparation factors obtained from countercurrent chromatography. Fig. 1 shows the chemical structures of the eight 2-(substituted phenyl)propanoic acids.

    1 Experimental

    1.1 Chemicals and reagents

    2-(4-Nitrophenyl)propanoic acid, 2-(4-methylphenyl)propanoic acid, 2-(4-hydroxyphenyl)propanoic acid, 2-(4-chlorophenyl)propanoic acid, suprofen, ibuprofen, ketoprofen, and naproxen were purchased from J&K Scientific Ltd., Shanghai, China. Hydroxypropyl-β-cyclodextrin was purchased from Qianhui Fine Chemical Co. Inc., Shandong, China. Analytical grade sodium dihydrogen phosphate, phosphoric acid, acetic acid, and sodium acetate were purchased from Sinopharm Chemical Reagent Co., Ltd., Shanghai, China. Chromatographic grade acetonitrile and methanol used for HPLC were purchased from Sigma-Aldrich, Shanghai, China. Water used for HPLC was redistilled by the distillation unit purchased from Shanghai Huxi Analysis Instrument Factory Co., Ltd., Shanghai, China.

    Fig. 1 Chemical structures of the eight 2-(substituted phenyl)propanoic acids

    1.2 Apparatus

    The chromatographic studies were performed on a Shimadzu HPLC LC-solution system. The instrument was composed of a Shimadzu LC-10Avp UV detector, a SCL-10Avp controller, a Shimadzu LC-10ATvp multisolvent delivery system, and a dual Shimadzu LC pump. The pH value was determined with a Delta 320-s pH meter, Shanghai, China.

    1.3 Chromatographic conditions

    The chiral separations of all the analytes were performed on an YMC ODS C18column (150 mm×4.6 mm i. d., 5 μm, Shanghai, China). The mobile phase was composed of acetonitrile and 0.10 mol/L phosphate buffer (pH 3.3) containing 25 mmol/L of hydroxypropyl-β-cyclodextrin. It was filtered through a 0.45-μm filter and degassed for 20 min prior to use. All of the analytes were detected at 212 nm. The temperature of the column was 35 ℃. The sample injection volume was 20 μL.

    1.4 Preparation of stock solution

    Each racemate of the 2-(substituted phenyl)propanoic acids was accurately weighed, transferred to volumetric flasks, dissolved in methanol, and stored at 5 ℃. The concentration of each solution was approximately 0.5 mg/mL.

    2 Results and discussion

    2.1 Chromatographic conditions for method development

    Enantioseparation of four 2-(substituted phenyl)propanoic acids, including 2-(4-methylphenyl)propanoic acid, 2-(4-hydroxyphenyl)propanoic acid, 2-(4-chlorophenyl)propanoic acid, and 2-(4-nitrophenyl)propanoic acid, by HPLC using hydroxypropyl-β-cyclodextrin as a chiral mobile phase additive was investigated. The main influence factors, organic modifier and concentration of the chiral additive, were investigated with regard to peak resolution.

    Fig. 2 Effects of the volume percentage of acetonitrile on peak resolutionAqueous phase: 0.10 mol/L of phosphate buffer (pH 3.3) containing 25 mmol/L of hydroxypropyl-β-cyclodextrin; flow rate: 0.8 mL/min; wavelength: 212 nm; column temperature: 35 ℃.

    First, the type and percentage of the organic modifier were investigated. Methanol and acetonitrile are two frequently used organic modifiers. A shorter retention time, higher theoretical plates, better peak shape, and a slightly higher peak resolution was obtained with acetonitrile as the modifier compared to methanol. Moreover, the percentage of acetonitrile in the mobile phase had a great effect on the retention time and peak resolution. The results showed that a longer retention time and higher peak resolution were obtained with a low volume percentage of acetonitrile. For example, the retention time for enantiomers of 2-(4-chlorophenyl)propanoic acid was 75.81 min and 94.08 min with 5% of acetonitrile compared with 61.46 min and 67.16 min with 20% of acetonitrile, while the peak resolution was approximately 3.58 with 5% of acetonitrile compared with 0.984 with 20% of acetonitrile. As shown in Fig. 2, the peak resolution decreased with increasing concentration of acetonitrile. Therefore, suitable acetonitrile volume percentages of 10%, 20%, 5%, and 15% were chosen for 2-(4-nitrophenyl)propanoic acid, 2-(4-methylphenyl)propanoic acid, 2-(4-hydroxyphenyl)propanoic acid, and 2-(4-chlorophenyl)propanoic acid, respectively.

    Fig. 3 Effects of the concentration of hydroxypropyl-β-cyclodextrin on peak resolutionChromatographic conditions: 0.10 mol/L of phosphate buffer (pH 3.3) containing different concentrations of hydroxypropyl-β-cyclodextrin and acetonitrile, (90∶10, v/v) for 2-(4-nitrophenyl)propanoic acid, (80∶20, v/v) for 2-(4-methylphenyl)propanoic acid, (95∶5, v/v) for 2-(4-hydroxyphenyl)propanoic acid, and (85∶15, v/v) for 2-(4-chlorophenyl)propanoic acid; flow rate: 0.4 mL/min for 2-(4-hydroxyphenyl)propanoic acid and 0.8 mL/min for 2-(4-nitrophenyl)propanoic acid, 2-(4-methylphenyl)propanoic acid, and 2-(4-chlorophenyl)propanoic acid; detection wavelength: 212 nm; column temperature: 35 ℃.

    Fig. 4 Effects of mobile phase pH on peak resolutionMobile phase: 0.5% (v/v) acetate buffer (pH 3.5-5.5) and 0.10 mol/L of phosphate buffer (pH 2.5-3.3) containing 25 mmol/L of hydroxypropyl-β-cyclodextrin and methanol (85∶15, v/v); flow rate: 0.8 mL/min; wavelength: 212 nm; column temperature: 35 ℃.

    Then, the effects of the chiral additive concentration on the enantioseparation were investigated. Fig. 3 shows the effects of hydroxypropyl-β-cyclodextrin concentration on peak resolution. The results showed that the peak resolution increased with increasing concentration of hydroxypropyl-β-cyclodextrin (HP-β-CD) for 2-(4-nitrophenyl)propanoic acid, 2-(4-methylphenyl)propanoic acid, and 2-(4-chlorophenyl)propanoic acid. However, it was found that the peak resolution of 2-(4-hydroxyphenyl)propanoic acid decreased owing to its large polarity. A higher concentration of the additive generally led to higher column pressure. Hence, 25 mmol/L of hydroxypropyl-β-cyclodextrin was selected.

    Lastly, the pH value and flow rate of the mobile phase were investigated. As all of the racemates possessed a carboxyl group, the peak resolution was strongly influenced by the pH value of the mobile phase. The results showed that the higher the pH of the buffer, the lower the peak resolution observed for all racemates, as shown in Fig. 4. Though this effect of pH on enantioseparation of 2-arylpropionic acid derivatives using cyclodextrins as chiral selectors has been known, different analytes were tested in our work. Therefore, the pH of the mobile phase was kept below 4.0. A flow rate of 0.8 mL/min was suitable for all racemates except for 2-(4-hydroxyphenyl)propanoic acid, which was eluted early owing to its chemical structure and large polarity resulting in poor peak resolution. However, when the flow rate was set at 0.4 mL/min, a satisfactory peak resolution (Rs=1.52) for 2-(4-hydroxyphenyl) propanoic acid was obtained.

    Table 1 and Fig. 5 show the optimized chromatographic conditions and resultant chromatogram for enantioseparation of the four 2-(substituted phenyl)propanoic acids.

    Table 1 Optimized chromatographic conditions for enantioseparation of four 2-(substituted phenyl)propanoic acids

    Mobile phase: 0.10 mol/L of phosphate buffer (pH 3.3) containing 25 mmol/L hydroxypropyl-β-cyclodextrin and acetonitrile; flow rate: 0.8 mL/min for all racemates except 2-(4-hydroxyphenyl)propanoic acid (0.4 mL/min); wavelength: 212 nm; column temperature: 35 ℃.

    Fig. 5 Chromatograms of the enantioseparation of 2- (substituted phenyl)propanoic acids by reversed-phase HPLC with hydroxypropyl-β-cyclodextrin as a chiral mobile phase additive under optimized chromatographic conditions

    2.2 Investigation of the influence of substituents on enantiorecognition

    In enantioseparation by HPLC using a chiral mobile phase additive, enantiorecognition between hydroxypropyl-β-cyclodextrin and enantiomers may be greatly affected by the percentage of organic modifier. Generally, a higher enantiorecognition can be achieved with a lower concentration of organic modifier because the organic modifier in the mobile phase competitively forms an inclusion complex with hydroxypropyl-β-cyclodextrin. Therefore, a higher peak resolution is generally always observed for a racemate with a lower concentration of the organic modifier. As shown in Table 1, the highest peak resolution of 2.646 was obtained for 2-(4-methylphenyl)propanoic acid even with the highest percentage of organic modifier (20%) in the mobile phase among all of the racemates, which indicated that the best enantiorecognition occurred between enantiomers of 2-(4-methylphenyl)propanoic acid and hydroxypropyl-β-cyclodextrin among all the racemates examined. Interestingly, the racemate peak resolution of 2-(4-methylphenyl)propanoic acid, 2-(4-chlorophenyl)propanoic acid, and 2-(4-nitrophenyl)propanoic acid decreased successively, although the percentage of organic modifier used in the optimized conditions decreased (as shown in Table 1), which indicated that enantiorecognition between the enantiomers of each of the three racemates and hydroxypropyl-β-cyclodextrin decreased successively. Enantiorecognition between the enantiomers and hydroxypropyl-β-cyclodextrin may be greatly affected by the size, polarity, and electronegativity of the differing benzene ring substituents. Since the chromatographic conditions were almost identical, the difference in enantiorecognition might be caused by the different benzene ring substituents of the analytes. It was found that methyl and chloro radicals were electron-donating groups but nitro was a typical electron-withdrawing group. The chloro radical may be thought of as an electron-donating group in this case because of the high electronegativity of carboxyl on the para-position. As for 2-(4-hydroxyphenyl)propanoic acid, though the hydroxyl was an electron-donating group, the peak resolution for this analyte was pretty low, which was mainly caused by early elution owing to its chemical structure and high polarity.

    It could be proposed that high enantiorecognition may be obtained by 2-(substituted phenyl) propanoic acids with an electron-donating group on the benzene ring. To further testify the validity of this proposal, the four nonsteroidal anti-inflammatory drugs were investigated. In order to evaluate enantiorecognition ability between different enantiomers and hydroxypropyl-β-cyclodextrin, binding constants of the inclusion complexes between host and guest molecule were investigated. Binding constants could be well determined by the retention equation in HPLC [13]. Generally, the stoichiometry of the inclusion complex between enantiomers and cyclodextrin was 1∶1. The retention equation could be expressed as:

    (1)

    wherekis the chromatographic definition of retention factor,φis the phase ratio, [A] is the concentration of stationary phase adsorption site, [CD] is the concentration of cyclodextrin molecule, andK1is the equilibrium constant. Eq (1) gives the retention behavior of the analytes bound with the cyclodextrins, which shows the stoichiometry of the inclusion complexes to be 1∶1. The binding constants for the inclusion complexes could be determined using Eq (1).

    Table 2 shows the regression equation of 1/kand the concentration of the cyclodextrin. All of the correlation coefficients of plots were greater than 0.99, indicating that the stoichiometry of all inclusion complexes was 1∶1.

    The value of the binding constant ratio of each racemate listed in Table 2 indicated that the enantiorecognition ability between each enantiomer and hydroxypropyl-β-cyclodextrin was different. Moreover, the sequence of the binding constant ratios of the eight 2-(substituted phenyl)propanoic acids further indicated that high enantiorecognition between hydroxypropyl-β-cyclodextrin and 2-(substituted phenyl)propanoic acids would most likely be obtained when an electron-donating group is on the benzene ring of 2-(substituted phenyl)propanoic acids.

    3 Conclusions

    The enantioseparation of four 2-(substituted phenyl)propanoic acids by reversed-phase HPLC with hydroxypropyl-β-cyclodextrin as a chiral mobile phase additive was established. The ratios of binding constants of eight 2-(substituted phenyl)propanoic acids were determined, and the enantiorecognition between each enantiomer and chiral additive was evaluated. The results showed that an electron-donating group on the benzene ring is advantageous for enantiorecognition, which led to a relatively high ratio of binding constants. The results obtained in our current work were in agreement with the countercurrent chromatography results from our previous work.

    [1] Evans A M. Eur J Clin Pharmacol, 1992, 42: 237

    [2] Wang R Q, Ong T T, Tang W H, et al. Anal Chim Acta, 2012, 718: 121

    [3] Zhong Q Q, He L F, Beesley T E, et al. J Chromatogr A, 2006, 1115: 19

    [4] Wang Y, Ong T T, Li L S, et al. J Chromatogr A, 2009, 1216: 2388

    [5] Overbeke A V, Baeyens W, Dewaele C. Anal Chim Acta, 1996, 321: 245

    [6] Luo A, Wan Q, Fan H J, et al. Chinese Journal of Chromatography, 2014, 32(9): 1013

    [7] Wang M. Chinese Journal of Chromatography, 2014, 32(2): 198

    [8] Zheng Y, Yan J Z, Tong S Q, et al. Chinese Journal of Pharmaceutical Analysis, 2013, 33(4): 827

    [9] Ye J C, Yu W Y, Chen G S, et al. Biomed Chromatogr, 2010, 24: 799

    [10] Tong S Q, Wang X P, Lu M X, et al. J Sep Sci, 2016, 39: 1567

    [11] Tong S Q, Guan Y X, Yan J Z, et al. J Chromatogr A, 2011, 1218: 5434

    [12] Tong S Q, Zheng Y, Yan J Z. J Chromatogr A, 2013, 1281: 79

    [13] Armstrong D W, Nome F, Spino L A, et al. J Am Chem Soc, 1986, 108: 1418

    以羥丙基-β-環(huán)糊精為手性添加劑拆分2-取代芳基丙酸:取代基對(duì)手性識(shí)別的影響

    王小平, 魯夢(mèng)霞, 步知思, 呂力瓊, 童勝?gòu)?qiáng)*

    (浙江工業(yè)大學(xué)藥學(xué)院, 浙江 杭州 310032)

    以羥丙基-β-環(huán)糊精為手性添加劑,采用反相高效液相色譜法對(duì)2-取代芳基丙酸類物質(zhì)進(jìn)行了手性拆分??疾炝肆鲃?dòng)相的組成,包括緩沖溶液、有機(jī)改性劑以及添加劑的濃度等。緩沖溶液的pH值、有機(jī)改性劑的種類與濃度,以及添加劑的濃度對(duì)色譜峰的保留時(shí)間和分離度均有較大的影響。以YMC ODS-C18(150 mm×4.6 mm, 5 μm)為色譜柱,乙腈-0.10 mol/L磷酸鹽緩沖液(pH 3.3,含25 mmol/L添加劑)為流動(dòng)相,測(cè)定了各2-取代芳基丙酸與羥丙基-β-環(huán)糊精的包結(jié)常數(shù),考察了羥丙基-β-環(huán)糊精對(duì)各物質(zhì)的包結(jié)形式。實(shí)驗(yàn)結(jié)果表明,羥丙基-β-環(huán)糊精與各對(duì)映體均以1∶1的形式包結(jié),同時(shí)發(fā)現(xiàn)推電子取代基更有利于羥丙基-β-環(huán)糊精的包結(jié)行為,為羥丙基-β-環(huán)糊精對(duì)手性拆分的影響提供了一個(gè)有利的參考因素。

    手性分離;高效液相色譜;2-取代芳基丙酸;羥丙基-β-環(huán)糊精

    10.3724/SP.J.1123.2016.12020

    Foundation item: Project of Department of Education of Zhejiang Province, China (No. pd2013031).

    O658 Document code: A Article IC:1000-8713(2017)05-0544-07

    * Received date: 2016-12-09

    * Corresponding author. Tel: +86-571-88320984, Fax: +86-571-88320913, E-mail: sqtong@zjut.edu.cn.

    猜你喜歡
    芳基丙基手性
    手性磷酰胺類化合物不對(duì)稱催化合成α-芳基丙醇類化合物
    分子催化(2022年1期)2022-11-02 07:10:30
    石榴鞣花酸-羥丙基-β-環(huán)糊精包合物的制備
    中成藥(2018年6期)2018-07-11 03:01:28
    N-丁氧基丙基-S-[2-(肟基)丙基]二硫代氨基甲酸酯浮選孔雀石的疏水機(jī)理
    魚腥草揮發(fā)油羥丙基-β環(huán)糊精包合物的制備
    中成藥(2017年5期)2017-06-13 13:01:12
    利奈唑胺原料藥中R型異構(gòu)體的手性HPLC分析
    脂肪酶Novozyme435手性拆分(R,S)-扁桃酸
    新型3-氧-3-芳基-2-芳基腙-丙腈衍生物的合成及其抗癌活性
    3-疊氮基丙基-β-D-吡喃半乳糖苷的合成工藝改進(jìn)
    一種新型芳基烷基磺酸鹽的制備與性能評(píng)價(jià)
    3-芳基苯并呋喃酮類化合物的合成
    欧美性长视频在线观看| 色综合欧美亚洲国产小说| 欧美黑人欧美精品刺激| 女性被躁到高潮视频| 高清av免费在线| 国产精品美女特级片免费视频播放器 | 高清在线国产一区| 欧美成狂野欧美在线观看| 99国产精品一区二区蜜桃av| 久久精品人人爽人人爽视色| 国产一区二区激情短视频| 另类亚洲欧美激情| 午夜福利欧美成人| 美女午夜性视频免费| 亚洲专区中文字幕在线| 日韩精品青青久久久久久| 97碰自拍视频| 久久婷婷成人综合色麻豆| 亚洲欧美日韩高清在线视频| √禁漫天堂资源中文www| 久久草成人影院| 嫁个100分男人电影在线观看| 日本精品一区二区三区蜜桃| 91麻豆精品激情在线观看国产 | 国产成人精品久久二区二区91| 岛国视频午夜一区免费看| 国产深夜福利视频在线观看| 黄网站色视频无遮挡免费观看| 手机成人av网站| 久久久久国产精品人妻aⅴ院| 人妻久久中文字幕网| 真人一进一出gif抽搐免费| 亚洲七黄色美女视频| 长腿黑丝高跟| 国产精品影院久久| 97超级碰碰碰精品色视频在线观看| 老司机亚洲免费影院| 成人18禁在线播放| 久久久久九九精品影院| 1024香蕉在线观看| 亚洲精品一区av在线观看| a级毛片黄视频| 中文字幕色久视频| 久久久国产精品麻豆| 久热这里只有精品99| 咕卡用的链子| 国产精品亚洲av一区麻豆| 久久久精品国产亚洲av高清涩受| 在线观看免费视频日本深夜| 国产欧美日韩一区二区精品| 午夜福利在线免费观看网站| 久久久久亚洲av毛片大全| 老司机深夜福利视频在线观看| 久久伊人香网站| 自拍欧美九色日韩亚洲蝌蚪91| 欧美日韩视频精品一区| 国产精品自产拍在线观看55亚洲| 少妇 在线观看| 好看av亚洲va欧美ⅴa在| 99久久综合精品五月天人人| 欧美激情极品国产一区二区三区| 91精品国产国语对白视频| 亚洲人成电影免费在线| 成在线人永久免费视频| 久久久国产欧美日韩av| 免费在线观看视频国产中文字幕亚洲| 国产亚洲欧美98| 国产精华一区二区三区| 午夜激情av网站| 亚洲成国产人片在线观看| 电影成人av| av中文乱码字幕在线| av国产精品久久久久影院| 午夜精品国产一区二区电影| 999精品在线视频| videosex国产| 9热在线视频观看99| 久久精品亚洲av国产电影网| 91字幕亚洲| 新久久久久国产一级毛片| 黄色毛片三级朝国网站| 大香蕉久久成人网| 精品人妻在线不人妻| 妹子高潮喷水视频| 在线观看一区二区三区激情| 十分钟在线观看高清视频www| 91精品三级在线观看| 午夜精品国产一区二区电影| 成年人黄色毛片网站| 中文字幕人妻熟女乱码| 精品国产美女av久久久久小说| 国产精品久久久久成人av| 中国美女看黄片| 欧美av亚洲av综合av国产av| 9热在线视频观看99| 国产三级黄色录像| 欧美性长视频在线观看| 亚洲一区高清亚洲精品| 大陆偷拍与自拍| 精品一区二区三卡| av免费在线观看网站| 欧美丝袜亚洲另类 | 日韩欧美一区二区三区在线观看| 欧美精品啪啪一区二区三区| 自拍欧美九色日韩亚洲蝌蚪91| 电影成人av| 亚洲久久久国产精品| 99久久久亚洲精品蜜臀av| 国产视频一区二区在线看| 欧美成人午夜精品| 国产亚洲av高清不卡| 在线观看舔阴道视频| 精品国内亚洲2022精品成人| 欧美日韩亚洲国产一区二区在线观看| 18禁黄网站禁片午夜丰满| 亚洲中文av在线| 国产精品综合久久久久久久免费 | 国产免费av片在线观看野外av| 免费看a级黄色片| 老汉色∧v一级毛片| 午夜91福利影院| 9191精品国产免费久久| 精品国产乱子伦一区二区三区| 成人18禁在线播放| 亚洲人成伊人成综合网2020| 国产成人精品在线电影| 另类亚洲欧美激情| 99久久久亚洲精品蜜臀av| 成人精品一区二区免费| 欧美另类亚洲清纯唯美| a在线观看视频网站| 99在线人妻在线中文字幕| 亚洲少妇的诱惑av| 亚洲精品中文字幕一二三四区| 亚洲国产中文字幕在线视频| 免费久久久久久久精品成人欧美视频| 久久久久久大精品| 国产男靠女视频免费网站| 黑人操中国人逼视频| 成年女人毛片免费观看观看9| 日本免费a在线| 午夜福利欧美成人| 亚洲熟女毛片儿| 色播在线永久视频| 91麻豆av在线| 欧美丝袜亚洲另类 | 久久欧美精品欧美久久欧美| 精品国内亚洲2022精品成人| 国产欧美日韩综合在线一区二区| 午夜福利,免费看| 久久久久久免费高清国产稀缺| 精品日产1卡2卡| av在线播放免费不卡| 身体一侧抽搐| 窝窝影院91人妻| 自拍欧美九色日韩亚洲蝌蚪91| 久久久久久久久久久久大奶| 午夜福利,免费看| 久久人人97超碰香蕉20202| 757午夜福利合集在线观看| 在线观看免费午夜福利视频| 最近最新免费中文字幕在线| 精品免费久久久久久久清纯| 日本 av在线| 亚洲中文字幕日韩| 咕卡用的链子| 国产精品久久电影中文字幕| www国产在线视频色| 如日韩欧美国产精品一区二区三区| 久久中文字幕一级| 久久精品国产亚洲av香蕉五月| 久久国产精品男人的天堂亚洲| av免费在线观看网站| 真人做人爱边吃奶动态| 精品一区二区三区av网在线观看| 欧美成人免费av一区二区三区| 成人亚洲精品av一区二区 | 91成人精品电影| 黑人巨大精品欧美一区二区蜜桃| 亚洲精品成人av观看孕妇| 日日爽夜夜爽网站| av网站在线播放免费| 欧美日韩视频精品一区| 最近最新免费中文字幕在线| av网站免费在线观看视频| 国产精品久久久久久人妻精品电影| 国产精品免费一区二区三区在线| 日韩精品青青久久久久久| 91老司机精品| 一级片'在线观看视频| 日韩人妻精品一区2区三区| 精品乱码久久久久久99久播| 人人妻,人人澡人人爽秒播| 国产精华一区二区三区| 精品一区二区三区视频在线观看免费 | 亚洲国产看品久久| 麻豆一二三区av精品| 日韩精品免费视频一区二区三区| 久久香蕉精品热| 人人妻人人添人人爽欧美一区卜| 亚洲男人的天堂狠狠| 久久久国产成人免费| 成人三级黄色视频| 一区二区三区激情视频| 性欧美人与动物交配| 国产av精品麻豆| 1024香蕉在线观看| 一级黄色大片毛片| 9色porny在线观看| 麻豆国产av国片精品| 亚洲一区二区三区欧美精品| 波多野结衣av一区二区av| 超碰97精品在线观看| 欧美日韩av久久| 亚洲专区字幕在线| 级片在线观看| 大码成人一级视频| 99香蕉大伊视频| 午夜亚洲福利在线播放| 琪琪午夜伦伦电影理论片6080| 国产一区二区三区综合在线观看| 999久久久国产精品视频| 国产免费男女视频| 中文字幕高清在线视频| 成人亚洲精品av一区二区 | 人妻久久中文字幕网| 日本撒尿小便嘘嘘汇集6| 嫩草影院精品99| 99国产综合亚洲精品| 日本a在线网址| 欧美激情极品国产一区二区三区| 久久中文看片网| 亚洲精品美女久久久久99蜜臀| videosex国产| 欧美日韩乱码在线| 婷婷精品国产亚洲av在线| 嫩草影视91久久| 伊人久久大香线蕉亚洲五| 久久久久亚洲av毛片大全| 国产精品久久久av美女十八| avwww免费| 757午夜福利合集在线观看| 看黄色毛片网站| 真人做人爱边吃奶动态| 91老司机精品| 真人做人爱边吃奶动态| 久久 成人 亚洲| xxxhd国产人妻xxx| 亚洲国产欧美网| 午夜91福利影院| 女人爽到高潮嗷嗷叫在线视频| 黑人操中国人逼视频| 欧美人与性动交α欧美软件| 精品国产国语对白av| 精品卡一卡二卡四卡免费| 人人澡人人妻人| 午夜91福利影院| 国产亚洲精品一区二区www| 亚洲av片天天在线观看| 久久 成人 亚洲| 午夜日韩欧美国产| 女人爽到高潮嗷嗷叫在线视频| 又黄又爽又免费观看的视频| 欧美日韩精品网址| 夜夜看夜夜爽夜夜摸 | cao死你这个sao货| 一级,二级,三级黄色视频| av中文乱码字幕在线| 精品一区二区三区av网在线观看| 久久人妻福利社区极品人妻图片| 国产精品一区二区三区四区久久 | 人妻丰满熟妇av一区二区三区| 国产精品一区二区免费欧美| 成人影院久久| 精品久久久久久成人av| 精品日产1卡2卡| 久久午夜综合久久蜜桃| 亚洲欧美激情综合另类| 老熟妇仑乱视频hdxx| 女同久久另类99精品国产91| 国产乱人伦免费视频| 女同久久另类99精品国产91| 曰老女人黄片| 欧美日韩视频精品一区| 麻豆av在线久日| 久久午夜亚洲精品久久| 国产伦人伦偷精品视频| 1024视频免费在线观看| 午夜福利在线观看吧| 精品福利永久在线观看| 99国产精品一区二区蜜桃av| 国产精品久久视频播放| 亚洲精华国产精华精| 又大又爽又粗| 午夜老司机福利片| 国产高清国产精品国产三级| 国产精品亚洲av一区麻豆| 一进一出抽搐动态| 久久久国产一区二区| 9色porny在线观看| 欧美精品啪啪一区二区三区| 亚洲 欧美 日韩 在线 免费| 美国免费a级毛片| 丝袜美足系列| 一本综合久久免费| 一边摸一边抽搐一进一出视频| 久久久久久久久中文| 亚洲熟女毛片儿| 亚洲伊人色综图| 色在线成人网| 在线免费观看的www视频| 亚洲一码二码三码区别大吗| 久久精品国产亚洲av高清一级| 精品久久久久久久毛片微露脸| 极品教师在线免费播放| 国产精品久久久久久人妻精品电影| 免费搜索国产男女视频| 中文欧美无线码| 久久久国产成人免费| 成人手机av| 18禁黄网站禁片午夜丰满| 国产欧美日韩综合在线一区二区| 精品熟女少妇八av免费久了| 中文字幕人妻熟女乱码| 成人黄色视频免费在线看| 国产极品粉嫩免费观看在线| 欧美中文日本在线观看视频| 亚洲欧美精品综合久久99| 日本三级黄在线观看| 日本撒尿小便嘘嘘汇集6| 国产亚洲欧美精品永久| 精品欧美一区二区三区在线| 好看av亚洲va欧美ⅴa在| 嫩草影视91久久| 亚洲精品美女久久av网站| 99riav亚洲国产免费| svipshipincom国产片| 日韩精品中文字幕看吧| 久久久久亚洲av毛片大全| 亚洲精品粉嫩美女一区| 99在线视频只有这里精品首页| 亚洲精品国产色婷婷电影| 久久久久国产精品人妻aⅴ院| 欧美av亚洲av综合av国产av| 亚洲性夜色夜夜综合| 欧美日韩视频精品一区| 久9热在线精品视频| 免费在线观看黄色视频的| 女人被狂操c到高潮| 精品久久蜜臀av无| 国产精品一区二区免费欧美| 亚洲欧美日韩高清在线视频| 搡老乐熟女国产| 麻豆一二三区av精品| 亚洲一区中文字幕在线| 老司机靠b影院| 夜夜看夜夜爽夜夜摸 | 亚洲精品中文字幕一二三四区| 免费在线观看黄色视频的| 亚洲国产中文字幕在线视频| 丝袜美足系列| 欧美成人午夜精品| 欧美日本亚洲视频在线播放| 国产高清视频在线播放一区| 三上悠亚av全集在线观看| 亚洲精品一二三| 日韩欧美免费精品| 国产亚洲欧美在线一区二区| 久久99一区二区三区| 在线观看日韩欧美| 高清在线国产一区| 久久精品国产99精品国产亚洲性色 | 欧美黄色淫秽网站| 欧美成人免费av一区二区三区| 久久伊人香网站| 国产精品电影一区二区三区| 男女高潮啪啪啪动态图| 国产精品美女特级片免费视频播放器 | 免费不卡黄色视频| 亚洲精华国产精华精| 狠狠狠狠99中文字幕| 亚洲一卡2卡3卡4卡5卡精品中文| 精品久久久久久电影网| 99久久综合精品五月天人人| 桃色一区二区三区在线观看| 熟女少妇亚洲综合色aaa.| 久久久国产成人精品二区 | 亚洲欧美日韩高清在线视频| 日日摸夜夜添夜夜添小说| 亚洲午夜精品一区,二区,三区| 18禁观看日本| 美女午夜性视频免费| 日韩欧美免费精品| 国产麻豆69| 黄色怎么调成土黄色| 色老头精品视频在线观看| 日本三级黄在线观看| 老熟妇乱子伦视频在线观看| 亚洲 欧美 日韩 在线 免费| 99精品欧美一区二区三区四区| 久久天躁狠狠躁夜夜2o2o| 婷婷丁香在线五月| 色综合婷婷激情| 亚洲专区中文字幕在线| 啦啦啦 在线观看视频| a级毛片在线看网站| 欧美另类亚洲清纯唯美| 两性午夜刺激爽爽歪歪视频在线观看 | 久久久久久久久中文| 麻豆久久精品国产亚洲av | 国产亚洲精品第一综合不卡| 国产av精品麻豆| 精品午夜福利视频在线观看一区| 国产精品久久久久成人av| 新久久久久国产一级毛片| 最近最新中文字幕大全免费视频| 可以免费在线观看a视频的电影网站| netflix在线观看网站| 神马国产精品三级电影在线观看 | 狂野欧美激情性xxxx| 黑人欧美特级aaaaaa片| 亚洲一区中文字幕在线| 天天影视国产精品| a级毛片在线看网站| 久久久久精品国产欧美久久久| 亚洲午夜精品一区,二区,三区| 久久精品91蜜桃| 国产蜜桃级精品一区二区三区| 久久久国产精品麻豆| 在线观看日韩欧美| 淫妇啪啪啪对白视频| www日本在线高清视频| 黑人巨大精品欧美一区二区蜜桃| 18禁国产床啪视频网站| 免费人成视频x8x8入口观看| 免费观看的影片在线观看| aaaaa片日本免费| 精品国内亚洲2022精品成人| 国产精品久久久久久久电影| 我的老师免费观看完整版| 亚洲精品一区av在线观看| 长腿黑丝高跟| 日韩高清综合在线| 精品99又大又爽又粗少妇毛片 | 最好的美女福利视频网| 他把我摸到了高潮在线观看| 成人午夜高清在线视频| 久久久久久久久大av| 最好的美女福利视频网| 日韩欧美三级三区| 99久久无色码亚洲精品果冻| 亚洲一区高清亚洲精品| 成人美女网站在线观看视频| 国产成+人综合+亚洲专区| 国产三级中文精品| 波多野结衣高清作品| 夜夜爽天天搞| 蜜桃亚洲精品一区二区三区| 韩国av一区二区三区四区| 免费在线观看影片大全网站| 久久婷婷人人爽人人干人人爱| 久久久久久久精品吃奶| 久久久久性生活片| 色尼玛亚洲综合影院| 免费无遮挡裸体视频| 国产亚洲精品久久久久久毛片| 精品久久久久久久久亚洲 | 99久国产av精品| 亚洲,欧美,日韩| h日本视频在线播放| 国产高清激情床上av| а√天堂www在线а√下载| 禁无遮挡网站| 中出人妻视频一区二区| 久久精品国产亚洲av涩爱 | 国产精品一区二区性色av| 高清毛片免费观看视频网站| 男女之事视频高清在线观看| 国产av一区在线观看免费| 久久久久亚洲av毛片大全| 亚洲精品久久国产高清桃花| 国产一区二区在线av高清观看| 午夜激情欧美在线| 亚洲一区二区三区色噜噜| 丝袜美腿在线中文| 日韩欧美在线乱码| 国产国拍精品亚洲av在线观看| 91麻豆av在线| 成人av一区二区三区在线看| 18禁裸乳无遮挡免费网站照片| 天天一区二区日本电影三级| 色哟哟·www| 真实男女啪啪啪动态图| 国产三级中文精品| 高清毛片免费观看视频网站| 国产精品不卡视频一区二区 | 男女之事视频高清在线观看| 国产色爽女视频免费观看| 久久人人精品亚洲av| 成人av在线播放网站| 亚洲成人免费电影在线观看| 一级毛片久久久久久久久女| 天堂网av新在线| 在线观看一区二区三区| 久久99热6这里只有精品| 国内少妇人妻偷人精品xxx网站| 欧美成人a在线观看| 亚洲最大成人中文| 黄色视频,在线免费观看| 啦啦啦观看免费观看视频高清| 男人舔女人下体高潮全视频| 国产成人aa在线观看| 永久网站在线| 欧美黑人巨大hd| 亚洲一区二区三区不卡视频| 国产成人福利小说| 淫妇啪啪啪对白视频| 男女下面进入的视频免费午夜| 久久99热6这里只有精品| 久久久久久九九精品二区国产| 久久久久九九精品影院| 欧美激情久久久久久爽电影| 国产精品爽爽va在线观看网站| 免费观看精品视频网站| 亚洲激情在线av| 人妻久久中文字幕网| 99国产极品粉嫩在线观看| 国产成人aa在线观看| 99久久久亚洲精品蜜臀av| 亚洲最大成人手机在线| 国产视频一区二区在线看| 嫩草影院新地址| 99久久99久久久精品蜜桃| 变态另类丝袜制服| 九色国产91popny在线| 丰满的人妻完整版| 中文字幕免费在线视频6| 久久国产乱子伦精品免费另类| 久99久视频精品免费| 精品国产亚洲在线| 日韩欧美精品免费久久 | 亚洲熟妇熟女久久| 淫妇啪啪啪对白视频| 亚洲精品色激情综合| 十八禁国产超污无遮挡网站| 搡女人真爽免费视频火全软件 | 亚洲国产精品合色在线| 国产黄色小视频在线观看| 欧美高清成人免费视频www| 国产av不卡久久| 精品久久久久久久久久免费视频| 亚洲av.av天堂| 亚洲第一电影网av| 日本 av在线| 亚洲精品乱码久久久v下载方式| 日韩中字成人| 欧洲精品卡2卡3卡4卡5卡区| 成人三级黄色视频| 成年女人毛片免费观看观看9| 亚洲欧美日韩无卡精品| 欧美黄色淫秽网站| 日本与韩国留学比较| 美女高潮的动态| 国产午夜精品久久久久久一区二区三区 | 高清日韩中文字幕在线| 国内久久婷婷六月综合欲色啪| 一级a爱片免费观看的视频| 国产精品伦人一区二区| 少妇人妻一区二区三区视频| 一卡2卡三卡四卡精品乱码亚洲| 精品人妻视频免费看| 欧美丝袜亚洲另类 | 欧美日韩黄片免| 日韩有码中文字幕| 2021天堂中文幕一二区在线观| 老司机午夜福利在线观看视频| 日韩欧美精品v在线| 日本撒尿小便嘘嘘汇集6| 三级国产精品欧美在线观看| 一本一本综合久久| 悠悠久久av| 午夜激情欧美在线| 少妇人妻一区二区三区视频| 内地一区二区视频在线| 国产高清激情床上av| 久久伊人香网站| 亚洲激情在线av| 成人美女网站在线观看视频| 国产成年人精品一区二区| 高潮久久久久久久久久久不卡| 日韩欧美三级三区| 成人美女网站在线观看视频| 免费电影在线观看免费观看| 国内精品久久久久精免费| 精品久久国产蜜桃| 日日摸夜夜添夜夜添av毛片 | 国产成人福利小说| 赤兔流量卡办理| 亚洲性夜色夜夜综合| 国产午夜精品论理片| 制服丝袜大香蕉在线| 熟妇人妻久久中文字幕3abv| 日日干狠狠操夜夜爽| 欧美激情久久久久久爽电影| 一个人观看的视频www高清免费观看| 成年版毛片免费区| 精品久久久久久久末码| 欧美区成人在线视频| 青草久久国产| 亚洲成人久久性| 日韩 亚洲 欧美在线| 亚洲精品在线观看二区| 美女高潮的动态| 美女免费视频网站| 听说在线观看完整版免费高清|