茍龍飛,金章東,賀茂勇
1. 中國科學(xué)院地球環(huán)境研究所 黃土與第四紀(jì)地質(zhì)國家重點實驗室,西安 710061
2. 中國科學(xué)院大學(xué),北京 100049
3. 西安交通大學(xué) 全球環(huán)境變化研究院,西安 710049
鋰同位素示蹤大陸風(fēng)化:進(jìn)展與挑戰(zhàn)
茍龍飛1,2,金章東1,3,賀茂勇1
1. 中國科學(xué)院地球環(huán)境研究所 黃土與第四紀(jì)地質(zhì)國家重點實驗室,西安 710061
2. 中國科學(xué)院大學(xué),北京 100049
3. 西安交通大學(xué) 全球環(huán)境變化研究院,西安 710049
大陸風(fēng)化制約著地表物質(zhì)循環(huán)及其從陸地向湖泊/海洋的遷移,并通過消耗大氣CO2調(diào)節(jié)長時間尺度的全球碳循環(huán)和氣候變化,因此如何有效示蹤大陸風(fēng)化是地球表生過程研究的重要科學(xué)問題之一。鋰(Li)的兩個同位素(6Li和7Li)擁有巨大相對質(zhì)量差、無化合價變化,且不受氧化還原條件和生物作用影響等優(yōu)勢,賦予Li同位素體系具備示蹤大陸風(fēng)化的潛力。然而,風(fēng)化體系中Li的來源和分餾的制約要素爭議頗多。本文從儲庫、風(fēng)化殼、河流體系、淋濾實驗和模型模擬等方面綜述了目前Li同位素示蹤大陸風(fēng)化的研究現(xiàn)狀和存在的挑戰(zhàn)。最后指出,在示蹤大陸風(fēng)化方面,Li同位素具有其獨特的作用,建議細(xì)化巖石/礦物淋濾實驗、大小流域相結(jié)合、加強多同位素體系相互補充與驗證、以及計算機模型模擬,有望減少Li同位素示蹤大陸風(fēng)化的不確定性。
鋰同位素;大陸風(fēng)化;地球化學(xué)示蹤;制約要素;綜述
鋰(Li)同位素的研究起始于McLennan and Ainslie(1922),繼Taylor and Urey(1937,1938)討論了Li同位素分餾之后,由于分析測試方法的限制,Li同位素的研究一直發(fā)展緩慢。直至20世紀(jì)80年代以來,得益于質(zhì)譜技術(shù)的革新,如熱電離質(zhì)譜儀(TIMS)、二次離子質(zhì)譜儀(SIMS)、離子探針(Ion Probe),尤其是多接收電感耦合等離子體質(zhì)譜儀(MC-ICP-MS)的出現(xiàn)(趙葵東和蔣少涌,2001;Su et al,2015),Li同位素的測試精度已達(dá)到0.2‰左右(Huang et al,2010;Van Hoecke et al,2015;Lin et al,2016),其SIMS微區(qū)原位分析精度也達(dá)到1‰左右(李獻(xiàn)華等,2015),致使Li同位素的研究迅速發(fā)展。目前,Li同位素已被廣泛應(yīng)用于示蹤星云、行星的起源和演化(Seitz et al,2004,2007;Liu et al,2009)、殼-幔物質(zhì)循環(huán)(Tomascak et al,2000;Magna et al,2002;Su et al,2014;Zheng et al,2015)、板塊俯沖及島弧演化(Zack et al,2003;Tian et al,2015;萬紅瓊等,2015)、鹽湖形成與演化(肖應(yīng)凱等,1994;Orberger et al,2015)、成礦物質(zhì)來源(Helvaci et al,2004;蘇嬡娜等,2011;Dill and Weber,2013)、重建地質(zhì)尺度的環(huán)境變化(Froelich and Misra,2014;Li and West,2014;Vigier et al,2015)以及行星和大陸風(fēng)化(Ushikubo et al,2008;Liu and Rudnick,2011;Wang et al,2015;Fairén et al,2015)等。在示蹤大陸風(fēng)化作用方面,Li同位素為化學(xué)風(fēng)化過程和物質(zhì)循環(huán)研究注入了全新的活力(Vigier et al,2009; Misra and Froelich,2012;Dellinger et al,2015)。
由于硅酸鹽巖的化學(xué)風(fēng)化被認(rèn)為是地質(zhì)時間尺度上最重要的碳匯過程(Berner et al,1983;Kump et al,2000),而Li同位素具有揭示硅酸鹽巖風(fēng)化強度和通量、示蹤地殼物質(zhì)循環(huán)(特別是營養(yǎng)鹽循環(huán))的潛力(Berner and Kothavala,2001;Vigier et al,2009;Misra and Froelich,2012;Cermeno et al,2015),因此Li同位素被用來示蹤巖石/礦物化學(xué)風(fēng)化、全球/區(qū)域環(huán)境變化、構(gòu)造運動、生物演替等過程,進(jìn)而為理解大陸風(fēng)化及其對構(gòu)造和氣候演化的響應(yīng)和反饋機制提供了全新的視角。然而,隨著對Li同位素示蹤大陸風(fēng)化研究的拓展和深入,流域Li同位素分餾控制要素頗具爭議,風(fēng)化殼Li同位素難以類比等問題愈加突出。為了更好地理解Li同位素在示蹤大陸風(fēng)化方面的優(yōu)勢及局限,本文綜述了Li同位素在風(fēng)化殼、流域風(fēng)化、巖石實驗淋濾、模型模擬等方面的研究進(jìn)展及其面臨的挑戰(zhàn),以期促進(jìn)Li同位素在示蹤大陸風(fēng)化方面的進(jìn)一步發(fā)展。
1.1 自然儲庫中的Li同位素組成
原子序數(shù)為3的Li有6Li和7Li兩個質(zhì)量差約17%的穩(wěn)定同位素,其同位素組成的表達(dá)式為:
目前廣泛使用的Li的標(biāo)準(zhǔn)物質(zhì)是美國國家標(biāo)準(zhǔn)與技術(shù)研究所合成的碳酸鋰(Li2CO3),即NIST-LSVEC,其7Li /6Li = 12.1025 ± 0.0016(Chan et al,2009)。
Li具有中等不相容的性質(zhì),Li+半徑為0.68 ?,與Mg2+(0.66 ?)、Al3+半徑(0.51 ?)和Fe2+(0.74 ?)的半徑比較接近,因此Li+可以部分替代鐵鎂質(zhì)巖石中的Mg、Fe(劉英俊等,1984)。從基性巖到酸性巖,Li含量升高,例如輝長巖中Li含量是1.5 μg · g-1,橄欖巖中Li的含量是4 μg · g-1(Vils et al,2008),花崗巖的Li含量在6 — 40 μg · g-1(劉英俊等,1984)。不同巖性的δ7Li值變化也較明顯,輝長巖中Li同位素約為4.3‰,橄欖巖中Li同位素組成約為4‰(Vils et al,2008),花崗巖的Li同位素組成約為-10‰ — 18‰(Tomascake,2004)。
Li同位素體系具備的特有示蹤潛力使其發(fā)展迅速,目前已經(jīng)基本獲得了自然儲庫中Li含量及δ7Li值(圖1,表1),這為Li同位素示蹤大陸風(fēng)化的研究奠定了基礎(chǔ)(Tomascak,2004)。大洋中脊新鮮玄武巖(MORB)的Li含量及其同位素組成分別是3.1 — 7.5 μg · g-1和1.5‰ — 5.6‰(Chan et al,1992;Liu et al,2011)。在巖漿結(jié)晶過程中,Li優(yōu)先進(jìn)入流體相(Chan et al,1994;You and Chan,1996;Brenan et al,1998),導(dǎo)致其在地幔虧損,而在地殼富集。大陸地殼主要成分是花崗閃長質(zhì),在近地表處接近花崗巖成分(Mason and Moore,1982;Wedepohl,1995;韓呤文等,2003),由此上地殼中Li的平均含量及其同位素比值接近花崗巖,含量約為30.5 μg · g-1,δ7Li約為0.6‰(Tomascak,2004;Misra and Froelich,2012;Sauzéat et al,2015)。
圖1 自然儲庫中Li同位素的分布(據(jù)湯艷杰等(2009)補充)Fig.1 Lithium isotopic compositions in natural reservoirs (Modifi ed from Tang et al (2009))
表1 大陸常見物質(zhì)及相關(guān)風(fēng)化產(chǎn)物的Li含量及其同位素組成Tab.1 Lithium concentrations and isotopic compositions of fresh and weathered crust materials on the continents
1.2 風(fēng)化產(chǎn)物的Li含量及同位素組成
由于Li是水溶性元素,因此Li將隨風(fēng)化淋溶作用遷移至溶液中。然而,大量研究表明在風(fēng)化淋溶過程中Li僅僅發(fā)生微弱的同位素分餾,或者不發(fā)生顯著的同位素分餾,Li同位素的分餾主要發(fā)生在其搬運過程中(Pistiner and Henderson,2003;Qiu et al,2009;Wimpenny et al,2010a;Verney-Carron et al,2011)。在搬運過程中,6Li優(yōu)先在次生粘土礦物中富集,因此粘土物質(zhì)中Li含量較高,平均約為80 μg· g-1,δ7Li值為1.6‰ — 5‰;7Li則主要隨流體帶入海洋,這些7Li隨俯沖過程被帶到下地殼/地幔,最后造成上地殼富6Li(Marschall et al,2007a,2007b)。陸源碎屑沉積物中Li平均含量為24 μg· g-1,δ7Li值則變化于0‰ — 6‰;生物成因沉積物L(fēng)i含量極低,其同位素組成約為6‰ — 32‰;沉積碳酸鹽巖中Li含量一般小于5 μg · g-1,其δ7Li值為-1.6‰ — 5‰(Hoefs and Sywall,1997;Chan and Hein,2007;Vils et al,2008)。新生代碳酸鹽巖中的Li含量很低,約在0.2—4 μg · g-1,δ7Li值約為-41‰ — 25‰(Hoefs and Sywall,1997)。鹽湖中Li含量變化范圍則非常大,變化于0 —262 μg · g-1(表1),這與鹽湖各自成因及不同的物質(zhì)來源有關(guān)(Yu et al,2013)(表1)。
土壤中Li含量變化范圍也比較大,為5 —200 μg · g-1(劉英俊等,1984),δ7Li值在-2.6‰ —14‰(Ryu et al,2014)。頁巖中Li含量平均為60 μg · g-1,一些富Li礦物中Li含量可以高達(dá)1%(Meier,1982)。黃土中Li平均含量與上地殼基本一致,變化于20—35 μg · g-1,平均值約為30.5 μg · g-1,δ7Li值也較為均一,約為0.6‰(Jia et al,2007;Tsai et al,2014;Sauzéat et al,2015)。
自然界中Li一般以Li+離子形式存在(Faure and Mensing,2005),無化合價變化,氧化還原條件對其分餾沒有影響。同時Li不是生命元素,生物作用對其分餾也可能沒有影響(Rudnick et al,2004;Lemarchand et al,2010;Clergue et al,2015)。所有地質(zhì)過程中Li同位素的最大分餾發(fā)生在大陸風(fēng)化作用過程中(Rudnick et al,2004;Liu and Rudnick,2011;Henchiri et al,2014)(圖1),在自然界已觀察到超過110‰的分餾,約90‰的Li同位素分餾發(fā)生在地表/淺地表環(huán)境(Hoefs and Sywall,1997;Rudnick et al,2004;Yoon,2009;Millot et al,2010a)。與(淺)地表環(huán)境下約90‰的Li同位素分餾相比,直接由溫度引起的Li同位素分餾則微不足道,僅為2‰(Millot et al,2010b;Wimpenny et al,2010b)。因此,擁有較大相對質(zhì)量差的6Li和7Li具備示蹤大陸風(fēng)化作用的潛力(Chan et al,1992;Kisakürek et al,2004a;Misra and Froelich,2012;Dellinger et al,2015)。
然而,到底哪些因素影響著由化學(xué)風(fēng)化導(dǎo)致的不同氣候帶河水Li含量及δ7Li值變化呢?此問題一直爭議不斷(Huh et al,1998,2001)。為了回答這一問題,早期研究者嘗試對風(fēng)化殼剖面進(jìn)行剖析,試圖為Li同位素示蹤大陸風(fēng)化提供線索。然而,由于風(fēng)化殼自身成因的復(fù)雜性,結(jié)果不太理想(見下討論)。隨后,為了認(rèn)識Li同位素在大陸風(fēng)化過程中的行為,研究者開始對全球主要大河流和不同氣候區(qū)小流域進(jìn)行調(diào)查分析,并開展室內(nèi)淋濾和計算機模擬,以解譯大陸風(fēng)化過程中Li同位素分餾的影響因素。然而,目前所獲得的結(jié)論觀點不一,乃至相互矛盾,致使在運用Li同位素示蹤大陸風(fēng)化方面依然存在諸多爭議和不確定性。
2.1 風(fēng)化殼中Li同位素組成變化復(fù)雜
風(fēng)化殼是巖石/礦物長期風(fēng)化、雨水混合、次生礦物生成、地下水淋濾運移等過程共同作用下的產(chǎn)物(Huh et al,2002;Pistiner and Henderson,2003;Ryu et al,2014;Verney-Carron et al,2015)。通過同一地區(qū)風(fēng)化殼中的Li同位素分析發(fā)現(xiàn),不同風(fēng)化殼的Li含量及其同位素表現(xiàn)出復(fù)雜的變化,難以相互類比。例如,Huh et al(2002)研究發(fā)現(xiàn),夏威夷地區(qū)玄武巖成因土壤中的Li含量是新鮮玄武巖的數(shù)倍,δ7Li值從剖面頂部到底部呈有規(guī)律的下降(從10‰降低到3‰);而Pistiner and Henderson(2003)的研究則發(fā)現(xiàn)該地區(qū)剖面土壤中δ7Li值與新鮮玄武巖一致(約4‰);Ryu et al(2014)的研究還發(fā)現(xiàn),從剖面淺部到深部,Li元素含量逐步上升,次生礦物(尤其是高嶺土)的生成造成很大的Li同位素分餾。此外,新鮮巖石初始風(fēng)化時是否產(chǎn)生Li同位素分餾也沒有定論(Pistiner and Henderson,2003;Ryu et al,2014)。盡管如此,風(fēng)化殼中的Li同位素研究取得了以下共識:(1)風(fēng)化殼形成過程中總伴隨著外來物質(zhì)的加入,這在Li含量和δ7Li值上都有反映(Huh et al,2002;Pistiner and Henderson,2003;Kisakürek et al,2004b;Liu et al,2013;Ryu et al,2014);(2)6Li易被粘土吸附,而7Li易進(jìn)入流體的性質(zhì)可用來示蹤古地下水水位(Kisakürek et al,2004b;Rudnick et al,2004);(3)次生礦物的生成和溶解是風(fēng)化殼中δ7Li值的重要制約要素之一(Lemarchand et al,2010;Liu et al,2013;Ryu et al,2014;Verney-Carron et al,2015)。
風(fēng)化殼形成于一個開放的體系,其物質(zhì)組成受母巖、氣候、水文、生物作用、地形、形成時間、外來物質(zhì)加入等要素共同制約(Ollier,1988;李德文等,2002)。因此,不同風(fēng)化殼之間化學(xué)組成變化的主導(dǎo)因素可能各不相同,從而造成不同剖面得到不同的認(rèn)識。
與其他風(fēng)化殼相比,具有均勻和穩(wěn)定組成的黃土可能是開展Li同位素示蹤大陸風(fēng)化過程的理想對象。然而,目前針對黃土Li同位素示蹤風(fēng)化過程的研究工作僅有一例。Tsai et al(2014)對渭南黃土-古土壤序列中的Li同位素研究發(fā)現(xiàn),黃土中碎屑物質(zhì)的Li含量和δ7Li值變化不大,與物源及礦物相關(guān),且與磁化率和粒徑對應(yīng)較好;黃土中碳酸鹽巖的Li含量和δ7Li值變化則比較大,并且其δ7Li值與化學(xué)風(fēng)化指數(shù)具有較好的相關(guān)性。
2.2 水系流域Li同位素的控制要素頗具爭議
水系流域中的Li元素主要來源于巖石風(fēng)化、人類活動和大氣降水等(Clergue et al,2015;Dillinger et al,2015;Liu et al,2015;Wang et al,2015;Pogge von Strandmann et al,2016,2017)。目前,各大陸主要流域河水和懸浮物L(fēng)i同位素組成均已有數(shù)據(jù)報道(圖2)。河水中Li的含量變化巨大,為0.06 — 81.2 μg· L-1,其δ7Li值變化大約在0.8‰ — 45.1‰,全球河水平均δ7Li值為23‰(Huh et al,1998;Liu and Rudnick,2011;Misra and Froelich,2012)。河流懸浮物的δ7Li組成大約在-6.8‰ — 9.5‰,總是低于各自河水中溶解態(tài)的δ7Li值。然而,由于大流域河水的Li同位素組成所受影響因素復(fù)雜,主控因素各不相同,很多問題還存在爭議。近幾年,更多的研究轉(zhuǎn)向?qū)π×饔騆i收支的系統(tǒng)研究,得出了一些重要的認(rèn)識(Lemarchand et al,2010;Clergue et al,2015),為Li同位素示蹤大陸風(fēng)化注入了活力。
河水中Li的來源及河水δ7Li值的控制要素是目前運用Li同位素示蹤大陸風(fēng)化的爭議焦點之一。以Huh等人為代表的觀點認(rèn)為,河水中的Li主要來源于硅酸鹽巖的風(fēng)化,其含量主要反映流域硅酸鹽巖風(fēng)化量;控制河水δ7Li值的最主要因素不是巖性,而是風(fēng)化過程中原生礦物的溶解與粘土礦物的吸附引起的同位素分餾之間的平衡,因此δ7Li值反映流域硅酸鹽巖的風(fēng)化強度(Huh et al,1998,2001;Kisakürek et al,2005;Vigier et al,2009;Liu and Rudnick,2011;Misra and Froelich,2012;Froelich and Misra,2014;Dellinger et al,2014,2015;Pogge von Strandmann et al,2016)。與此同時,他們提出河水δ7Li值變化還與以下過程有關(guān):(1)次生礦物的形成造成河水高的δ7Li值(Vigier et al,2009;Li and West,2014);(2)冰川作用對河水的δ7Li值影響微弱(Wimpenny et al,2010b);(3)河水的pH對河水δ7Li值有一定影響(Dellinger et al,2015);(4)氣候條件可能影響Li的元素行為,具體表現(xiàn)為寒冷氣候環(huán)境下Li吸附在礦物表面且不發(fā)生分餾,而在溫暖濕潤氣候條件下,6Li優(yōu)先進(jìn)入次生礦物晶格且發(fā)生分餾(Godfrey et al,2013)。然而,更多的研究表明,受水文循環(huán)、次生礦物溶解等因素影響,河水δ7Li值與氣候帶關(guān)系不顯著(Millot et al,2010c;Liu et al,2015;Pogge von Strandmann et al,2016)。此外,Dellinger et al(2015)提出δ7Li值變化與大陸風(fēng)化之間非線性的關(guān)系。
與Huh等人的觀點不同,以Pogge von Strandmann等人為代表的觀點則認(rèn)為,河水中Li的來源受多種因素控制,δ7Li值并不簡單反映流域硅酸鹽巖風(fēng)化強度(Yoon,2009;羅超和鄭洪波,2011;Liu et al,2011;Henchiri et al,2014;Wang et al,2015;Pogge von Strandmann and Henderson,2015,Pogge von Strandmann et al,2017)。例如:蒸發(fā)巖、火山活動帶出的熱液Li等均會較大程度地影響河流中的Li含量(Yoon,2009;Henchiri et al,2014;Wang et al,2015);蒸發(fā)巖則可以影響河水的δ7Li值(Yoon,2009;Wang et al,2015);懸浮物中不同粘土礦物和流體之間不同的分餾系數(shù)可能是控制某些流域河水的δ7Li值變化的主因(Yoon,2009;Wang et al, 2015;Pogge von Strandmann et al,2017)。由此,Pogge von Strandmann and Henderson(2015)提出了與Huh等截然相反的觀點,認(rèn)為河水δ7Li值的變化反映的是沖積平原的形成及更多次生礦物的生成,而非化學(xué)風(fēng)化強度。
那么,硅酸鹽巖風(fēng)化是不是控制河水Li同位素變化的主因呢?面對大河體系中Li含量及同位素組成的不確定性和多解性,近年來研究者轉(zhuǎn)而開始研究小尺度水系流域(Catchment)中的Li收支。因為小尺度水系流域具有單一或穩(wěn)定的巖性、相近的氣候,這一研究思路展現(xiàn)出解決爭議的巨大潛力,并已成為大陸風(fēng)化研究的熱點。通過小流域地球關(guān)鍵帶(Earth’s critical zone)的研究發(fā)現(xiàn),在流域尺度上,Li同位素沒有生命效應(yīng)的重要結(jié)論(Lemarchand et al,2010;Clergue et al,2015;Pogge von Strandmann et al,2016)。Li收支定量研究結(jié)果則顯示,降雨、大氣塵降對小流域Li收支有影響,其中對安山巖流域影響很大(Clergue et al,2015),而對花崗巖質(zhì)流域影響則很?。↙emarchand et al,2010)。這可能主要是由于不同類型巖石Li含量之間數(shù)量級差別的“本底”效應(yīng)造成的。目前,眾多針對小流域的Li同位素研究工作正在進(jìn)行中。
結(jié)合對大/小尺度水系流域中的Li同位素研究,大流域河水的Li含量及同位素組成的差異是各種制約要素的共同結(jié)果(Misra and Froelich,2012;Wang et al,2015)。為了確定全球尺度上不同制約要素之間的關(guān)系及其貢獻(xiàn)大小,有必要開展更多小尺度流域水系中Li含量及其同位素組成的時空變化。開展小流域內(nèi)高分辨率季節(jié)性河水化學(xué)與Li同位素結(jié)合的研究,或成為解決制約Li同位素變化控制要素爭議的一個有效途徑。
2.3 巖石淋濾實驗尚無定論
Li同位素分餾的室內(nèi)淋濾實驗主要采用一些代表性的巖漿巖開展,但尚未獲得一致的認(rèn)識。例如:有的實驗結(jié)果顯示,基性巖石在酸性非平衡條件下淋濾時,沒有發(fā)生Li同位素分餾(Wimpenny et al,2010a),而在相同條件下酸性巖石淋濾時則發(fā)生Li同位素分餾(Pistiner and Henderson,2003;Wunder et al,2005;Millot et al,2010b)。在近平衡條件下中性巖石的溶解實驗中,次生礦物形成時Li的類質(zhì)同象被認(rèn)為是造成Li同位素分餾的最主要因素(Vigier et al,2008;Wimpenny et al,2010a;Millot et al,2010b)。由于Li是中等不相容性元素,Li在各類型巖石中不同的賦存狀態(tài)可能是造成觀察到上述現(xiàn)象的主要因素。在巖漿分異結(jié)晶過程中,Li元素的不相容性使酸性巖具有高的Li含量。重要的是,與基性巖中Li以類質(zhì)同象方式占據(jù)在穩(wěn)定的晶格位置不同,酸性巖中高Li含量可能使礦物晶體處于高能態(tài),酸性巖發(fā)生風(fēng)化時Li優(yōu)先被淋濾,而7Li與水優(yōu)先結(jié)合可使水分子處于低能態(tài),從而發(fā)生Li同位素分餾(Huh et al,2001);相反,基性巖的淋濾可能是礦物整體溶解的過程,在沒有次生礦物形成的情況下,不發(fā)生同位素分餾。
圖2 已報道的全球主要河流溶解態(tài)和懸浮物中δ7Li值和Li質(zhì)量分?jǐn)?shù)的變化范圍Fig.2 Concentrations and isotopic compositions of lithium reported in dissolved and suspended phases in global major rivers
此外,Li吸附到礦物表面是否引起Li同位素分餾也還沒有定論,有實驗發(fā)現(xiàn)吸附會影響Li的分餾,且分餾程度與所吸附的礦物類型有關(guān)(Pistiner and Henderson,2003),有些則認(rèn)為該過程不發(fā)生分餾(羅超和鄭洪波,2011;Wimpenny et al,2015)。同時,相對于巨大的動力學(xué)過程引起的Li同位素分餾,低溫條件下(地表環(huán)境)擴散所致的平衡分餾效應(yīng)基本上可忽略(Verney-Carron et al,2011)。
2.4 模型模擬尚處摸索階段
現(xiàn)代計算機的強大計算功能為定量解決地學(xué)問題提供了新的渠道。上述巖石礦物L(fēng)i同位素淋濾實驗獲得的基礎(chǔ)數(shù)據(jù)為計算機模擬Li同位素體系創(chuàng)造了條件。目前有關(guān)Li同位素分餾的模擬結(jié)果并不多,主要提出了多種控制河水Li同位素組成變化要素的組合,例如氣候?qū)铀械腖i通量的作用(Vigier and Goddéris,2015)、次生礦物的溶解(Bouchez et al,2013)、粘土和土壤對河水Li的固定(Bouchez et al,2013;Li and West,2014;Wanner et al,2014)等因素分別被不同研究者認(rèn)為對水體δ7Li值影響很大。由于上述制約Li同位素分餾的不平衡、非線性復(fù)雜過程,模型模擬的計算結(jié)果由初始狀態(tài)和邊界條件決定,因此實驗淋濾結(jié)果的好壞直接決定模擬結(jié)論的正確與否,反之模擬結(jié)論是否合理又需要水系流域、風(fēng)化殼的研究來佐證。應(yīng)該看到,模型模擬拓展了Li同位素示蹤大陸風(fēng)化的研究手段,但是室內(nèi)淋濾數(shù)據(jù)依然十分有限,這可能造成模擬結(jié)果一定的“蝴蝶效應(yīng)”。
上述可知,對Li同位素示蹤大陸風(fēng)化的研究已取得一些重要成果,在風(fēng)化殼、水系流域、實驗室模擬等方面均取得了重要進(jìn)展,這些進(jìn)展極大地促進(jìn)了對Li同位素在表生地球化學(xué)行為的認(rèn)識以及其示蹤大陸風(fēng)化的可行性。事實上,對Li同位素體系示蹤大陸風(fēng)化的研究始于檢驗“構(gòu)造抬升-化學(xué)風(fēng)化-氣候變化”假說。該假說認(rèn)為構(gòu)造隆升造成大陸巖石風(fēng)化加強進(jìn)而導(dǎo)致了晚新生代氣候變冷。此前Sr、Nd、Os等多個同位素體系參與驗證該假說,但因各自的局限性最終未能獲得理想的結(jié)果。與這幾個同位素體系類似,Li同位素體系也面臨著如何定量評估各影響因素,進(jìn)而示蹤大陸硅酸鹽巖風(fēng)化的困境。然而,Li同位素巨大的分餾遠(yuǎn)比原始風(fēng)化物質(zhì)組成范圍大得多,只有風(fēng)化過程才會引起這么大的分餾(Lemarchand et al,2010;Misra and Froelich,2012;Sauzeat et al,2015)。因此,若不細(xì)分風(fēng)化過程中各具體影響因素,那么Li同位素分餾在一定程度上應(yīng)該可以反映化學(xué)風(fēng)化的變化?;谝陨鲜聦?,Li同位素的確加深了人們對大陸風(fēng)化的理解,但是要使Li同位素體系更有效地示蹤大陸風(fēng)化,需要面對以下三大挑戰(zhàn):
(1)如何扣除深部熱液的影響。深部熱液具有高Li含量,由火山、地震等構(gòu)造運動帶入地表體系的深部熱液可能成為Li同位素體系示蹤硅酸鹽巖風(fēng)化的一個干擾項。因此,在一些構(gòu)造活躍的高山流域,在運用Li同位素示蹤硅酸鹽巖風(fēng)化強度時,需考慮深部熱液的Li貢獻(xiàn)及其同位素組成。
(2)如何量化風(fēng)化過程中的Li同位素分餾的各個控制要素。目前已經(jīng)認(rèn)識到的制約Li同位素分餾的要素包括侵蝕、溶解、吸附、次生礦物的形成、pH等(Huh et al,1998,2001;Kisakürek et al,2005;Vigier et al,2009;Liu and Rudnick,2011;Dellinger et al,2014,2015;Froelich and Misra,2014),這些因素對δ7Li值的貢獻(xiàn)大小還不能有效量化。由于形成演化過程和形成時間不同,風(fēng)化殼Li同位素特征難以進(jìn)行類比,因此風(fēng)化殼剖面的研究恐難以量化Li同位素分餾的控制要素。相反,對單一巖性流域的連續(xù)監(jiān)測,有望縮小制約要素,進(jìn)而減少Li同位素示蹤風(fēng)化的不確定性。
(3)如何量化人為活動對Li同位素分餾的貢獻(xiàn)。6Li作為重要的化工、電源和核聚變原料(賈小波等,2007;Arikawa et al,2010),目前已有多種人工方法富集分離6Li(Tatenuma et al,2001),使δ7Li值超過自然分餾的百倍以上(Qi et al,1997)。因此,盡管對有些流域尚未構(gòu)成影響(Négrel et al,2010;Wang et al,2015),但如何量化人類活動對水體δ7Li值的貢獻(xiàn)成為Li同位素示蹤硅酸鹽巖風(fēng)化需面對的又一大難題(Qi et al,1997;Négrel et al,2010)。
地表環(huán)境下Li的地球化學(xué)行為使其同位素在示蹤大陸風(fēng)化方面取得了一些新的認(rèn)識和進(jìn)展,同時也面臨著諸多挑戰(zhàn)。Li同位素體系能否作為大陸風(fēng)化的示蹤指標(biāo),還需要加強以下四個方面的研究:
(1)細(xì)化巖石/礦物淋濾實驗:通過實驗室控制實驗條件,從單一變量著手,系統(tǒng)評價不同要素貢獻(xiàn),為Li同位素體系示蹤大陸風(fēng)化提供可靠依據(jù);
(2)大小流域相結(jié)合:對比研究單一巖性、相同氣候條件下、沒有人為輸入的小流域內(nèi)Li收支及其同位素行為,結(jié)合大流域Li同位素的宏觀特征,將進(jìn)一步明確Li同位素來源和分餾的制約要素。鑒于黃土具有相對均勻的、可代表上地殼的地球化學(xué)成分,查明黃土現(xiàn)代風(fēng)化過程中Li同位素行為有望對認(rèn)識Li同位素示蹤整體大陸風(fēng)化產(chǎn)生不可替代的推動作用,但這項工作目前尚未引起足夠重視;
(3)多同位素體系相互補充與驗證:地表風(fēng)化作用是復(fù)雜的,Li同位素獲得的認(rèn)識可能只是風(fēng)化過程的某一側(cè)面,存在不確定性或多解性,因此需要與其他同位素相互補充與驗證,以更全面地認(rèn)識化學(xué)風(fēng)化過程及其制約要素;
(4)加強計算機模型模擬研究:目前計算機模型模擬Li同位素體系的研究尚處于起步階段,所得認(rèn)識還較為有限,但計算機模擬將最終為Li同位素示蹤大陸風(fēng)化的定量研究提供最有益的幫助。
致謝:特別感謝中國科學(xué)院地球環(huán)境研究所肖軍、張飛、鄧麗和中國科學(xué)技術(shù)大學(xué)孫賀在論文寫作過程中的有益討論。
韓呤文, 馬振東, 張宏飛, 等. 2003. 地球化學(xué)[M]. 北京: 地質(zhì)出版社: 30 – 53. [Han Y W, Ma Z D, Zhang H F, et al. 2003. Geochemistry [M]. Beijing: Geological Publishing House: 30 – 53.]
賈小波, 楊永偉, 周志偉, 等. 2007. 聚變堆氦冷固態(tài)包層結(jié)構(gòu)和6Li富集度對產(chǎn)氚率的影響[J]. 原子能科學(xué)技術(shù), 41(3): 335 – 338. [Jia X B, Yang Y W, Zhou Z W, et al. 2007. Influence of helium cooled solid blanket structure and6Li enrichment on tritium breeding ratio in fusion reactor [J]. Atomic Energy Science and Technology, 41(3): 335 – 338.]
李德文, 崔之久, 劉耕年. 2002. 風(fēng)化殼研究的現(xiàn)狀與展望[J]. 地球?qū)W報, 23(3): 283 – 288. [Li D W, Cui Z J, Liu G N. 2002. Present situation and prospects of researches on weathering crust [J]. Acta Geoscientia Sinica, 23(3): 283 – 288.]
李獻(xiàn)華, 劉 宇, 湯艷杰, 等. 2015. 離子探針Li同位素微區(qū)原位分析技術(shù)與應(yīng)用[J]. 地學(xué)前緣, 22(5): 160 – 170. [Li X H, Liu Y, Tang Y J, et al. 2015. In situ Li isotopic miscroanalysis using SIMS and its applications [J]. Earth Science Frontiers, 22(5): 160 – 170.]
劉英俊, 曹勵明, 李兆麟, 等. 1984. 元素地球化學(xué)[M]. 北京:科學(xué)出版社: 125 – 136. [Liu Y J, Cao L M, Li Z L, et al. 1984. Element geochemistry [M]. Beijing: Science Press: 125 – 136.]
羅 超, 鄭洪波. 2011. 鋰同位素作為硅酸鹽風(fēng)化強度的指標(biāo)——關(guān)于其可行性的討論[J]. 礦物巖石地球化學(xué)通報, 30(S1): 505. [Luo C, Zheng H B. 2011. Lithium isotope as a proxy of silicate weathering intensity—discussion on its feasibility [J]. Bulletin of Mineralogy, Petrology and Geochemistry, 30(S1): 505.]
蘇嬡娜, 田世洪, 侯增謙, 等. 2011. 鋰同位素及其在四川甲基卡偉晶巖型鋰多金屬礦床研究中的應(yīng)用[J]. 現(xiàn)代地質(zhì), 25(2): 236 – 242. [Su A N, Tian S H, Hou Z Q, et al. 2011. Lithium isotope and its application to Jiajika pegmatite type lithium polymetallic deposit in Sichuan [J]. Geoscience, 25(2): 236 – 242.]
湯艷杰, 張宏福, 英基豐. 2009. 鋰同位素分餾機制討論[J].
地球科學(xué)(中國地質(zhì)大學(xué)學(xué)報), 34(1): 43 – 55. [Tang Y J, Zhang H F, Ying J F. 2009. Discussion on fractionation mechanism of lithium isotopes [J]. Earth Science (Journal of China University of Geosciences), 34(1): 43 – 55.]
萬紅瓊, 孫 賀, 劉海洋, 等. 2015. 俯沖帶Li同位素地球化學(xué): 回顧與展望[J]. 地學(xué)前緣, 22(5): 29 – 43. [Wan H Q, Sun H, Liu H Y, et al. 2015. Lithium isotopic geochemistry in subduction zones: Retrospects and prospects [J]. Earth Science Frontiers, 22(5): 29 – 43.]
肖應(yīng)凱, 祁海平, 王蘊慧, 等. 1994. 青海大柴達(dá)木湖鹵水、沉積物和水源水中的鋰同位素組成[J]. 地球化學(xué), 23(4): 329 – 338. [Xiao Y K, Qi H P, Wang Y H, et al. 1994. Lithium isotopic compositions of brine sediments and source water in Da Qaidam Lake, Qinghai China [J]. Geochemica, 23(4): 329 – 338.]
趙葵東, 蔣少涌. 2001. Li同位素研究進(jìn)展及其地質(zhì)應(yīng)用[J].高校地質(zhì)學(xué)報, 7(4): 390 – 398. [Zhao K D, Jiang S Y. 2001. Recent advances in research on lithium isotopes and its geological applications [J]. Geological Journal of China Universities, 7(4): 390 – 398.]
Arikawa Y, Yamanoi K, Nagai T, et al. 2010. Note: Light output enhanced fast response and low afterglow6Li glass scintillator as potential down-scattered neutron diagnostics for inertial confinement fusion [J]. Review of Scientific Instruments, 81(10): 3.
Berner R A, Kothavala Z. 2001. Geocarb Ⅲ: A revised model of atmospheric CO2over Phanerozoic time [J]. American Journal of Science, 301(2): 182 – 204.
Berner R A, Lasaga A C, Garrels R M. 1983. The carbonatesilicate geochemical cycle and its effect on atmospheric carbon-dioxide over the past 100 million years [J]. American Journal of Science, 283(7): 641 – 683.
Bouchez J, von Blanckenburg F, Schuessler J A. 2013. Modeling novel stable isotope ratios in the weathering zone [J]. American Journal of Science, 313(4): 267 – 308.
Brenan J M, Neroda E, Lundstrom C C, et al. 1998. Behaviour of boron, beryllium, and lithium during melting and crystallization: Constraints from mineral-melt partitioning experiments [J]. Geochimica et Cosmochimica Acta, 62(12): 2129 – 2141.
Cermeno P, Falkowski P G, Romero O E, et al. 2015. Continental erosion and the Cenozoic rise of marine diatoms [J]. Proceedings of the National Academy of Sciences of the United States of America, 112(14): 4239 – 4244.
Chan L H, Edmond J M, Thompson G, et al. 1992. Lithium isotopic composition of submarine basalts—Implications for the lithium cycle in the oceans [J]. Earth and Planetary Science Letters, 108(1/ 2 /3): 151 – 160.
Chan L H, Gieskes J M, You C F, et al. 1994. Lithium isotope geochemistry of sediments and hydrothermal fl uids of the Guaymas Basin, Gulf of California [J]. Geochimica et Cosmochimica Acta, 58(20): 4443 – 4454.
Chan L H, Hein J R. 2007. Lithium contents and isotopic compositions of ferromanganese deposits from the global ocean [J]. Deep Sea Research Part Ⅱ-Topical Studies in Oceanography, 54(11/ 12/ 13): 1147 – 1162.
Chan L H, Lassiter J C, Hauri E H, et al. 2009. Lithium isotope systematics of lavas from the Cook-Austral Islands: Constraints on the origin of HIMU mantle [J]. Earth and Planetary Science Letters, 277(3/4): 433 – 442.
Clergue C, Dellinger M, Buss H L, et al. 2015. Influence of atmospheric deposits and secondary minerals on Li isotopes budget in a highly weathered catchment, Guadeloupe (Lesser Antilles) [J]. Chemical Geology, 414: 28 – 41.
Dellinger M, Gaillardet J, Bouchez J, et al. 2014. Lithium isotopes in large rivers reveal the cannibalistic nature of modern continental weathering and erosion [J]. Earth and Planetary Science Letters, 401: 359 – 372.
Dellinger M, Gaillardet J, Bouchez J, et al. 2015. Riverine Li isotope fractionation in the Amazon River basin controlled by the weathering regimes [J]. Geochimica et Cosmochimica Acta, 164: 71 – 93.
Dill H G, Weber B. 2013. Gemstones and geosciences in space and time: Digital maps to the “Chessboard classification scheme of mineral deposits” [J]. Earth-Science Reviews, 127: 262 – 299.
Fairén A G, Losa-Adams E, Gil-Lozano C, et al. 2015. Tracking the weathering of basalts on Mars using lithium isotope fractionation models [J]. Geochemistry Geophysics Geosystems, 16(4): 1172 – 1197.
Faure G, Mensing T M. 2005. Isotopes: principles and applications (third edition) [M]. New Jersey: John Wiley & Sons: 859 – 863.
Froelich F, Misra S. 2014. Was the late Paleocene-early Eocene hot because earth was fl at? An ocean lithium isotope view of mountain building, continental weathering, carbon dioxide, and earth's Cenozoic climate [J]. Oceanography, 27(1): 36 – 49.
Godfrey L V, Chan L H, Alonso R N, et al. 2013. The role of climate in the accumulation of lithium-rich brine in the central Andes [J]. Applied Geochemistry, 38: 92 – 102.
Helvaci C, Mordogan H, Colak M, et al. 2004. Presence and distribution of lithium in borate deposits and some recent lake waters of west-central Turkey [J]. International Geology Review, 46(2): 177 – 190.
Henchiri S, Clergue C, Dellinger M, et al. 2014. The infl uence of hydrothermal activity on the Li isotopic signature ofrivers draining volcanic areas [J]. Procedia Earth and Planetary Science, 10: 223 – 230.
Hoefs J, Sywall M. 1997. Lithium isotope composition of Quaternary and Tertiary biogene carbonates and a global lithium isotope balance [J]. Geochimica et Cosmochimica Acta, 61(13): 2679 – 2690.
Huang K F, You C F, Liu Y H, et al. 2010. Low-memory, small sample size, accurate and high-precision determinations of lithium isotopic ratios in natural materials by MC-ICPMS [J]. Journal of Analytical Atomic Spectrometry, 25(7): 1019 – 1024.
Huh Y, Chan L H, Chadwick O. 2002. Lithium isotopes as a probe of weathering processes: Hawaiian soil climosequence [J]. Geochimica et Cosmochimica Acta, 66(15A): A346.
Huh Y, Chan L H, Edmond J M. 2001. Lithium isotopes as a probe of weathering processes: Orinoco River [J]. Earth and Planetary Science Letters, 194(1/2): 189 – 199.
Huh Y, Chan L H, Zhang L, et al. 1998. Lithium and its isotopes in major world rivers: Implications for weathering and the oceanic budget [J]. Geochimica et Cosmochimica Acta, 62(12): 2039 – 2051.
Jia Y F, Huang C C, Pang J L, et al. 2007. Variation of the lithium-barium ratio in the Holocene loess-paleosol profiles in the south of the Chinese Loess Plateau: Implications for pedogenic weathering intensity [J]. Soil Science, 172(11): 925 – 940.
Kisakürek B, James R H, Harris N B W, 2004a. Utility of lithium isotopes as tracers of continental weathering processes [J]. Geochimica et Cosmochimica Acta, 68(11): A420.
Kisakürek B, James R H, Harris N B W. 2005. Li and δ7Li in Himalayan rivers: Proxies for silicate weathering? [J]. Earth and Planetary Science Letters, 237(3 / 4): 387 – 401. Kisakürek B, Widdowson M, James R H. 2004b. Behaviour of Li isotopes during continental weathering: the Bidar laterite profile, India [J]. Chemical Geology, 212(1/2): 27 – 44.
Kump L R, Brantley S L, Arthur M A. 2000. Chemical weathering, atmospheric CO2, and climate [J]. Annual Review of Earth and Planetary Sciences, 28: 611 – 667.
Lemarchand E, Chabaux F, Vigier N, et al. 2010. Lithium isotope systematics in a forested granitic catchment (Strengbach, Vosges Mountains, France) [J]. Geochimica et Cosmochimica Acta, 74(16): 4612 – 4628.
Li G J, West A J. 2014. Evolution of Cenozoic seawater lithium isotopes: Coupling of global denudation regime and shifting seawater sinks [J]. Earth and Planetary Science Letters, 401: 284 – 293.
Lin J, Liu Y, Hu Z, et al. 2016. Accurate determination of lithium isotope ratios by MC-ICP-MS without strict matrixmatching by using a novel washing method [J]. Journal of Analytical Atomic Spectrometry, 31(2): 390 – 397.
Liu C Q, Zhao Z Q, Wang Q L, et al. 2011. Isotope compositions of dissolved lithium in the rivers Jinshajiang, Lancangjiang, and Nujiang: Implications for weathering in Qinghai-Tibet Plateau [J]. Applied Geochemistry, 26: S357 – S359.
Liu M C, McKeegan K D, Goswami J N, et al. 2009. Isotopic records in CM hibonites: Implications for timescales of mixing of isotope reservoirs in the solar nebula [J]. Geochimica et Cosmochimica Acta, 73(17): 5051 – 5079.
Liu X M, Rudnick R L, McDonough W F, et al. 2013. Influence of chemical weathering on the composition of the continental crust: Insights from Li and Nd isotopes in bauxite profi les developed on Columbia river basalts [J]. Geochimica et Cosmochimica Acta, 115: 73 – 91.
Liu X M, Wanner C, Rudnick R L, et al. 2015. Processes controlling δ7Li in rivers illuminated by study of streams and groundwaters draining basalts [J]. Earth and Planetary Science Letters, 409: 212 – 224.
Liu X M, Rudnick R L. 2011. Constraints on continental crustal mass loss via chemical weathering using lithium and its isotopes [J]. Proceedings of the National Academy of Sciences of the United States of America, 108(52): 20873 – 20880.
Magna T, Wiechert U, Halliday A N. 2002. Lithium isotopes and crust-mantle interaction [J]. Geochimica et Cosmochimica Acta, 66(15A): A474.
Marschall H R, Pogge von Strandmann P A E, Seitz H M, et al. 2007a. Heavy lithium in subducted slabs [J]. Geochimica et Cosmochimica Acta, 71(15): A625.
Marschall H R, Pogge von Strandmann P A E, Seitz H M, et al. 2007b. The lithium isotopic composition of orogeniceclogites and deep subducted slabs [J]. Earth and Planetary Science Letters, 262(3 / 4): 563 – 580.
Mason B, Moore C B. 1982. Principles of geochemistry (fourth edition) [M]. New York: John Wiley & Sons: 1 – 344.
McLennan J C, Ainslie D S. 1922. On the structure of the line λ= 6708 ?. of the isotopes of lithium [J]. Proceedings of the Royal Society of London Series A, 101(711): 342 – 348. Meier A L. 1982. Determination of lithium isotopes at natural abundance levels by atomic-absorption spectrometry [J]. Analytical Chemistry, 54(13): 2158 – 2161.
Millot R, Petelet-Giraud E, Guerrot C, et al. 2010a. Multiisotopic composition (δ7Li-δ11B-δD-δ18O) of rainwaters in France: Origin and spatio-temporal characterization [J]. Applied Geochemistry, 25(10): 1510 – 1524.
Millot R, Scaillet B, Sanjuan B. 2010b. Lithium isotopes in island arc geothermal systems: Guadeloupe, Martinique (French West Indies) and experimental approach [J]. Geochimica et Cosmochimica Acta, 74(6): 1852 – 1871.
Millot R, Vigier N, Gaillardet J. 2010c. Behaviour of lithium and its isotopes during weathering in the Mackenzie Basin, Canada [J]. Geochimica et Cosmochimica Acta, 74(14): 3897 – 3912.
Misra S, Froelich F. 2012. Lithium isotope history of Cenozoic seawater: Changes in silicate weathering and reverse weathering [J]. Science, 335(6070): 818 – 823.
Négrel P, Millot R, Brenot A, et al. 2010. Lithium isotopes as tracers of groundwater circulation in a peat land [J]. Chemical Geology, 276(1/2): 119 – 127.
Ollier C D. 1988. Deep weathering, groundwater and climate [J]. Geografiska Annaler Series A, Physical Geography, 70(4): 285 – 290.
Orberger B, Rojas W, Millot R, et al. 2015. Stable isotopes (Li, O, H) combined with brine chemistry: powerful tracers for Li origins in salar deposits from the Puna region, Argentina [J]. Procedia Earth and Planetary Science, 13: 307 – 311.
Pistiner J S, Henderson G M. 2003. Lithium-isotope fractionation during continental weathering processes [J]. Earth and Planetary Science Letters, 214(1/2): 327 – 339.
Pogge von Strandmann P A E, Burton K W, James R H, et al. 2010. Assessing the role of climate on uranium and lithium isotope behaviour in rivers draining a basaltic terrain [J]. Chemical Geology, 270: 227 – 239.
Pogge von Strandmann P A E, Burton K W, Opfergelt S, et al. 2016. The effect of hydrothermal spring weathering processes and primary productivity on lithium isotopes: Lake Myvatn, Iceland [J]. Chemical Geology, 445: 4 – 13. Pogge von Strandmann P A E, Frings P J, Murphy M J. 2017. Lithium isotope behaviour during weathering in the Ganges Alluvial Plain [J]. Geochimica et Cosmochimica Acta, 198: 17 – 31.
Pogge von Strandmann P A E, Henderson G M. 2015. The Li isotope response to mountain uplift [J]. Geology, 43(1): 67 – 70.
Pogge von Strandmann P A E, Reynolds B C, Porcelli D, et al. 2006. Assessing continental weathering rates and actinide transport in the Great Artesian Basin [J]. Geochimica et Cosmochimica Acta, 70(18): A497.
Qi H P, Coplen T B, Wang Q Z, et al. 1997. Unnatural isotopic composition of lithium reagents [J]. Analytical Chemistry, 69(19): 4076 – 4078.
Qiu L, Rudnick R L, McDonough W F, et al. 2009. Li and δ7Li in mudrocks from the British Caledonides: Metamorphism and source influences [J]. Geochimica et Cosmochimica Acta, 73(24): 7325 – 7340.
Rudnick R L, Tomascak P B, Njo H B, et al. 2004. Extreme lithium isotopic fractionation during continental weathering revealed in saprolites from South Carolina [J]. Chemical Geology, 212(1/2): 45 – 57.
Ryu J S, Vigier N, Lee S W, et al. 2014. Variation of lithium isotope geochemistry during basalt weathering and secondary mineral transformations in Hawaii [J]. Geochimica et Cosmochimica Acta, 145: 103 – 115.
Sauzéat L, Rudnick R L, Chauvel C, et al. 2015. New perspectives on the Li isotopic composition of the upper continental crust and its weathering signature [J]. Earth and Planetary Science Letters, 428: 181 – 192.
Seitz H M, Brey G P, Lahaye Y, et al. 2004. Lithium isotopic signatures of peridotite xenoliths and isotopic fractionation at high temperature between olivine and pyroxenes [J]. Chemical Geology, 212(1 /2): 163 – 177.
Seitz H M, Brey G P, Zipfel J, et al. 2007. Lithium isotope composition of ordinary and carbonaceous chondrites,and differentiated planetary bodies: Bulk solar system and solar reservoirs [J]. Earth and Planetary Science Letters, 260(3/4): 582 – 596.
Su B X, Zhang H F, Deloule E, et al. 2014. Lithium elemental and isotopic variations in rock-melt interaction [J]. Chemie der Erde-Geochemistry, 74(4): 705 – 713.
Su B X, Gu X Y, Deloule E, et al. 2015. Potential orthopyroxene, clinopyroxene and olivine reference materials for in situ lithium isotope determination [J]. Geostandards and Geoanalytical Research, 39(3): 357 – 369.
Tatenuma K, Kato E, Nanjo Y, et al. 2001. Lithium isotope separation method for nuclear fusion reactors, involves applying electric field to lithium ion conductor and separating lithium isotope based on difference between ion conductivities of isotopes [P]. Japan Atomic Energy Research Institute (JAAT-C), EP1186337-A2.
Taylor T I, Urey H C. 1937. On the electrolytic and chemical exchange methods for the separation of the lithium isotopes [J]. Journal of Chemical Physics, 5(7): 597 – 598. Taylor T I, Urey H C. 1938. Fractionation of the lithium and potassium isotopes by chemical exchange with zeolites [J]. Journal of Chemical Physics, 6(8): 429 – 438.
Tian S H, Hou Z Q, Su A N, et al. 2015. The anomalous lithium isotopic signature of Himalayan collisional zone carbonatites in western Sichuan, SW China: Enriched mantle source and petrogenesis [J]. Geochimica et Cosmochimica Acta, 159: 42 – 60.
Tomascak P B. 2004. Developments in the understanding and application of lithium isotopes in the Earth and planetary sciences [J]. Reviews in Mineralogy & Geochemistry, 55: 153 – 195.
Tomascak P B, Ryan J G, Defant M J. 2000. Lithium isotope evidence for light element decoupling in the Panama subarc mantle [J]. Geology, 28(6): 507 – 510.
Tsai P H, You C F, Huang K F, et al. 2014. Lithium distribution and isotopic fractionation during chemical weathering and soil formation in a loess profi le [J]. Journal of Asian Earth Sciences, 87: 1 – 10.
Ushikubo T, Kita N T, Cavosie A J, et al. 2008. Lithium in Jack Hills zircons: Evidence for extensive weathering of Earth’s earliest crust [J]. Earth and Planetary Science Letters, 272 (3 / 4): 666 – 676.
Van Hoecke K, Belza J, Croymans T, et al. 2015. Singlestep chromatographic isolation of lithium from wholerock carbonate and clay for isotopic analysis with multicollector ICP-mass spectrometry [J]. Journal of Analytical Atomic Spectrometry, 30(12): 2533 – 2540.
Verney-Carron A, Vigier N, Millot R. 2011. Experimental determination of the role of diffusion on Li isotope fractionation during basaltic glass weathering [J]. Geochimica et Cosmochimica Acta, 75(12): 3452 – 3468.
Verney-Carron A, Vigier N, Millot R, et al. 2015. Lithium isotopes in hydrothermally altered basalts from Hengill (SW Iceland) [J]. Earth and Planetary Science Letters, 411: 62 – 71.
Vigier N, Decarreau A, Millot R, et al. 2008. Quantifying Li isotope fractionation during smectite formation and implications for the Li cycle [J]. Geochimica et Cosmochimica Acta, 72(3): 780 – 792.
Vigier N, Gislason S R, Burton K W, et al. 2009. The relationship between riverine lithium isotope composition and silicate weathering rates in Iceland [J]. Earth and Planetary Science Letters, 287(3/4): 434 – 441.
Vigier N, Goddéris Y. 2015. A new approach for modeling Cenozoic oceanic lithium isotope paleo-variations: The key role of climate [J]. Climate of the Past, 11(4): 635 – 645.
Vigier N, Rollion-Bard C, Levenson Y, et al. 2015. Lithium isotopes in foraminifera shells as a novel proxy for the ocean dissolved inorganic carbon (DIC) [J]. Comptes Rendus Geoscience, 347(1): 43 – 51.
Vils F, Pelletier L, Kalt A, et al. 2008. The Lithium, Boron and Beryllium content of serpentinized peridotites from ODP Leg 209 (Sites 1272A and 1274A): Implications for lithium and boron budgets of oceanic lithosphere [J]. Geochimica et Cosmochimica Acta, 72(22): 5475 – 5504.
Wang Q L, Chetelat B, Zhao Z Q, et al. 2015. Behavior of lithium isotopes in the Changjiang River system: Sources effects and response to weathering and erosion [J]. Geochimica et Cosmochimica Acta, 151: 117 – 132.
Wanner C, Sonnenthal E L, Liu X M. 2014. Seawater δ7Li: A direct proxy for global CO2consumption by continental silicate weathering? [J]. Chemical Geology, 381:154 – 167.
Wedepohl K H. 1995. The composition of the continental crust [J]. Geochimica et Cosmochimica Acta, 59(7): 1217 – 1232.
Wimpenny J, Colla C A, Yu P, et al. 2015. Lithium isotope fractionation during uptake by gibbsite [J]. Geochimica et Cosmochimica Acta, 168: 133 – 150.
Wimpenny J, Gíslason S R, James R H, et al. 2010a. The behaviour of Li and Mg isotopes during primary phase dissolution and secondary mineral formation in basalt [J]. Geochimica et Cosmochimica Acta, 74(18): 5259 – 5279.
Wimpenny J, James R H, Burton K W, et al. 2010b. Glacial effects on weathering processes: New insights from the elemental and lithium isotopic composition of West Greenland rivers [J]. Earth and Planetary Science Letters, 290(3/4): 427 – 437.
Wunder B, Meixner A, Romer R L, et al. 2005. Temperaturedependent isotopic fractionation of lithium between clinopyroxene and high-pressure hydrous fluids [J]. Contributions to Mineralogy and Petrology, 151(1): 112 – 120.
Yoon J. 2009. Lithium as a silicate weathering proxy: Problems and perspectives [J]. Aquatic Geochemistry, 16(1): 189 – 206.
You C F, Chan L H. 1996. Precise determination of lithium isotopic composition in low concentration natural samples [J]. Geochimica et Cosmochimica Acta, 60(5): 909 – 915.
Yu J Q, Gao C L, Cheng A Y, et al. 2013. Geomorphic, hydroclimatic and hydrothermal controls on the formation of lithium brine deposits in the Qaidam Basin, northern Tibetan Plateau, China [J]. Ore Geology Reviews, 50: 171 – 183.
Zack T, Tomascak P B, Rudnick R L, et al. 2003. Extremely light Li in orogenic eclogites: The role of isotope fractionation during dehydration in subducted oceanic crust [J]. Earth and Planetary Science Letters, 208(3/4): 279 – 290.
Zheng J P, Lee C T A, Lu J G, et al. 2015. Refertilizationdriven destabilization of subcontinental mantle and the importance of initial lithospheric thickness for the fate of continents [J]. Earth and Planetary Science Letters, 409: 225 – 231.
Using lithium isotopes traces continental weathering: Progresses and challenges
GOU Longfei1,2, JIN Zhangdong1,3, HE Maoyong1
1. State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi’an 710061, China
2. University of Chinese Academy of Sciences, Beijing 100049, China
3. Institute of Global Environmental Change, Xi’an Jiaotong University, Xi’an 710049, China
Background, aim, and scope Since weathering processes constrain the cycle of elements and their transportation from the continents to the lake/ocean reservoirs, shape the topography of continents, and regulate global carbon cycle and therefore climate changes by consuming atmospheric carbon dioxide over geological time-scales, how to effectively trace continental weathering processes is one of key scientifi c topics of supergene geochemistry. Being one of the most promising silicate-weathering tracers, lithium (Li) isotopes have long been exploded to trace continental weathering and thus to reconstruct secular weathering scenarios. To acquire effective research methodology, review of establishing Li isotopes to be a silicate-weathering tracer is thus essential. Materials and methods This paper reviewed current major developments, problems and challenges of using Li isotopes to trace weathering with respects to its major reservoirs, weathered crust, riverine systems,leaching experiments, and modeling simulation which have progressively developed in the past decades. Results Owing to large mass difference between6Li and7Li, one valence, and no effect of redox conditions and living beings, if not all, at least at catchment scale, Li isotopes own potential to trace continental weathering processes. However, its sources and controlling factors of Li fractionation during weathering processes are controversial. Discussion Changes in Li isotopic compositions from weathered crust to fresh bedrocks are complex and even reverse, whereas controlling factors for Li isotopic variations in riverine system are various and controversial, in particular for large river systems. Leaching experiments and modeling simulation for Li isotopic compositions are at an early stage. More attentions are focused on seasonal variation in riverine Li isotopic compositions at small, monolithological catchment. Conclusions We pointed out that Li isotope system does have its potential and uniqueness in tracing continental weathering, especially for silicate weathering. Recommendations and perspectives In order to reduce the uncertainty of tracing silicate weathering processes using Li isotopes, elaborating leaching experiments of rocks/minerals, marrying large and small catchments, enhancing computation simulation, and coupling of multi-isotopes are suggested to be needed in future.
Li isotopes; continental weathering; geochemical tracing; controlling factors; review
JIN Zhangdong, E-mail: zhdjin@ieecas.cn
2016-11-15;錄用日期:2017-02-14
Received Date: 2016-11-15; Accepted Date: 2017-02-14
國家自然科學(xué)基金項目(41225015);國家重點基礎(chǔ)研究發(fā)展計劃項目(2013CB956402)
Foundation Item: National Natural Science Foundation of China (41225015); National Basic Research Program of China (2013CB956402)
金章東,E-mail: zhdjin@ieecas.cn
茍龍飛,金章東,賀茂勇. 2017. 鋰同位素示蹤大陸風(fēng)化:進(jìn)展與挑戰(zhàn)[J]. 地球環(huán)境學(xué)報, 8(2): 89 – 102.
: Gou L F, Jin Z D, He M Y. 2017. Using lithium isotopes traces continental weathering: Progresses and challenges [J]. Journal of Earth Environment, 8(2): 89 – 102.