段沖+鄭瑞
【摘要】 瘙癢-搔抓反應(yīng)在日常生活上是一種保護性機制,但是多種皮膚性疾病,如特應(yīng)性皮炎、濕疹、蕁麻疹等常伴有慢性持續(xù)性瘙癢,明顯損害了生活質(zhì)量,已成為一個普遍且昂貴的醫(yī)療和社會經(jīng)濟問題。盡管瘙癢有重要的臨床意義,但它的具體機制尚未明了。在過去的幾十年中,在揭示瘙癢的具體機制上已經(jīng)取得了實質(zhì)性進展。本文主要是回顧了在外周致癢介質(zhì)及相關(guān)受體的相互作用、調(diào)節(jié)癢感覺的信號通路,以及慢性應(yīng)激在皮膚慢性瘙癢的發(fā)生和加重中的相關(guān)研究進展,希望能促進新的抗瘙癢治療方法的發(fā)展。
【關(guān)鍵詞】 瘙癢; 致癢介質(zhì); 瘙癢信號通路的敏感化; 慢性應(yīng)激
Research Progress on the Mechanism of Cutaneous Pruritus/DUAN Chong,ZHENG Rui.//Medical Innovation of China,2017,14(11):136-140
【Abstract】 Itch-scratch reaction is a protective mechanism in daily life,but many skin diseases,such as atopic dermatitis,eczema,urticaria,often accompanied by chronic persistent itching,significantly impair quality of life,has become a popular and expensive medical and social problems.Although there are important clinical significance about itching,but its mechanism is still unclear.In the past few decades,substantial progress had been made in the specific mechanism of itch.This article is to review the interaction in peripheral itch mediators and related receptors,signaling pathways regulating itch,and chronic stress in the related research and the occurrence of chronic skin itching aggravated in progress,which hope promote the development of anti-itch new treatments.
【Key words】 Pruritus; Itch mediators; Sensitization of the itch signaling pathway; Chronic stress
First-authors address:Shanxi Medical University,Taiyuan 030001,China
doi:10.3969/j.issn.1674-4985.2017.11.037
瘙癢是一種引起皮膚抓撓欲望的不愉快感覺,可以分為急性和慢性兩種形式。組胺通過感覺神經(jīng)末梢上的組胺受體引發(fā)瘙癢被人們所熟知,且目前治療瘙癢一線用藥是抗組胺藥物,但大多數(shù)炎癥性皮膚病的瘙癢單一抗組胺治療不能達到理想效果,所以近些年來產(chǎn)生了對除組胺依賴性途徑以外其他的非組胺依賴性瘙癢途徑的研究,其中許多致癢物質(zhì),如氯喹、白三烯B4、內(nèi)皮素、白介素31等,都可以與相應(yīng)受體結(jié)合介導(dǎo)非組胺依賴性瘙癢。本文就外周瘙癢介質(zhì)及其受體、瘙癢信號通路敏感化和慢性應(yīng)激等方面進展的研究,希望為瘙癢治療提供更多的和更有效的治療方法提供依據(jù)。
1 外周致癢介質(zhì)及相關(guān)受體
引發(fā)瘙癢最重要因素是皮膚常駐細胞,如表皮角質(zhì)形成細胞、肥大細胞、外周感覺神經(jīng)纖維及T淋巴細胞等,它們可以釋放多種介質(zhì),這些介質(zhì)可以通過結(jié)合瘙癢受體直接引起癢或通過釋放某些產(chǎn)物激活其他細胞釋放致癢介質(zhì)間接引起瘙癢。
1.1 神經(jīng)生長因子和神經(jīng)營養(yǎng)因子-4 神經(jīng)生長因子和神經(jīng)營養(yǎng)因子-4屬于神經(jīng)營養(yǎng)因子。特應(yīng)性皮炎及銀屑病患者皮損組織中神經(jīng)生長因子水平明顯升高,并與病情嚴(yán)重程度相關(guān)(但銀屑病的病情與瘙癢程度并非正相關(guān))。神經(jīng)生長因子激活p75及TrkA受體可上調(diào)感覺神經(jīng)肽,如P物質(zhì)和降鈣素基因相關(guān)肽的表達,可能致敏瞬時受體電位香草酸1通道(transient receptor potential vanilloid 1,TRPV1)和引起肥大細胞脫顆粒,從而導(dǎo)致瘙癢發(fā)生[1]。
1.2 內(nèi)皮素1 內(nèi)皮素1(Endothelin 1,ET-1)由皮膚中的肥大細胞、內(nèi)皮細胞和角質(zhì)形成細胞產(chǎn)生,是一種有效的致癢介質(zhì),在低濃度(10~100 pmol/site)就可以引發(fā)瘙癢,表明內(nèi)皮素1是內(nèi)生性的致癢介質(zhì)。內(nèi)皮素1是通過ETA受體的介導(dǎo)而激發(fā)瘙癢,不是通過TRPV1通道或瞬時受體電位錨蛋白1通道(transient receptor potential ankyrin 1,TRPA1)引發(fā)瘙癢。近期研究發(fā)現(xiàn)瞬時受體電位錨蛋白3通道(transient receptor potential ankyrin 3,TRPA3)可能參與了ET-1誘導(dǎo)性瘙癢的抑制[2-5]。
1.3 內(nèi)源性大麻素 內(nèi)源性大麻素(Endocannabinoids)屬于花生四烯酸衍生物,大麻素(Cannabinoid,CB)受體分為CB1和CB2。在動物試驗中發(fā)現(xiàn),CB2受體激動后明顯減少組胺誘發(fā)的搔抓行為[6]。
1.4 白三烯B4 白三烯B4(Leukotriene B4,LTB4)白三烯B4是被P物質(zhì)和神經(jīng)鞘氨醇磷酸膽堿(sphingosylphosphorylcholine,SPC)激發(fā)的下游致癢介質(zhì)[7],白三烯B4被發(fā)現(xiàn)在特應(yīng)性皮炎鼠模型的皮膚中增加[8]。向小鼠皮內(nèi)注射白三烯B4可通過白三烯B4受體1(BLT1)受體的介導(dǎo)引發(fā)瘙癢[9-10]。白三烯B4已經(jīng)被識別為一種潛在的瘙癢誘導(dǎo)性物質(zhì)。
1.5 血栓素A2 血栓素A2(Thromboxane A2,TXA2)是氧化酶代謝產(chǎn)物,由角質(zhì)形成細胞合成。向小鼠皮內(nèi)注射血栓素A2類似物,可以通過在神經(jīng)纖維和角質(zhì)形成細胞中表達的血栓素受體引起瘙癢[11]。
1.6 組胺 組胺是最重要的致癢介質(zhì)之一。組胺是在MC活化后脫顆粒釋放到周圍區(qū)域,通過神經(jīng)纖維上H1受體誘發(fā)瘙癢。除了H1受體,組胺也能通過H3和H4受體調(diào)節(jié)瘙癢。最近的研究發(fā)現(xiàn)TRPV1通道能在組胺H4受體的下游信號通路中誘導(dǎo)背根神經(jīng)節(jié)神經(jīng)元應(yīng)答,表明TRPV1通道可能參與了組胺H4受體介導(dǎo)的瘙癢發(fā)生[12]。小鼠模型表明H3受體似乎參與瘙癢抑制[13]。
1.7 前列腺素 前列腺素屬類花生酸類物質(zhì),前列腺素D2在結(jié)膜瘙癢實驗性模型中被證實為高致癢物質(zhì)。高濃度的前列腺素E2也能激發(fā)瘙癢[14],Belghiti等[15]在膽汁淤積性瘙癢的小鼠模型中發(fā)現(xiàn)前列腺素E2表達明顯升高,導(dǎo)致了TRPV1通道的敏感化并隨后增強了瘙癢和疼痛。表明前列腺素E2通過作用于TRPV1通道增強了瘙癢。
1.8 蛋白酶 蛋白酶是一種引起非組胺依賴性瘙癢的重要物質(zhì)。主要通過蛋白酶激活受體(Protease-activated receptors,PARs)引發(fā)瘙癢,蛋白酶激活受體是通過蛋白酶誘導(dǎo)的作為栓系配體的細胞外結(jié)構(gòu)域的部分裂解來激活,已經(jīng)在傳入神經(jīng)上被識別[16],主要是PAR2和PAR4兩種受體。PAR2是由肥大細胞的胰蛋白酶及其他蛋白酶,如胰凝乳蛋白酶和胰激肽釋放酶所激活,直接導(dǎo)致瘙癢。栓系配體(Tethered ligands),如SLIGRL(PAR2激動劑)和AYPGKF(PAR4激動劑)已知可以在小鼠中引發(fā)瘙癢,卻不在大鼠中引發(fā)瘙癢[17]。最近發(fā)現(xiàn)SLIGRL引發(fā)瘙癢更多是通過Mas相關(guān)G蛋白偶聯(lián)受體11(MrgprC11),而不是PAR2[18]。Reddy等[19]研究表明了組織蛋白酶S,可以通過裂解PAR2和PAR4,并激活MrgprC11引發(fā)瘙癢。最近研究表明在小鼠中,被AYPGKF-NH2(PAR4激活劑)激活的PAR4可以通過TRPV1/TRPA1依賴性機制引發(fā)瘙癢[20]。
1.9 5-羥色胺 5-羥色胺(5-hydroxy tryptamine,5-HT)5-羥色胺在癢感覺上的影響表現(xiàn)為“種屬”依賴性。向大鼠皮內(nèi)注射5-羥色胺僅引起搔抓行為,但在人類和小鼠會同時引起瘙癢和疼痛感受[21]。主要通過與5-羥色胺2受體結(jié)合活化初級感覺神經(jīng)元內(nèi)磷脂酶C,尤其是磷脂酶Cβ3,通過有絲分裂原激活蛋白激酶和蛋白激酶C的激活產(chǎn)生瘙癢[22]。
1.10 神經(jīng)肽 瘙癢性疾病中最相關(guān)的肥大細胞活化劑是神經(jīng)肽,如降鈣素基因相關(guān)肽、P物質(zhì)和內(nèi)皮素-1等。神經(jīng)肽來源于皮膚感覺神經(jīng),可以通過激活TRPV1通道來分泌。(1)降鈣素基因相關(guān)肽(Calcitonin-gene related peptide,CGRP)由肽能軀體感覺神經(jīng)元分泌,目前多認(rèn)為其在瘙癢信號傳遞中起調(diào)節(jié)作用。McCoy等[23]將小鼠CGRPα+感覺神經(jīng)元消融后,觀察到組胺及氯喹誘導(dǎo)的搔抓行為較消融前減少(P<0.0005),提示其在瘙癢信號傳遞過程中起一定作用,但具體機制尚未明了。(2)P物質(zhì)(Substance P,SP)是廣泛分布于神經(jīng)纖維內(nèi)的一種神經(jīng)肽。P物質(zhì)可以在人類皮膚產(chǎn)生瘙癢,也能在小鼠模型產(chǎn)生搔抓行為。P物質(zhì)能與肥大細胞膜上的NK-1受體結(jié)合,引起肥大細胞脫顆粒釋放組胺及從而引起瘙癢。另一方面,肥大細胞激活后分泌炎癥介質(zhì)進一步加強P物質(zhì)的分泌,使上述肥大細胞更加活躍[24]。P物質(zhì)在小鼠可以通過直接作用于初級感覺神經(jīng)元及角質(zhì)形成細胞,引起一氧化氮和白三烯B4的釋放引發(fā)瘙癢[25-26]。
1.11 Mrg受體 Mrg受體(Mas-related G-protein-coupled receptors,Mrgprs)包含50多個成員,其中 MrgprAs、MrgprB4-5、MrgprC11和MrgprD局限于小鼠的小直徑的背根神經(jīng)節(jié)神經(jīng)元上,并參與了非組胺依賴性瘙癢[27]。氯喹、牛腎上腺髓質(zhì)肽8-22(bovine adrenal medulla peptide 8-22,BAM8-22)及β丙氨酸分別通過 MrgprA3、MrgprC11和MrgprD在小鼠引發(fā)了癢相關(guān)的搔抓行為,而且在人類引發(fā)瘙癢[28-29]。腦啡肽原A(proenkephalin A)是BAM8–22前體,表達于成纖維細胞和角質(zhì)形成細胞,發(fā)現(xiàn)在銀屑病中是表達增加的[30]。
1.12 白介素31 白介素31(Interleukin-31,IL-31)已經(jīng)表明在癢感誘導(dǎo)中起重要作用,是新發(fā)現(xiàn)的白介素6家族成員,IL-31主要由Th2淋巴細胞分泌,并通過IL-31受體α和制瘤素M受體直接激活酪氨酸激酶的JAK家族,導(dǎo)致轉(zhuǎn)錄因子STAT活化,以及磷脂酰肌醇3-激酶和有絲分裂原激活蛋白激酶的信號轉(zhuǎn)導(dǎo)起作用。而且在兒童特應(yīng)性皮炎的患者中,IL-31水平與疾病嚴(yán)重程度呈正相關(guān)。但是IL-31在引發(fā)瘙癢的確切作用仍不明確。IL-31參與了炎癥性肺病和炎癥性腸病[31-32],表明它在炎癥免疫反應(yīng)中的一般作用,可能間接引發(fā)瘙癢。
2 瘙癢信號通路的敏感化
中樞神經(jīng)系統(tǒng)和外周神經(jīng)系統(tǒng)的敏感化在慢性疼痛的發(fā)生中起了重要作用,慢性瘙癢平行于慢性疼痛[33],相同的過程可能會導(dǎo)致慢性瘙癢的發(fā)生。慢性瘙癢與自發(fā)性瘙癢、對正常癢刺激的增強的瘙癢反應(yīng)和非傷害性觸覺刺激引發(fā)的瘙癢反應(yīng)相關(guān),以下是可能導(dǎo)致慢性瘙癢的機制。
2.1 外周神經(jīng)敏感化 瘙癢神經(jīng)通路的外周神經(jīng)系統(tǒng)敏感化歸因于初級癢感覺神經(jīng)元的興奮性增高。很多內(nèi)生性介質(zhì)可以使初級感覺神經(jīng)元敏感化[34]。神經(jīng)生長因子是外周神經(jīng)系統(tǒng)敏感化的潛在的炎癥介質(zhì),在干性皮膚中升高,可能導(dǎo)致瘙癢受體(pruriceptors)的外周神經(jīng)敏感化[35]。向人類皮內(nèi)注射神經(jīng)生長因子提高了被cowhage誘發(fā)的瘙癢,而非組胺誘導(dǎo)的瘙癢[36]。Akiyama等[37]研究表明了SLIGRL提高了背根神經(jīng)節(jié)神經(jīng)元對隨后應(yīng)用的氯喹和BAM8-22的反應(yīng)性。說明PAR2在外周神經(jīng)敏感化中可能起作用。
2.2 中樞神經(jīng)敏感化 中樞神經(jīng)敏感化是通過調(diào)節(jié)中樞神經(jīng)系統(tǒng)的癢感受分子(itch-sensing molecules)的表達水平來實現(xiàn)的。中樞神經(jīng)系統(tǒng)的癢感受神經(jīng)元的超興奮性增強了對瘙癢感受刺激的反應(yīng)。由于疼痛和瘙癢的感覺極其相似,敏感化的機制可能相似。如Toll樣受體3(Toll-like receptor3,TLR3)在痛覺中樞敏感化中被要求的,Liu等[38]研究表明TLR3敲除的實驗性干性皮膚小鼠相比較野生型小鼠的搔抓行為顯著下降,表明TLR3可能在脊髓瘙癢傳導(dǎo)神經(jīng)元的中樞神經(jīng)敏感化中起作用。中樞神經(jīng)敏感化也可以發(fā)生在脊髓背角Bhlhb5+抑制性中間神經(jīng)元的去抑制的過程中[39]。非傷害性觸覺刺激引發(fā)的瘙癢反應(yīng)是癢神經(jīng)通路敏感化的典型例子,它可能涉及外周和中樞神經(jīng)敏感化[40]。非傷害性觸覺刺激引發(fā)的瘙癢反應(yīng)被認(rèn)為是通過傳入敏感化的瘙信號脊髓神經(jīng)元的機械性感受器來介導(dǎo)的,但仍未被證實。
3 慢性應(yīng)激與瘙癢
在慢性應(yīng)激的情況下,異常的迷走神經(jīng)阻滯導(dǎo)致了下丘腦-垂體-腎上腺軸的長期激活,從而引起促腎上腺皮質(zhì)激素釋放激素(corticotropin-releasing hormone,CRH)增加。CRH可以誘導(dǎo)許多外周致癢介質(zhì)釋放,它們大多數(shù)可以通過直接激活神經(jīng)末梢上的瘙癢受體或者通過降低膜上的傳導(dǎo)閾值及進一步激活肥大細胞釋放致癢介質(zhì)來調(diào)節(jié)神經(jīng)纖維敏感性。慢性應(yīng)激中副交感神經(jīng)功能失調(diào)可以導(dǎo)致交感神經(jīng)系持續(xù)性激活,可以引起神經(jīng)生長因子的釋放,神經(jīng)生長因子可以通過促進參與瘙癢發(fā)病的受體的表達和敏感化,促進P物質(zhì)的上調(diào)最終導(dǎo)致瘙癢閾值下降[41]。慢性應(yīng)激能導(dǎo)致副交感神經(jīng)系統(tǒng)功能失調(diào),從而引起延腦頭端腹內(nèi)側(cè)(rostral ventromedial medulla,RVM)的去抑制,最終導(dǎo)致下行瘙癢調(diào)節(jié)系統(tǒng)的易化,誘發(fā)瘙癢。Kim等[42]通過功能磁共振成像技術(shù)發(fā)現(xiàn)海馬的活化參與了應(yīng)激相關(guān)性瘙癢的發(fā)生,但具體機制尚不明確。
皮膚性瘙癢可以由外周致癢介質(zhì)及相關(guān)受體的相互作用、瘙癢信號通路的敏感化來介導(dǎo),且在慢性應(yīng)激的情況下,可以通過交感和副交感神經(jīng)的異常調(diào)節(jié)來影響?zhàn)W的發(fā)生和加重。目前主要包括組胺依賴性瘙癢途徑和非組胺依賴性瘙癢途徑。很多致癢機制目前尚不明了,有待進一步研究。瘙癢機制及通路的進一步研究有助于我們更好地治療瘙癢,改善瘙癢性皮膚疾病患者的生活質(zhì)量。
參考文獻
[1] Kremer A E,F(xiàn)eramisco J,Reeh P W,et al.Receptors,cells and circuits involved in pruritus of systemic disorders[J].Biochimical Biophysica Acta(BBA) Molecilar Basis of Disease,2014,1842(7):869-892.
[2] McQueen D S,Noble M A H,Bond S M.Endothelin-1 activates ETA receptors to cause reflex scratching in BALB/c mice[J].Brtish Jornal of Pharmacology,2007,151(2):278-284.
[3] Gomes L,Hara D,Rae G.Endothelin-1 induces itch and pain in mouse cheek model[J].Life Sciences,2012,91(13-14):628-633.
[4] Andoh T,Tetsuro Y,Jung-Bum L,et al.Cathepsin E induces itch-related response through the production of endothelin-1 in mice[J].European Journal of Pharmacology,2012,686(1-3):16-21.
[5] Jiexian L,Qing J,Wenjin J.Role of transient receptor potential ankyrin subfamily member 1 in pruritus induced by endothelin-1[J].
Neurosci Lett,2011,492(3):175-178.
[6] lbrahim M M,Porreea F,Lai J,et al.CB2 cannabinoid receptor activation produces antinociception by stimulating peripheral release of endogenous opioids[J].Proceeding of the National Academy Science U S A,2005,102(8):3093-3098.
[7] Andoh T,Saito A,Kuraishi Y.Leukotriene B4 mediates sphingosylphosphorylcholine-induced itch-associated responses in mouse skin[J].Journal of Investigative Dermatology,2009,129(12):2854-2860.
[8] Andoh T,Haza S,Saito A,et al.Involvement of leukotriene B4 in spontaneous itch-related behaviour in NC mice with atopic dermatitis-like skin lesion[J].Exp Dermatol,2011,20(11):894-898.
[9] Andoh T,Kuraishi Y.Expression of BLt1 leukotriene B4 receptor on the dorsal root ganglion neurons in mice[J].Molecular Brain Research,2005,137(1-2):263-266.
[10] Andoh T,Kuraish Y.Intradermal leukotriene B4,but not prostaglandin E2,induces itch associated responses in mice[J].European Journal of Pharmacology,1998,353(1):93-96.
[11] Andoh T,Nishikawa Y,Yamaguchi-Miyamoto T,et al.
Thromboxane A2 induces itch-associated response through TP receptors in the skin in mice[J].Journal Invsetment of Dermatology,2007,127(8):2042-2047.
[12] Jian T,Yang N,Yang Y,et al.TRPV1 and PLC Participate in Histamine H4 Receptor-induced itch[J].Neural Plasticity,2016,2016(3):1-9.
[13] Sugimoto Y,Iba Y,Nakamura Y,et al.Pruritus-associated response mediated by cutaneous histamine H3 receptors[J].Clinical Experimental Allergy,2004,34(3):456-459.
[14] Metz M,Grundmann S,St?nder S.Pruritus:an overview of current concept[J].Veterinary Dermatology,2011,22(2):121-131.
[15] Belghiti M,Estevez-Herrera J,Gimenez-Garzo C,et al.
Potentiation of the transient receptor potential vanilloid 1 channel contributes to pruritogenesis in a rat model of liver disease[J].Journal of Biological Chemistry,2013,288(14):9675-9685.
[16] Steinhoff M,Neisius U,Ikoma A,et al.Proteinase-activated receptor-2 mediates itch:a novel pathway for pruritus in human skin[J].Journal of Neuroscience,2003,23(15):6176-6180.
[17] Klein A,Carstens M I,Carstens E.Facial injections of pruritogens or algogens elicit distinct behavior responses in rats and excite overlapping populations of primary sensory and trigeminal subnucleus caudalis neurons[J].Journal of Neurophysiology,2011,106(3):1078-1088.
[18] Liu Q,Weng H J,Patel K N,et al.The distinct roles of two GPCRs,MrgprC11 and PAR2,in itch and hyperalgesia[J].Science Signaling,2011,4(181):45.
[19] Reddy V,Elmariah S,Azimi E,et al.Mechanisms of itch:proteases activate Mas-related G-protein coupled receptors[J].
J Invest Dermatol,2013,133(S):41.
[20] Patricio E S,Costa R,F(xiàn)igueiredo C P.Mechanisms Underlying the scratching Behavior Induced by the Activation of Proteinase-Activated Receptor-4 in Mice[J].Journal of Investment Dermatology,2015,135(10):2484-2491.
[21] Schmelz M,Schmidt R,Weidner C,et al.Chemical response pattern of different classes of C-nociceptors to pruritogens and algogens[J].Journal of Neurophysiology,2003,89(5):2441-2448.
[22] Bockaert J,Claeysen S,Becamel C,et al.Neuronal 5-HT metabotropic receptors:fine-tuning of their structure,signaling,and roles in synaptic modulation[J].Cell Tissue Research,2006,326(2):553-572.
[23] McCoy E S,Taylor-Blake B,Street S E,et al.Peptidergic CGRPα primary sensory neurons encode heat and itch and tonically suppress sensitivity to cold[J].Neuron,2013,78(1):138-151.
[24]黃林雪,李利.皮膚源性慢性瘙癢神經(jīng)生理機制研究進展[J].中國中西醫(yī)結(jié)合皮膚性病學(xué)雜志,2015,14(4):265-269.
[25] Andoh T,Kuraishi Y.Intradermal leukotriene B4,but not prostaglandin E2,induces itch-associated responses in mice[J].European Journal of Pharmacology,1998,353(1):93-96.
[26] Andoh T,Kuraishi Y.Nitric oxide enhances substance P-induced itch-associated responses in mice[J].Britain Journal of Pharmacology,2003,138(1):202-208.
[27] Dong X,Han S,Zylka M J,et al.A diverse family of GPCRs expressed in specific subsets of nociceptive sensory neurons[J].Cell,2001,106(5):619-632.
[28] Liu Q,Tang Z,Surdenikova L,et al.Sensory neuron-specific GPCR Mrgprs are itch receptors mediating chloroquine-induced pruritus[J].Cell,2009,139(7):1353-1365.
[29] Liu Q,Sikand P,Ma C,et al.Mechanisms of itch evoked by β-alanine[J].Journal of Neuroscience,2012,32(42):14532-14537.
[30] Slominski A T,Zmijewski M A,Zbytek B,et al.Regulated proenkephalin expression in human skin and cultured skin cells[J].Journal of Investment Dermatology,2011,131(3):613-622.
[31] Cornelissen C,Luscher-Firzlaff J,Baron J M,et al.Signaling by IL-31 and functional consequences[J].European Journal of Cell Biology,2012,91(6-7):552-566.
[32] Raap U,Weissmantel S,Gehring M,et al.IL-31 significantly correlates with disease activity and Th2 cytokine levels in children with atopic dermatitis[J].Pediatric Allergy Immunology,2012,23(3):285-288.
[33] Yosipovitch G,Carstens E,McGlone F.Chronic itch and chronic pain:analogous mechanisms[J].Pain,2007,131(1-2):4-7.
[34] Basbaum A I,Bautista D M,Scherrer G,et al.Cellular and molecular mechanisms of pain[J].Cell,2009,139(2):267-284.
[35] Tominaga M,Ozawa S,Tengara S,et al.Intraepidermal nerve fibers increase in dry skin of acetone-treated mice[J].Journal of Dermatology Science,2007,48(2):103-111.
[36] Rukwied R R,Main M,Weinkauf B,et al.NGF sensitizes nociceptors for cowhage- but not histamine-induced itch in human skin[J].Journal of Investigate Dermatology,2013,133(1):268-270.
[37] Akiyama T,Tominaga M,Davoodi A,et al.Cross-sensitization of histamine-independent itch in mouse primary sensory neurons[J].Neuroscience,2012,226:305-312.
[38] Liu T,Berta T,Xu Z Z,et al.TLR3 deficiency impairs spinal cord synaptic transmission,central sensitization,and pruritus in mice[J].Journal of Clinical Investigate,2012,122(6):2195-2207.
[39] Han L,Dong X.Itch Mechanisms and Circuits[J].Annual Review Biophysics,2014,43(1):331-355.
[40] Akiyama T,Carstens M I,Ikoma A,et al.Mouse model of touch-evoked itch (alloknesis)[J].Journal of Investigative Dermatology,2012,132(7):1886-1891.
[41] Kim H S,Yosipovitch G.An aberrant parasympathetic response:a new perspective linking chronic stress and itch[J].Experimental Dermatology,2013,22(4):239-244.
[42] Kim H J,Park J B,Lee J H,et al.How stress triggers itch:a preliminary study of the mechanism of stress-induced pruritus using fMRI[J].Internatinal Journal of Dermatology,2016,55(4):434-442.