降塵10Be濃度對黃土10Be示蹤地磁場變化研究的影響
鮮 鋒1,2,孔祥輝1,2, 姜 峻3,趙國慶1,2,武振坤1,2
1. 中國科學院地球環(huán)境研究所 黃土與第四紀地質國家重點實驗室,西安 710061
2. 陜西省加速器質譜技術及應用重點實驗室,西安 710061
3. 中國科學院水利部水土保持研究所,楊凌 712100
運用我國黃土地層中的10Be記錄來示蹤地磁場漂移事件和重建相對強度變化歷史在最近幾年取得了顯著進展。開展上述研究的關鍵點之一在于如何對黃土10Be記錄中包含的源區(qū)降塵10Be濃度等信號的相對貢獻進行合理估算。本文參考最新的現(xiàn)代粉塵10Be濃度觀測數(shù)據(jù),設計了3種改變降塵10Be濃度的情景分別建立了130 ka以來黃土10Be記錄的地磁場漂移事件時間序列。綜合對比表明,3種情景下的重建結果并無差異,說明源區(qū)降塵10Be濃度幅值變化不會對10Be示蹤地磁場變化的結果產(chǎn)生顯著影響。同時分離的130 ka以來受地磁場變化影響的10Be記錄可與PISO-1500等全球典型地磁場強度曲線良好對比,并完整地記錄了蒙諾湖(Mono Lake)、拉尚(Laschamp)、挪威海-格陵蘭(Norweigian-Greenland sea event)和布萊克(Blake)等主要地磁場漂移事件,揭示了黃土10Be重建的地磁場變化曲線的全球尺度意義并印證了中國黃土在千年尺度的連續(xù)性問題。
降塵10Be濃度;地磁場漂移事件;全球尺度;連續(xù)性
我國北方風成黃土-古土壤序列是研究亞洲季風氣候演化和地磁場變化的良好載體(An et al,1990;Zhu et al,2007;Liu et al,2015)。與冰芯和海洋沉積物類似,黃土-古土壤序列中同樣保存有較高濃度的大氣成因宇宙成因核素10Be記錄(Shen et al,1992;Beer et al,1993;Zhou et al,2007a) 。因10Be半衰期較長(1.39 Ma) (Korschinek et al,2010) ,且在黃土中具有穩(wěn)定的地球化學特征(顧兆炎等,2000;胡苗等, 2013),因此可用于不同時間尺度地球環(huán)境過程示蹤特別是重建地球磁場相對強度變化研究(周衛(wèi)健等,2010;Zhou et al,2014)。這一工作的理論基礎在于因地磁場對入射進入大氣圈的宇宙射線通量的屏蔽作用,決定了10Be等核素的產(chǎn)率與地磁場強度變化存在顯著反相關關系(Masarik and Beer,1999;Frank,2000),根據(jù)沉積物10Be濃度的變化特征,建立數(shù)理模型提取相應的10Be產(chǎn)率信息,便可利用上述關系來恢復地磁場相對強度變化歷史(Christl et al,2010;周衛(wèi)健等,2010)。與冰芯和海洋沉積物不同,黃土是典型的風成沉積物,因此黃土地層中的10Be既包含有來自粉塵源區(qū)的降塵背景10Be信號又包含有在就地大氣圈上空新生成、受地磁場強度變化調制并主要通過降水沉降到地表的10Be信號(Shen et al,1992; Gu et al,1996;Zhou et al,2007a)。由于黃土沉積速率或粉塵通量的變化以及季風降水不均一性等因素的影響,導致黃土10Be中包含的地磁場變化信息通常被季風降水和粉塵等氣候信號所掩蓋(Zhou et al,2007a;Xian et al,2008),因此在利用黃土-古土壤序列10Be記錄進行地磁場變化示蹤研究時,如何對其包含的源區(qū)降塵背景10Be濃度等信號的分布水平進行合理估算至關重要。
為了有效區(qū)分黃土10Be記錄中包含的不同信號的相對貢獻,Zhou et al (2007a)曾指出由于黃土經(jīng)歷了多源混合的搬運和沉積過程,使得來自粉塵源區(qū)的降塵10Be組分也經(jīng)歷了相對均勻的混合過程,其10Be濃度似應具有“準均勻分布”的特點。同時Zhou et al(2007a)根據(jù)Evans and Heller(2001)建立的130 ka 以來黃土高原不同區(qū)域黃土-古土壤樣品剩磁矯頑力與磁化率統(tǒng)計分布圖,提取了與高矯頑力對應的源區(qū)背景磁化率信號,并結合黃土10Be濃度與磁化率曲線高度相似的特點建立回歸方程,估算了源區(qū)降塵背景10Be濃度的平均水平約為1.36/(108atoms · g-1),以此為基礎首次利用黃土10Be示蹤最近80 ka 以來全球主要地磁場漂移事件并重建了地磁場相對強度變化曲線,結果可與NAPIS-75(Laj et al,2002)和SINT 800(Guyodo and Valet,1999) 等全球典型地磁場強度變化記錄良好對比。隨后Xian et al(2008)通過建立冰期極端干冷時段粉塵通量與10Be濃度和磁化率的統(tǒng)計模型,進一步揭示源區(qū)降塵10Be濃度和降塵磁化率具有“準恒定分布”的特征。最近幾年通過連續(xù)采集我國北方現(xiàn)代降塵進行10Be濃度測試分析發(fā)現(xiàn),現(xiàn)代降塵10Be濃度至少在季節(jié)尺度上基本不變,一定程度上支持了黃土中降塵10Be濃度組分的“準恒定分布”特征,只是現(xiàn)代觀測的平均值1.21/(108atoms · g-1)與早期估算的1.36/(108atoms · g-1)背景濃度存在一定差異(Xian et al,2012)。假如現(xiàn)代降塵能夠作為地質歷史時期黃土沉積時粉塵輸入的參考模型,那么引入新的降塵10Be濃度觀測數(shù)據(jù)并以此逐步改變降塵10Be濃度的幅值,是否會影響10Be示蹤地磁場變化結果的可靠性就值得進一步探討。
針對這一問題,本文嘗試利用Zhou et al(2010)報導的洛川黃土剖面130 ka 以來連續(xù)的10Be濃度及氣候代用指標記錄,引入新的現(xiàn)代降塵10Be濃度觀測數(shù)據(jù)(Xian et al,2012)建立不同的情景模型來重新進行黃土10Be信號的逐步分解,提取130 ka以來主要受地磁場變化影響的10Be濃度組分,并分別與過去應用相似分解方法獲得的重建序列和全球記錄進行對比分析,以期能夠明確降塵10Be濃度變化是否對黃土10Be示蹤地磁場變化結果的可靠性產(chǎn)生顯著影響這一問題,并為未來繼續(xù)深入開展黃土10Be示蹤地磁場變化研究工作提供思路。
本文選取Zhou et al(2010)報道的洛川剖面(35°45′N,109°25′E)作為檢驗剖面。如文中所述,該剖面采樣總厚度1490 cm,包括全新世黃土(L0)、全新世古土壤(S0)、馬蘭黃土(L1)和末次間冰期古土壤(S1)等地層。剖面10Be測試分析平均按4 cm間距取樣,累計獲得10Be濃度數(shù)據(jù)306個,剖面磁化率測試按1 cm間距取樣,獲得數(shù)據(jù)1490個。為建立該剖面可靠年代框架,除在該剖面不同關鍵層位分別取樣進行了AMS14C和光釋光測年外,結合粒度年代模型(Porter and An,1995)及磁化率等代用指標與葫蘆洞-三寶洞石筍氧同位素曲線(Wang et al,2001,2008)的對比建立了剖面年代標尺,實驗測試分析及年代框架建立的細節(jié)描述請見文獻(Zhou et al,2010)。如文獻所示,洛川剖面130 ka 以來的10Be濃度與磁化率曲線的變化非常相似(相關系數(shù)r為0.94),暗示了兩者經(jīng)歷了相似的受氣候因素影響的過程,這也正是能夠選擇磁化率作為參考指標,建立統(tǒng)計模型逐漸分離黃土10Be中包含的不同信號的理論基礎(Zhou et al,2007a;Xian et al,2008)。
與文獻(Zhou et al,2007a;Xian et al,2008)類似,為便于討論和實際計算的需要,本文同樣將黃土總的10Be濃度表示為Be(M),源區(qū)降塵10Be濃度表示為Be(D),與季風降水相關的10Be濃度表示為Be(P),地磁場變化影響的10Be濃度變化量表示為Be(GM)。與之相類似,將黃土總的磁化率表示為SUS(M),而源區(qū)降塵磁化率和成壤磁化率組分分別表示為SUS(D)和SUS(P)。
在分離黃土10Be中的不同信號時,首先需要確定與降塵10Be濃度變化相關的源區(qū)降塵磁化率SUS(D)的分布水平。Zhou et al(2007a)曾根據(jù)Evans and Heller(2001)統(tǒng)計的黃土-古土壤剩磁矯頑力與磁化率的分布圖確定了SUS(D)= 25/(10-8m3· kg-1),這與王曉勇(2006) 對現(xiàn)代塔克拉馬干沙漠沿緯度斷面(37° — 42° N)樣品磁化率測試的平均值=24.1/(10-8m3· kg-1)非常接近,因此取SUS(D)= 25/(10-8m3· kg-1)代表源區(qū)降塵磁化率的背景值具有合理性。 在實際分離黃土10Be不同組分的計算中分別假設了以下三種情景,如表1所示。
表1 3種改變降塵10Be濃度幅值的情景參數(shù)選擇方案Tab.1 Three models for gradually changing the amplitude of dust10Be concentrations
3.1 情景1
情景1中的分離計算與Zhou et al(2007a) 的計算過程類似,不同之處在于將時間跨度擴展至末次間冰期時段(130 ka)。本文仍采用該研究中確定的塵降磁化率SUS(D)= 25 /(10-8m3· kg-1)和源區(qū)塵降10Be濃度Be(D)= 136 /(106atoms ·g-1)的數(shù)值,逐步進行了磁化率的分解(圖1a)、分離黃土10Be濃度的不同信號分解(圖1b)和建立降水10Be濃度與成壤磁化率的回歸關系(圖1c),并將僅扣除降塵信號的10Be濃度(Be(P)+ Be(GM))與回歸計算的純降水10Be濃度(Be(P))進行了對比(圖1d)。最后將兩者相減,便可得到黃土10Be濃度中主要受地磁場變化影響的10Be變化信號,如Zhou et al(2007a)指出的那樣,這部分10Be信號可作為示蹤130 ka 以來全球地磁場漂移事件及重建相對地磁場強度變化的代用指標。
3.2 情景2
情景2中涉及的分離計算與情景1類似,不同之處在于是以最新實測的現(xiàn)代粉塵10Be濃度(Xian et al,2012)作為參考指標,分別取降塵磁化率SUS(D)= 25/(10-8m3· kg-1),源區(qū)降塵10Be濃度Be(D)= 121/(106atoms ·g-1)的數(shù)值,逐步進行黃土磁化率和10Be濃度的分解、建立降水10Be濃度與成壤磁化率的回歸關系等計算,最后同樣得到受地磁場變化影響的10Be濃度變化的時間序列。需指出的是,因在情景2的計算中改變了降塵10Be濃度水平但保持降塵磁化率SUS(D)數(shù)值不變,因此獲得的降水10Be濃度與成壤磁化率的回歸方程與圖1c所示的情景1中的表達式相比,其回歸方程變化為:y = 1.2431x + 15.218(r = 0.94,n = 306,P < 0.0001)。
圖1 130 ka 以來洛川剖面磁化率、10Be濃度的逐步分解及綜合對比Fig.1 The separation calculations of10Be concentration and magnetic susceptibility signals from Luochuan loess section over the last 130 ka
3.3 情景3
與情景1和情景2的計算相比,在假設源區(qū)降塵磁化率和降塵10Be濃度具有均勻分布特征的前提下,設計了情景3作為一種最理想的極端狀態(tài):此時假定源區(qū)塵降磁化率SUS(D)和降塵10Be濃度Be(D)分別取極端的恒定值0。在實際分離計算過程中意味著降水10Be濃度Be(P)與成壤磁化率SUS(P)的回歸關系將被總的10Be濃度Be(M)與總的磁化率SUS(M)的回歸分析所替代,因此這一理想極端狀態(tài)下所建立的統(tǒng)計分析模型與Zhou et al(2010,2014) 應用“平均值概念”(Zhou et al,2007b)建立分離思路是一致的,本質上就是將黃土總的磁化率SUS(M)作為降水和降塵因素的代用指標,建立10Be濃度與磁化率的回歸關系消除氣候因素對黃土10Be濃度變化的影響,從而得到主要受地磁場強度變化影響的10Be信號。最后可將在上述3種不同情景下的計算結果進行對比,來探討降塵10Be濃度幅值的變化是否會對10Be示蹤地磁場變化結果產(chǎn)生顯著影響這一問題。
圖2所示了基于三種不同情景分離計算得到的130 ka 以來主要受地磁場強度變化影響的10Be濃度變化序列。通過對比發(fā)現(xiàn)三條曲線無論在變化趨勢以及峰谷之間的絕對幅度值幾乎完全一致,而計算的三條曲線之間的相關系數(shù)r可達0.99,說明即便改變了降塵10Be濃度變化的幅值,但在假設降塵10Be濃度具有均勻分布的前提下,利用不同情景模型最后分離得到的主要受地磁場強度變化影響的10Be濃度變化量Be(GM)并無明顯差異,三條曲線客觀反映了最近130 ka以來主要由地磁場強度變化調制的10Be濃度變化量,這一信號可用于示蹤全球性地磁場漂移事件發(fā)生以及重建同時段地磁場相對強度變化歷史。
圖2 不同情景下分離的130 ka 以來受地磁場變化影響的10Be濃度序列及對比Fig.2 The comparison of geomagnetic modulated10Be signals from loess using different models over the last 130 ka
進一步分析圖2a,圖2b和圖2c的10Be濃度變化記錄不難發(fā)現(xiàn),130 ka 以來存在6次(數(shù)字1—6表示)顯著超過平均水平的10Be濃度異常變化?;谝呀⒌钠拭婺甏蚣?,這些10Be濃度異常變化可與國際上已經(jīng)報導的諸多地磁場漂移事件的發(fā)生良好地對應。其中事件1可對應于12 ka發(fā)生的哥德堡事件(Gothenburg Flip) (Morner and Lanser,1974),事件2和3可分別對應于32 ka發(fā)生的蒙諾湖事件(Mono Lake)( Nowaczyk and Knies,2000;Benson et al,2003)和42 ka發(fā)生的拉尚事件(Laschamp) (Guillou et al,2004),事件5和6對應于挪威海-格陵蘭事件(Norweigian Greenland sea event) (Nowaczyk et al,1994) 和布萊克事件(Blake) (Smith and Foster,1969) 。除上述已有報導的漂移事件之外,分離的黃土10Be記錄揭示在60 ka 左右同樣存在10Be濃度的異常高峰,這一異常在McHargue et al(2000)分析的北大西洋海洋沉積物10Be濃度記錄中也有清晰記錄,盡管這一變化并不像上述提及的幾個漂移事件那樣得到確切命名,但也應視為一次比較顯著的地磁場漂移變化。中國黃土能夠完整地記錄130 ka 以來幾乎所有的全球性地磁場漂移事件的事實進一步證實了前人指出的黃土在千年尺度沉積連續(xù)的論點(Zhu et al,2007;Liu et al,2015)。
為了檢驗上述分離的受地磁場變化影響的10Be記錄的全球尺度意義,選取情景2的分離結果(圖3a)為代表,分別與Yamazaki and Kanamatsu(2007)建立的北太平洋鉆孔巖芯地磁場相對強度記錄(圖3b)和Channell et al(2009) 最新綜合的全球性地磁場強度曲線(圖3c)進行了綜合對比??梢郧宄乜吹?,除因不同研究所采用年代標尺的不同所引起的部分錯位外,基于不同情景分離的最近130 ka10Be濃度變化記錄的地磁場變化曲線無論在趨勢、還是細節(jié)上與上述對比的地磁場相對強度記錄都具有高度相似的變化特征。以最近130 ka時段研究程度相對較高的拉尚(Laschamp)和布萊克(Blake)地磁場漂移事件為例(陰影所示),此時因地磁場漂移事件發(fā)生時常伴隨著地磁場強度的明顯減弱,從而對入射進入大氣圈的宇宙射線通量的屏蔽作用顯著減弱,使得大氣中10Be的產(chǎn)率會異常增加并在黃土等沉積物中的10Be濃度記錄中有清晰的反映,進一步印證了10Be產(chǎn)率與地磁場強度變化之間存在顯著反相關關系(Masarik and Beer,1999; Frank,2000)。需指出的是,由于Channell et al(2009) 在綜合全球海洋沉積物的剩磁記錄時對單個鉆孔資料進行了平滑等預處理,側重于獲得較長尺度全球平均的地磁場強度變化記錄,因此從黃土10Be記錄提取的最近130 ka的地磁場變化曲線在某些細節(jié)上與其存在差異,而與北太平洋的鉆孔資料結果能夠更好地對比。上述綜合對比表明,利用黃土10Be指標重建的最近130 ka的地磁場漂移事件變化序列具有全球尺度的意義。
為明確降塵10Be濃度變化是否會對運用黃土10Be重建的地磁場漂移事件記錄產(chǎn)生顯著影響這一問題,本文參考新的現(xiàn)代粉塵10Be濃度觀測數(shù)據(jù),設計了3種改變降塵10Be濃度幅值的情景分別重建了130 ka以來黃土10Be記錄的地磁場漂移事件時間序列。分離計算表明3種情景下的重建結果并無顯著差異,說明源區(qū)降塵10Be濃度變化不會對10Be示蹤的地磁場變化記錄產(chǎn)生顯著影響,同時分離的130 ka 以來受地磁場變化影響的10Be記錄可與全球典型地磁場強度變化曲線良好地對比,并完整地記錄了蒙諾湖(Mono Lake)、拉尚(Laschamp)、挪威海-格陵蘭(Norweigian Greenland sea event)和布萊克(Blake)等主要地磁場漂移事件,揭示了黃土10Be示蹤地磁場變化記錄的全球尺度意義并證實了黃土至少在千年尺度的連續(xù)性問題。
同時也應注意到,目前本文工作只是在設計了3種最理想情景、并且選取了黃土高原中東部最典型的剖面為檢驗對象獲得的初步結果。如果考慮不同時段黃土粉塵物源可能發(fā)生變化等問題,目前指出的降塵10Be濃度的“準恒定分布”特征可能還需要從源區(qū)到沉降區(qū)系統(tǒng)采集表土或現(xiàn)代降塵樣品,進行測試對比研究。此外由于10Be沉降過程與降水關系密切,因此降水空間變化可能會對10Be環(huán)境示蹤的可靠性產(chǎn)生潛在影響。因此若將10Be示蹤擴展至降水偏少的黃土高原西部以及主要受西風環(huán)流影響的干旱區(qū),尤其是當磁化率作為降水示蹤指標已存爭議時,還需進一步研究如何選取更為明確的代用指標,以構建10Be示蹤地磁場變化的模型。
圖3 130 ka 以來黃土10Be記錄的地磁場變化曲線與全球記錄的綜合對比Fig.3 The 130 ka geomagnetic excursion record from Chinese loess10Be and its comparison with that of the marine sediments
致謝:感謝周衛(wèi)健院士和強小科正高級工程師對本工作的指導。部分工作得到了美國亞利桑那大學Warren Beck 博士、奧地利維也納大學Alfred Priller 博士和Walter Kutschera 教授的幫助,在此一并表示感謝。
顧兆炎, Lal D, 郭正堂, 等. 2000. 黃土高原黃土和紅粘土10Be地球化學特征[J]. 第四紀研究, 20(5): 409 – 422. [Gu Z Y, Lal D, Guo Z T, et al. 2000. Geochemistry of cosmogenic10Be in loess-paleosol sequences and red clay in the Loess Plateau [J]. Quaternary Sciences, 20(5): 409 – 422.]
胡 苗, 鮮 鋒, 武振坤, 等. 2013. 宇宙成因核素10Be的地球化學行為及其在黃土示蹤研究中的應用[J]. 地球環(huán)境學報, 4(1): 1197 – 1207. [Hu M, Xian F, Wu Z K, et al. 2013. Studies on the geochemistry behaviors of cosmogenic nuclide10Be and its applications in loess tracing [J]. Journal of Earth Environment, 4(1): 1197 – 1207.]
王曉勇. 2006. 中國典型氣候帶表土中的磁性礦物及其環(huán)境意義[D]. 北京:中國科學院研究生院. [Wang X Y. 2006. Studies on the characteristics of magnetic minerals in surface soil and their environmental signifi cance in the Chinese typical climatic belt [D]. Beijing: University of Chinese Academy of Sciences.]
周衛(wèi)健, 孔祥輝, 鮮 鋒, 等. 2010. 中國黃土10Be重建古地磁場變化史的初步研究[J]. 地球環(huán)境學報, 1(1): 20 – 27. [Zhou W J, Kong X H, Xian F, et al. 2010. Preliminary study on the reconstruction of the paleogeomagnetic intensities by10Be in Chinese loess [J]. Journal of Earth Environment, 1(1): 20 – 27.]
An Z S, Liu T S, Lu Y C, et al. 1990. The long-term paleomonsoon variation recorded by the loess-paleosol sequence in Central China [J]. Quaternary International, 7/8: 91 – 95.
Beer J, Shen C D, Heller F, et al. 1993.10Be and magnetic susceptibility in Chinese loess[J]. Geophysical Research Letters, 20(1): 57 – 60.
Benson L, Liddicoat J, Smoot J, et al. 2003. Age of the Mono Lake excursion and associated tephra [J]. Quaternary Science Reviews, 22(2 / 3 / 4): 135 – 140.
Channell J E T, Xuan C, Hodell D A. 2009. Stacking paleointensity and oxygen isotope data for the last 1.5 Myr (PISO-1500) [J]. Earth and Planetary Science Letters, 283: 14 – 23.
Christl M, Lippold J, Steinhilber F, et al. 2010. Reconstruction of global10Be production over the past 250 ka from highly accumulating Atlantic drift sediments [J]. Quaternary Science Reviews, 29(19 / 20): 2663 – 2672.
Evans M E, Heller F. 2001. Magnetism of loess/palaeosol sequences: recent developments [J]. Earth-Science Reviews, 54(1 / 2 / 3): 129 – 144.
Frank M. 2000. Comparison of cosmogenic radionuclide production and geomagnetic field intensity over the last 200,000 years[J]. Philosophical Transactions of The Royal Society A-Mathematical Physical And Engineering Sciences, 358 (1768): 1089 – 1107.
Gu Z Y, Lal D, Liu T S, et al. 1996. Five million year10Be record in Chinese loess and red-clay: climate and weathering relationships [J]. Earth and Planetary Science Letters, 144(1 / 2): 273 – 287.
Guillou H, Singer B S, Laj C, et al. 2004. On the age of the Laschamp geomagnetic excursion [J]. Earth and Planetary Science Letters, 227(3/ 4): 331 – 343.
Guyodo Y, Valet J P. 1999. Global changes in intensity of the Earth’s magnetic fi eld during the past 800 kyr [J]. Nature, 399(6733): 249 – 252.
Korschinek G, Bergmaier A, Faestermann T, et al. 2010. A new value for the half-life of10Be by heavy-ion elastic recoil detection and liquid scintillation counting [J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 268: 187 – 191.
Laj C, Kissel C, Mazaud A, et al. 2002. Geomagnetic field intensity, North Atlantic deep water circulation and atmospheric Δ14C during the last 50 kyr [J]. Earth and Planetary Science Letters, 200(1 / 2): 177 – 190.
Liu Q S, Jin C S, Hu P X, et al. 2015. Magnetostratigraphy of Chinese loess-paleosol sequences [J]. Earth-Science Reviews, 150: 139 – 167.
Masarik J, Beer J. 1999. Simulation of particle fluxes and cosmogenic nuclide production in the Earth’s atmosphere [J]. Journal of Geophysical Research, 104(D10): 12099 – 12112.
McHargue L R, Donahue D, Damon P E, et al. 2000. Geomagnetic modulation of the late Pleistocene cosmicray flux as determined by10Be from Blake Outer Ridge marine sediments [J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 172(1 / 2 / 3 / 4): 555 – 561.
Morner N A, Lanser J P. 1974. Gothenburg magnetic fl ip [J]. Nature, 251: 408 – 409.
Nowaczyk N R, Frederichs T W, Eisenhauer A, et al. 1994. Magnetostratigraphic data from late Quaternary sediments from the Yermak Plateau, Arctic Ocean-evidence for 4 geomagnetic polarity events within the last 170 ka of the Brunhes Chron [J]. Geophysical Journal International, 117(2): 453 – 471.
Nowaczyk N R, Knies J. 2000. Magnetostratigraphic results from the eastern Arctic Ocean: AMS14C ages and relative palaeointensity data of the Mono Lake and Laschamp geomagnetic reversal excursions [J]. Geophysical Journal International, 140(1): 185 – 197.
Porter S C, An Z S. 1995. Correlation between climate events in the North Atlantic and China during the last glaciation [J]. Nature, 375(6529): 305 – 308.
Shen C D, Beer J, Liu T S, et al. 1992.10Be in Chinese loess [J]. Earth and Planetary Science Letters, 109 (1/2): 169 – 177. Smith J D, Foster J H. 1969. Geomagnetic reversal in the Brunhes normal polarity epoch [J]. Science, 163: 565 – 567.
Wang Y J, Cheng H, Edwards R L, et al. 2001. A highresolution absolute-dated late Pleistocene monsoon record from Hulu Cave, China [J]. Science, 294(5550): 2345 – 2348.
Wang Y J, Cheng H, Edwards R L, et al. 2008. Millennial-and orbital-scale changes in the East Asian monsoon over the past 224,000 years [J]. Nature, 451(7182): 1090 – 1093.
Xian F, An Z S, Wu Z K, et al. 2008. A simple model for reconstructing geomagnetic field intensity with10Be production rate and its application in loess studies [J]. Science in China Series D-Earth Sciences, 51(6): 855 – 861. Xian F, Zhou W J, Kong X H, et al. 2012. Preliminary measurement study on10Be concentration of modern falling dust in Northern China [J]. Radiocarbon, 54(1): 37 – 43.
Yamazaki T, Kanamatsu T. 2007. A relative paleointensity record of the geomagnetic field since 1.6 Ma from the North Pacifi c [J]. Earth Planets Space, 59: 785 – 794.
Zhou W J, Beck J W, Kong X H, et al. 2014. Timing of the Brunhes-Matuyama magnetic polarity reversal in Chinese loess using10Be [J]. Geology, 42(6): 467 – 470.
Zhou W J, Chen M B, Xian F, et al. 2007b. The mean value concept in mono-linear regression of multi-variables and its application to trace studies in geo-sciences [J]. Science in China Series D-Earth Sciences, 50(12): 1828 – 1834.
Zhou W J, Priller A, Beck J W, et al. 2007a. Disentangling geomagnetic and precipitation signals in an 80-kyr Chinese loess record of10Be [J]. Radiocarbon, 49(1): 139 – 160.
Zhou W J, Xian F, Beck W J, et al. 2010. Reconstruction of 130-kyr relative geomagnetic intensities from10Be in two Chinese loess sections [J]. Radiocarbon, 52(1): 129 – 147. Zhu R X, Zhang R, Deng C L, et al. 2007. Are Chinese loess deposits essentially continuous? [J]. Geophysical Research Letters, 34, L17306. DOI: 10.1029/2007GL030591.
Infl uence of variation in dust10Be concentration amplitude on the reliability of geomagnetic tracing study from Chinese loess
XIAN Feng1,2, KONG Xianghui1,2, JIANG Jun3, ZHAO Guoqing1,2, WU Zhenkun1,2
1. State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi’an 710061, China
2. Shaanxi Key Laboratory of Acceleratory Mass Spectrometry Technology and Application, Xi’an 710061, China
3. Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling 712100, China
Background, aim, and scope Studies on geomagnetic excursion tracing and relative paleo-intensity reconstruction using Chinese loess10Be proxy have greatly progressed in recent years. In these studies, one of the key points lies in how to reliably estimate the relative contribution from the dust source10Be concentration as well as other10Be concentration fractions contained in loess. To evaluate the possible infl uence of variation in dust10Be concentration amplitude on the reliability of related geomagnetic tracing study, 3 kinds of separation models are designed by gradually changing the dust10Be concentration amplitude as well the dustsource magnetic susceptibility amount, to respectively reconstruct the geomagnetic excursion events series using the Chinese loess10Be record since the 130 ka. Materials and methods The10Be concentration and other climatic proxies such as the magnetic susceptibility are measured from a 1490 cm core of the Luochuan section (35°45′N, 109°25′E) in central Chinese Loess Plateau, which was described in Zhou et al (2010). To present the 3 different separation models, the observation studies on the modern falling dust10Be in Northern China by Xian et al (2012) is also cited to gradually change the dust10Be concentration for calculations. The basic step for the test calculation is to fi rstly separate the dust effects on the10Be and magnetic susceptibility in loess, by subtracting a constant value from the total measured10Be and magnetic susceptibility respectively. Then a linear regression between the dust free10Be concentration and pedogenic susceptibility is developed to separate the Monsoon rainfall effects on loess10Be records, and to derive the residual10Be signals which is dominantly modulated by geomagnetic field intensity. As for the separation model 1 and model 2, the same amount of dust source magnetic susceptibility (SUS(D)) is assumed, and the dust10Be concentration (Be(D)) is the variable to be allowed to change with time. While this feature is totally different in model 3, which the amplitude of SUS(D) and Be(D) are allowed to simultaneously change. All of the aforementioned calculations are based on a “Quasi-constant” distribution assumption of dust source10Be and magnetic susceptibility records. Results The derived geomagnetic excursion events series from the 3 different models show high similarity both in trend and details, with the correlation coefficient r is about 0.99. In addition, the final derived 130 ka geomagnetic excursion sequence using loess10Be is well comparable with that of the globally stacked PISO-1500 relative paleo-intensity curve and the normalized relative paleo-intensity record from Pacifi c sediments, which clearly reveals almost all the well dated geomagnetic excursion events known as the Mono Lake, Laschamp, Norweigian Greenland sea, and the Blake events over the last 130 ka. In addition, the derived 130 ka geomagnetic excursion sequence also records the 2 abnormal changes in10Be concentration at 12 ka and 60 ka, which can be correlate to the Gothenburg fl ip and the 60 ka peak derived from the10Be measurements on sediments in North Atlantic respectively. The loess10Be record clearly shows that the 60 ka peak is well comparable with the Norweigian Greenland sea event, although it is not globally named as a typical excursion change in the last Glacial-Interglacial cycle. Discussion The well comparison of the loess10Be resulting geomagnetic excursion events series with that of the paleo-intensity records from marine sediments also confi rms the signifi cance of global criterion of the geomagnetic tracing studies using Chinese loess10Be records. Considering the short-lived feature (<104 years) of geomagnetic excursion changes, our present study further strongly supports the idea of the continuity of Chinese loess deposition on the millennial scale at least. Conclusions The 130 ka geomagnetic excursion events records from loess10Be using 3 different models are roughly the same, which suggests that the reliability of geomagnetic tracing studies from Chinese loess10Be is roughly independent on the variation in the amplitude of dust10Be concentration. If the10Be resulting record of geomagnetic excursion events in loess is robust, it will provide key time markers to loess chronology and synthesize the terrestrial and marine climatic records. Recommendations and perspectives The present work is the preliminary test based on the most ideal situations of the “Quasi-constant” distribution assumption of dust source10Be and magnetic susceptibility records in Chinese loess. If the possible alternations of loess dust source with different time are considered, this “Quasi-constant” distribution assumption may need to be clarifi ed by the investigations on surface soil along a transect section from the source region to the Loess Plateau. On the other hand, the atmospheric10Be deposition has been proved to be closely associated with local rainfall amount, therefore the rainfall changes are very likely to show potential influence on the reliability of environmental tracing using10Be. Especially, when the10Be tracing studies are extended to the arid region in western China, where the magnetic susceptibility is not a robust precipitation tracer, future study should be fi rstly focused onhow to select the alternative sensitive proxy, to establish the robust separation model for geomagnetic field changes tracing using loess10Be records.
dust10Be concentration; geomagnetic excursion event; global; continuity
XIAN Feng, E-mail: xianf@ieecas.cn
2015-12-08;錄用日期:2016-11-14
Received Date: 2015-12-08; Accepted Date: 2016-11-14
國家自然科學基金項目(41203019);中國科學院重點部署項目(KZZD-EW-04-06)
Foundation Item: National Natural Science Foundation of China (41203019); Key Research Program of Chinese Academy of Sciences (KZZD-EW-04-06)
鮮 鋒,E-mail: xianf@ieecas.cn
鮮 鋒, 孔祥輝, 姜 峻, 等. 2017. 降塵10Be濃度對黃土10Be示蹤地磁場變化研究的影響[J]. 地球環(huán)境學報, 8(2): 103 – 112.
: Xian F, Kong X H, Jiang J, et al. 2017. Infl uence of variation in dust10Be concentration amplitude on the reliability of geomagnetic tracing study from Chinese loess [J]. Journal of Earth Environment, 8(2): 103 – 112.