• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Power Allocation and Performance Analysis of the Collaborative NOMA Assisted Relaying Systems in 5G

    2017-05-08 11:31:26
    China Communications 2017年1期

    Department of Electrical and Computer Engineering, Western University, London, ON N6A 5B9, Canada

    * The corresponding author, email: xianbin.wang@uwo.ca

    I.INTRODUCTION

    Serving mobile terminals at cell-edge could be very difficult due to the increased transmission power and cochannel interference to other devices.Furthermore, the rapid proliferation of smart devices lead to more scenarios of supporting multiple cell-edge users concurrently [1,2].However, serving multiple celledge users simultaneously with guaranteed data rate could be very challenging in 5G due to the significant amount of resources needed by such users.Therefore, new strategies with improved network efficiency and minimized interference are urgently needed to serve multiple cell-edge users in 5G concurrently.Relay and cooperative communications have been studied in improving the cost-effectiveness of serving cell-edge users.By reducing the communication distances of the S-R and R-D links, transmission power of source and relay nodes can be significantly reduced while maintaining low level of interference and high signal-to-noise ratio (SNR) at the destination.Meanwhile, as a promising 5G technology,NOMA can be used at the relay node to dramatically improve the spectral efficiency by supporting multiple edge users concurrently.It allows non-orthogonal utilization of the same time, spectral and spatial resources by multiple users simultaneously.With interference cancellation and power allocation [3,4],mutual impact due to the non-orthogonality among users can be controlled.Particularly,users with good channel conditions decode the messages for users with poor channel conditions first and then remove their impact by Successive Interference Cancellation (SIC) in order to decode messages for their own [5].As a result, the application of NOMA at relay nodes to enable concurrent multiple message receiving and transmitting for the relay is a promising solution to serving several cell-edge users simultaneously.

    In this paper, we propose two NOMA assisted relaying systems for 5G based on the collaboration of the S-R NOMA link as macro-cell communication and R-D NOMA link as small-cell communication.In the CNAR system, the BS superimposes multiple messages intended for the relay and cell-edge users as a NOMA signal.The relay decodes its own message from the NOMA signal by SIC.The relay then combines messages for cell-edge users with adjusted power as another NOMA signal before send it to the destinations.To support multiple users, the S-R and R-D phases are linked by a dual-antenna relay operating in full-duplex mode for high throughput.Furthermore, the S-R and R-D phases are arranged in licensed and unlicensed bands, respectively, to avoid interference.To reduce the complexity of CNAR, a S-CNAR system is developed as an alternative of the proposed NOMA assisted relay.The reduced complexity is achieved since the relay only decodes its own message by considering other messages and the environmental noise as the equivalent noise.Then the relay amplifies the residual part of the source NOMA signal to cell-edge users without adjusting the message power levels.Nevertheless, the performance of proposed systems has to be characterized and power allocation should be specified to provide the data rate guarantee for multiple users.

    Several recent studies have been done on the performance of NOMA assisted relaying systems.In [6], the capacity of a NOMA enabled decode- and-forward (DF) relaying system is evaluated and the corresponding suboptimal power allocation mechanism is proposed.The authors in [7] analyze the outage probability of the raised relay selection schemes for a NOMA system.Moreover, the outage probability and ergodic capacity expressions for NOMA downlink cooperative networks are derived in [8].Y.Liu et al.provides a cooperative SWIPT NOMA protocol and the close-form expressions for the associated outage probability [9].Nevertheless,these works focus on low-throughput half-duplex relaying model where the cell-edge user receive SNR is jointly determined by direct communications from the BS and the relay.

    With the use of full-duplex in our NOMA assisted relaying systems, the system performance is evaluated in the following steps.Firstly, we define that the outage occurs if the achievable rate related to any message doesn’t reach their target rates.The system outage probability expression is then analyzed by considering the outage behavior of S-R and R-D phases separately.Next, we optimize power allocation ratios among different messages by minimizing the system outage probability to guarantee the single-user data rate.Following this, the ergodic sum capacity of proposed systems in high SNR regime is evaluated according to the optimized power allocation ratios.

    The remainder of this paper is organized as follows.Section II describes the CNAR system design.Based on the analysis of system outage probability, an optimal power allocation mechanism is proposed by minimizing the outage probability.The ergodic sum capacity is then evaluated in this section.In Section III,the S-CNAR system is developed with similar method in the last section to evaluate outage probability, ergodic capacity and power allocation.Then numerical results are presented and analyzed in Section IV.Finally Section V concludes the paper.

    II.COLLABORATIVE NOMA ASSISTED RELAYING SYSTEM

    2.1 System design of CNAR

    Our proposed CNAR communication system is illustrated in Fig.1.Suppose that a BS is serving three mobile terminals (MTs), among which MT1 is the closest to BS.Due to long distance from the BS to the cell-edge users MT2 and MT3, the BS cannot directly communicate with them with reasonable quality.Thus, we involve MT1 as a relay to connect BS and MT2, MT3.Under this circumstance,two phases are identified for the BS to serve these three MTs.

    In this first phase, namely S-R phase, the BS superimposes three messages for MT1,MT2 and MT3 as a NOMA signal for transmission to MT1.MT1 receives this signal and decodes all three messages.In the second phase, namely the R-D phase, MT1 superimposes messages for MT2, MT3 with adjusted power as a new NOMA signal and to be transmitted to MT2 and MT3.MT2, MT3 receive the signal and acquire messages for their own.We suppose each MT is a dual-antenna device.To achieve high throughput, MT1 works in full-duplex mode.It receives the NOMA signal from the BS by one antenna and, at the same time, transmits another NOMA signal containing decoded messages in last time slot by the other antenna to cell-edge users.Furthermore, the S-R phase is operated as licensed band macro-cell communication, and the R-D phase is operated as unlicensed band small-cell communication to avoid the interference.All users share a common channel.We assume that each user has a half-duplex transceiver.Capture effect is not considered and the interference occurs when one user is transmitting and receiving simultaneously or receiving packets from different flows at the same time.Signal propagation delay is ignored, thus packets can be received by destinations immediately.Furthermore, we assume that users always have packets to transmit all the time.

    Specifically, the BS superimposes three messages during the S-R phase as the NOMA signato be transmitted it to MT1.andare messages for MT1, MT2 and MT3, respectively.is the transmit power from one BS antenna to serve these three MTs.andare the power allocation ratios forandwhereConsequently, the received signal for MT1 is expressed as

    Fig.1 Collaborative NOMA Assisted Relaying system model

    In each time slot, we are supposed to identify NOMA far user and near user for SIC to be most probably executed at near user [11].Supposing maximal ratio combining (MRC)is used at MT2, MT3, the equivalent channel gains for them areandrespectively.Therefore, whenMT2 is identified as near user with power ratio for near userand MT3 as far user with power ratio for far userotherwise, their statuses are switched with

    In fact, MT1 is a DF relay to establish the connection between the S-R and R-D phases.Since the end-to-end data rate of DF relaying is determined by the weakest link [12], the achievable rate associated withandare

    2.2 CNAR system performance analysis

    In this section, we derive the system outage probability and propose the optimal power allocation scheme by minimizing e outage probability.Based on the proposed power allocation scheme, we present the analysis of the ergodic sum capacity.

    2.2.1 Outage probability and power allocation

    We define that during the proposed two-phase communication in our CNAR system, if the achievable rate associated with any message is lower than the target rate, the oage occurs.We set EventA= {All constraints in (1) are met}for the S-R communication, EventB= {All constraints in (2) are met} for the R-D communication.Thus, the system outage probability is expressed as

    According to [13],tis introduced to denote the objective of Problem (7).In this way,Problem (7) is equivalent to

    Since Problem (8) is convex, the solution is given by

    For power allocation ratios in the R-D phase, it is very easy to exhaustively search possiblevalues withinto find the optimalformaximization.Thencan be calculated by

    2.2.2 Ergodic capacity

    It is difficult to calculate the exact expressions of ergodic capacity in CN system.Hence, approximations of ergodic sum capacity highandregime are provided by analyzing the achievable rate for each message as follows.

    In the S-R phase transmission for, by applying

    we get the achievable rate of BS-MT1 channel as

    On the basis of (3), we calculateby discussing the result ofas follows.Forifis large.Forin high, if MT2 is far user, it holds thatleading toMT2 is near user condition onthe result ofis alsoHowever, if MT2 is near user withbecomesThe above cases are listed in Table I.

    Define EventD= {MT2 is near user conditioned onWe prove in Appendix B that whenis givenlarge value,Therefore, EventDseldom happens, which indicates

    Table I Discussion on in high .regime

    Table I Discussion on in high .regime

    Fig.2 Simplified CNAR system model

    III.SIMPLIFIED COLLABORATIVE NOMA ASSISTED RELAYING SYSTEM

    In the abovementioned CNAR system, the process of decoding and forwarding at the relaying device is a little complex to operate since the relay should decode all three messages by SIC and superpose two messages into a new NOMA signal.In the transitional stage from 4G to 5G, the smart device still has relatively limited decoding and forwarding capability.Therefore, a simplified relaying mechanism with corresponding power allocation is proposed in this section as follows.The reduced complexity is achieved by fixed power allocation ratios, direct decoding and simplified forwarding schemes.

    3.1 System design of S-CNAR

    We propose a S-CNAR system as an alternative relaying strategy, illustrated in Fig.2,by modifying the relaying process in CNAR system.In other words, the basic settings in the CNAR system are still used in S-CNAR except the relaying process and related power allocation ratios.

    Here we elaborate the simplified relaying mechanism.During the S-R phase, BS superposesandas the NOMA signalto be transmitted to MT1 whereandare the power ratios forandrespectively.Upon receivingMT1 directly decodes the message for its own without applying SIC.Particularly, it treatsandas the equivalent noise to decode.To reach the target SNRthe following condition should be satisfied:

    In a similar manner, we identify near user and far user in each time slot.We denote that the power allocation ratio for near user signal isand the one for far user signal is.If MT2 is identified as the near user, we obtainandotherwise, the relationship becomes

    The achievable rate associated withandare

    3.2 S-CNAR system performance analysis

    In this subsection, we provide the system outage probability analysis and specify the related power ratios, on the basis of which the ergodic sum capacity is also analyzed.

    3.2.1 Outage probability and power allocation

    The same definition of outage probability in CNAR system is followed here.We also define EventK= {The constraint in (11) is met} for the S-R communication, EventM={All constraints in (12) are met} for the R-D communication.Therefore, the system outage probability is given by

    Since it is difficult to derive the exactwe separately analyze the outage performance of EventMandKfor power ratio specification.

    Similarly, it is reasonable to set lower channel gain threshold for far user than near user.Thus, we obtainwhich indicates

    From the above analysis, we provide a sub-optimal power allocation scheme by considering satisfying the constraints from (13)(14)(15), which is equivalent to the following problem

    By applying the same method to solve Problem (7), the results are given by

    3.2.2 Ergodic capacity analysis

    Here again, we provide the capacity analysis in high SNR regime as what is done for CNAR system.

    In the S-R phase, the capacity for MT1 is approximated as:

    In the R-D phase, the approximation of PSNR at far user can be expressed as:

    The PSNR at near user is given by

    If we assume MT2 is closer to the BS than MT3, some rough results ofandcan be obtained.It’s highly probable for MT3 to be the far user, sois a little higher thanSince MT2 is possible to be the near user,is only relatively high rather than infinite.

    Fig.3 Outage probability as a function of target rate R0 when 15.5dB

    IV.NUMERICAL RESULTS

    We compare the performance of outage probability and ergodic capacity obtained by CNAR,S-CNAR, conventional orthogonal multiple access (OMA) and the OMA-based relaying systems.In all systems, for the illustration purposes, we assume that the BS and all MTs are on a straight line.Suppose BS-MT1 distanceMT1-MT2 distanceand MT1-MT3 distance.Assume thatwhere the path loss exponentis 3.9 and the reference distanceis 100m.In this way,andget.

    Note that there are special assumptions for the OMA-based systems.In conventional OMA system, the BS transmitsandby one third time resource, respectively, in both the licensed and unlicensed frequency band.Particularly, in an individual manner, the corresponding outage probability is computed by taking the average of the three MTs’ individual outage probabilities since each MT communicates with the BS without cooperation and interference.This is denoted as Conventional OMA (I) in Fig.3.On the contrary, in a systematic consideration, the outage probability follows the definition in CNAR system.It is expressed as Conventional OMA (S) in Fig.3.In the OMA-based relaying system, it is supposed thatandare sent by the BS in one third time resource via the S-R link,respectively;andare transmitted by MT1 in half time resource via the R-D link, respectively.

    Fig.3 presents the outage probability as a function of target ratewhenOne can observe that the theoretical analysis is verified by the simulation results.For lower-valuethe outage probability by conventional OMA is the lowest among these transmission strategies.Nevertheless, when R0 grows larger as practical user data rate requirements for 5G,CNAR obtains the lowest outage probability and S-CNAR holds the second lowest one.

    In Fig.4, we plot outage probability with regard to whenDue to very poor outage performance from systematic consideration for conventional OMA, in this figure, we only show conventional OMA’s outage probability in the individual manner.Here again,with theoretical outage results verified, the outage probability by CNAR system stays a little lower than S-CNAR and a lot lower than OMA transmission strategies.Furthermore,when grows, the outage probability by CNAR doesn’t decrease remarkably.The reason is based on Eq.(5), if large causesis lower-bounded by

    Fig.5 demonstrates the results of ergodic capacity if the target ratedB.The figure shows that the approximations of the capacity in CNAR system well match the simulation results.And our power allocation scheme makes the ergodic capacity of each CNAR user above the target rate.Additionally, CNAR has sum capacity gain over the OMA-based one because NOMA enables each user to exploit all time resource while OMA limits the time resource that each user can use.

    In subfigure (a), it shows that the approximations of the capacity in CNAR system can match the simulation results.The CNAR mechanism obtains the highest sum capacity and S-CNAR achieves lower capacity.The reason is shown in subfigure (b).is slightly larger thanbecause the PSNR expression at MT2 in S-CNAR contains more noise components than that of MT1 in CNAR.The values of capacity for other single users in the second subfigure are close to the approximated results in (9)(10)(16)(17).We can also observe that our power allocation schemes enable each single-user achievable rate in CNAR and S-CNAR to be over the target rate.

    Fig.4 Outage probability as a function of target rate when R0=2.1

    Fig.5 Ergodic capacity as a function of MT1 transmit SNRwhen R0=2.1 and

    V.CONCLUSIONS

    This paper develops a CNAR system and a low complex S-CNAR system to serve multiple cell-edge users concurrently with guaranteed data rate.To characterize the performance for both systems, we analyze the outage probability by regarding the outage behaviors in the S-R and R-D links separately.Then we propose the optimal power allocation scheme to guarantee the data rate by minimization of the outage probability.Furthermore, we provide the ergodic sum capacity approximation in high SNR region.Numerical results validate the theoretical analysis.It is also demonstrated that the proposed CNAR achieves the best performance among possible transmission strategies and S-CNAR obtains similar performance with reduced relaying complexity.

    Appendix A

    With the probability density function (PDF)for Rayleigh channel, it is easy to get the following PDF ofand

    Appendix B

    [1] ZHENG, Kan, et al.Multihop cellular networks toward LTE-advanced [J].IEEE Vehicular Technology Magazine, 2009, 4(3): 40-47.

    [2] FANG, Fang, et al.Energy-Efficient Resource Allocation for Downlink Non-Orthogonal Multiple Access Network [J], IEEE Transactions on Communications, 2016, 64(3), 3722-3732.

    [3] LI, Anxin, et al.Non-orthogonal multiple access(NOMA) for future downlink radio access of 5G[J].China Communications, 2015, 12.Supplement: 28-37.

    [4] DAI, Linglong, et al.Non-orthogonal multiple access for 5G: solutions, challenges, opportunities, and future research trends [J].IEEE Communications Magazine, 2015, 53(9): 74-81.

    [5] LIU, Xin; WANG, Xianbin.Outage probability and capacity analysis of the Collaborative NOMA Assisted Relaying system in 5G [C].In:2016 IEEE/CIC International Conference on Communications in China (ICCC).IEEE, 2016.p.1-5.

    [6] KIM, Jung-Bin; LEE, In-Ho.Capacity analysis of cooperative relaying systems using non-orthogonal multiple access [J].IEEE Communications Letters, 2015, 19(11): 1949-1952.

    [7] DING, Zhiguo; DAI, Huaiyu; POOR, H.Vincent.Relay Selection for Cooper ative NOMA [J].2016.

    [8] MEN, Jinjin; GE, Jianhua.Performance analysis of non-orthogonal multiple access in downlink cooperative network [J].IET Communications,2015, 9(18): 2267-2273.

    [9] LIU, Yuanwei, et al.Cooperative non-orthogonal multiple access with simultaneous wireless information and power transfer [J].IEEE Journal on Selected Areas in Communications, 2016,34(4): 938-953.

    [10] LIU, Fei; M?H?NEN, Petri; PETROVA, Marina.Proportional fairness-based user pairing and power allocation for non-orthogonal multiple access [C].In: Personal, Indoor, and Mobile Radio Communications (PIMRC), 2015 IEEE 26th Annual International Symposium on.IEEE, 2015.p.1127-1131.

    [11] CHOI, Jinho.Minimum power multicast beamforming with superposition coding for multiresolution broadcast and application to NOMA systems [J].IEEE Transactions on Communications, 2015, 63(3): 791-800.

    [12] BHATNAGAR, Manav R.On the capacity of decode-and-forward relaying over rician fading channels [J].IEEE Communications Letters,2013, 17(6): 1100-1103.

    [13] BOYD, Stephen; VANDENBERGHE, Lieven.Convex optimization [M].Cambridge university press, 2004.

    [14] JEFFREY, Alan; ZWILLINGER, Daniel (ed.).Table of integrals, series, and products [M].Academic Press, 2007.

    人人妻人人澡人人看| 美女视频免费永久观看网站| 在线观看www视频免费| 麻豆乱淫一区二区| 亚洲欧美精品综合一区二区三区| 日韩中文字幕欧美一区二区| 欧美精品亚洲一区二区| 女性被躁到高潮视频| 色老头精品视频在线观看| 亚洲精品一卡2卡三卡4卡5卡| 每晚都被弄得嗷嗷叫到高潮| 日韩欧美一区二区三区在线观看 | 精品第一国产精品| 水蜜桃什么品种好| 国产真人三级小视频在线观看| 日韩视频一区二区在线观看| 99久久国产精品久久久| 精品卡一卡二卡四卡免费| 精品一区二区三区视频在线观看免费 | 欧美日韩瑟瑟在线播放| 国产高清激情床上av| 51午夜福利影视在线观看| 日本撒尿小便嘘嘘汇集6| 国产精品电影一区二区三区 | 两性夫妻黄色片| 免费在线观看黄色视频的| 欧美在线黄色| 午夜两性在线视频| 日日爽夜夜爽网站| 咕卡用的链子| 一级黄色大片毛片| 不卡一级毛片| 老司机靠b影院| 十八禁高潮呻吟视频| 亚洲国产看品久久| 国产精品二区激情视频| 大陆偷拍与自拍| 69av精品久久久久久| 精品熟女少妇八av免费久了| 久久人妻av系列| 久热爱精品视频在线9| av在线播放免费不卡| 一夜夜www| 欧美丝袜亚洲另类 | 狂野欧美激情性xxxx| 久久精品亚洲精品国产色婷小说| 国产不卡一卡二| 51午夜福利影视在线观看| 精品一区二区三区四区五区乱码| 国产成人av教育| 激情视频va一区二区三区| 午夜福利影视在线免费观看| 黄色成人免费大全| 一本一本久久a久久精品综合妖精| 国产欧美日韩一区二区三| 国产欧美亚洲国产| 国产一区二区三区综合在线观看| 国产三级黄色录像| 少妇裸体淫交视频免费看高清 | 亚洲综合色网址| 久久青草综合色| 欧美亚洲日本最大视频资源| 免费高清在线观看日韩| 亚洲国产中文字幕在线视频| 又紧又爽又黄一区二区| 一区二区日韩欧美中文字幕| a级毛片在线看网站| 午夜久久久在线观看| 亚洲午夜精品一区,二区,三区| 在线观看一区二区三区激情| 免费人成视频x8x8入口观看| 最近最新中文字幕大全电影3 | 性色av乱码一区二区三区2| 国产成人免费观看mmmm| 成年版毛片免费区| 国产淫语在线视频| 免费人成视频x8x8入口观看| 精品第一国产精品| 欧美+亚洲+日韩+国产| 亚洲av日韩精品久久久久久密| 在线观看日韩欧美| 免费一级毛片在线播放高清视频 | 亚洲熟女毛片儿| 欧美老熟妇乱子伦牲交| 国产精品美女特级片免费视频播放器 | 午夜精品在线福利| 精品一区二区三区av网在线观看| 乱人伦中国视频| 一个人免费在线观看的高清视频| 成熟少妇高潮喷水视频| 一边摸一边做爽爽视频免费| 国产一区二区激情短视频| 欧美日韩一级在线毛片| 丝袜美足系列| 亚洲国产精品sss在线观看 | 一进一出抽搐动态| 91在线观看av| 日韩精品免费视频一区二区三区| 色精品久久人妻99蜜桃| 精品国内亚洲2022精品成人 | 大香蕉久久成人网| 中文字幕高清在线视频| 国产一区在线观看成人免费| 男人的好看免费观看在线视频 | 曰老女人黄片| 高清视频免费观看一区二区| av片东京热男人的天堂| 亚洲精品成人av观看孕妇| 国产精品免费一区二区三区在线 | 亚洲欧美激情在线| av有码第一页| 国产亚洲欧美精品永久| 在线观看www视频免费| 日本黄色日本黄色录像| 国产成人欧美在线观看 | 亚洲色图 男人天堂 中文字幕| 窝窝影院91人妻| 老熟妇仑乱视频hdxx| 一个人免费在线观看的高清视频| 欧美国产精品一级二级三级| 18禁观看日本| 亚洲av欧美aⅴ国产| 亚洲欧洲精品一区二区精品久久久| 在线观看www视频免费| 国产精品九九99| 亚洲成a人片在线一区二区| 757午夜福利合集在线观看| 午夜福利一区二区在线看| 国产精华一区二区三区| 色综合婷婷激情| 亚洲国产毛片av蜜桃av| 久久精品91无色码中文字幕| 精品少妇久久久久久888优播| 老熟女久久久| 一级,二级,三级黄色视频| 我的亚洲天堂| 欧美在线黄色| 国产欧美日韩综合在线一区二区| 国产精品乱码一区二三区的特点 | av在线播放免费不卡| 日韩大码丰满熟妇| 天天躁日日躁夜夜躁夜夜| 国产精品香港三级国产av潘金莲| 99香蕉大伊视频| 精品国产国语对白av| 天天影视国产精品| 久久香蕉激情| 国产成+人综合+亚洲专区| 国产av一区二区精品久久| 久久午夜亚洲精品久久| 757午夜福利合集在线观看| 久久中文看片网| 精品熟女少妇八av免费久了| 亚洲欧美精品综合一区二区三区| 天天添夜夜摸| 久久热在线av| 国产真人三级小视频在线观看| 99riav亚洲国产免费| 国产激情欧美一区二区| 午夜福利一区二区在线看| 久久久国产成人免费| 美国免费a级毛片| 国产蜜桃级精品一区二区三区 | 91成人精品电影| 满18在线观看网站| 久久国产亚洲av麻豆专区| 亚洲欧美色中文字幕在线| 在线观看午夜福利视频| 一级毛片高清免费大全| 老司机靠b影院| 老司机靠b影院| 看免费av毛片| 精品国产乱子伦一区二区三区| 下体分泌物呈黄色| 国产精品香港三级国产av潘金莲| 香蕉久久夜色| 一级a爱视频在线免费观看| 丰满饥渴人妻一区二区三| 午夜免费观看网址| 电影成人av| 国产亚洲欧美精品永久| 天天躁日日躁夜夜躁夜夜| 一二三四在线观看免费中文在| 在线观看一区二区三区激情| 一二三四社区在线视频社区8| 天天操日日干夜夜撸| 国产区一区二久久| 黑人操中国人逼视频| 97人妻天天添夜夜摸| 老司机靠b影院| 丰满的人妻完整版| cao死你这个sao货| 久久热在线av| 丝瓜视频免费看黄片| 欧美日本中文国产一区发布| 久久九九热精品免费| svipshipincom国产片| 一二三四在线观看免费中文在| 国产亚洲一区二区精品| 91成年电影在线观看| 一进一出抽搐动态| 制服人妻中文乱码| 建设人人有责人人尽责人人享有的| 精品视频人人做人人爽| 国产男女超爽视频在线观看| 日本撒尿小便嘘嘘汇集6| 欧美日韩av久久| 精品国产美女av久久久久小说| 大陆偷拍与自拍| 国产激情久久老熟女| 97人妻天天添夜夜摸| 人人妻人人爽人人添夜夜欢视频| 日本一区二区免费在线视频| 亚洲av片天天在线观看| 国产男靠女视频免费网站| 久久亚洲真实| 淫妇啪啪啪对白视频| 999精品在线视频| 亚洲中文av在线| 麻豆国产av国片精品| 亚洲午夜理论影院| 日本欧美视频一区| 久久精品亚洲av国产电影网| 人人妻人人添人人爽欧美一区卜| 欧美人与性动交α欧美软件| 美女午夜性视频免费| 男女免费视频国产| 老司机午夜十八禁免费视频| 少妇猛男粗大的猛烈进出视频| 男女午夜视频在线观看| cao死你这个sao货| 高潮久久久久久久久久久不卡| 丝瓜视频免费看黄片| 免费人成视频x8x8入口观看| 欧美大码av| 少妇 在线观看| 亚洲av电影在线进入| 亚洲成a人片在线一区二区| 精品高清国产在线一区| 精品亚洲成国产av| 在线观看午夜福利视频| 看片在线看免费视频| 国产男靠女视频免费网站| 俄罗斯特黄特色一大片| 老司机福利观看| 热re99久久精品国产66热6| 婷婷精品国产亚洲av在线 | 成人18禁在线播放| 韩国av一区二区三区四区| 嫩草影视91久久| 精品国产一区二区三区久久久樱花| 老鸭窝网址在线观看| 国产aⅴ精品一区二区三区波| 亚洲av成人不卡在线观看播放网| 在线看a的网站| 国产人伦9x9x在线观看| 亚洲三区欧美一区| 国产一区二区三区综合在线观看| 日本wwww免费看| 免费在线观看日本一区| 成人手机av| 淫妇啪啪啪对白视频| 女人高潮潮喷娇喘18禁视频| 久久人妻福利社区极品人妻图片| 少妇的丰满在线观看| 中文字幕人妻熟女乱码| 天堂中文最新版在线下载| 久久久精品国产亚洲av高清涩受| 成人精品一区二区免费| 精品亚洲成a人片在线观看| 丝袜美腿诱惑在线| 欧美一级毛片孕妇| 国产精品1区2区在线观看. | 久久久久久久午夜电影 | 欧美中文综合在线视频| 亚洲熟女毛片儿| 美女高潮到喷水免费观看| 亚洲成a人片在线一区二区| 欧美日韩瑟瑟在线播放| av在线播放免费不卡| 嫁个100分男人电影在线观看| av国产精品久久久久影院| 他把我摸到了高潮在线观看| 人妻久久中文字幕网| 丝瓜视频免费看黄片| 午夜精品在线福利| 精品国产亚洲在线| 丝袜人妻中文字幕| 亚洲五月色婷婷综合| 最近最新中文字幕大全免费视频| av不卡在线播放| 午夜福利免费观看在线| 黄色毛片三级朝国网站| 亚洲精品粉嫩美女一区| 国产精品电影一区二区三区 | 9191精品国产免费久久| 午夜福利免费观看在线| 热re99久久国产66热| 十八禁网站免费在线| www.熟女人妻精品国产| 午夜福利乱码中文字幕| 欧洲精品卡2卡3卡4卡5卡区| 国产不卡一卡二| 亚洲一区高清亚洲精品| 免费黄频网站在线观看国产| 少妇 在线观看| 精品免费久久久久久久清纯 | 母亲3免费完整高清在线观看| 无限看片的www在线观看| 人人妻人人澡人人爽人人夜夜| 黑人欧美特级aaaaaa片| 99热只有精品国产| 91大片在线观看| 久久精品aⅴ一区二区三区四区| 国产单亲对白刺激| 亚洲国产精品sss在线观看 | 50天的宝宝边吃奶边哭怎么回事| 高清视频免费观看一区二区| 我的亚洲天堂| 国产一区二区三区综合在线观看| 久久青草综合色| 午夜福利,免费看| av一本久久久久| 亚洲精品久久成人aⅴ小说| 大码成人一级视频| 欧美精品高潮呻吟av久久| aaaaa片日本免费| 成人国产一区最新在线观看| 99久久国产精品久久久| 好男人电影高清在线观看| 成年人黄色毛片网站| 午夜激情av网站| 香蕉丝袜av| 国产精品电影一区二区三区 | 亚洲 欧美一区二区三区| 国产精品免费一区二区三区在线 | 免费在线观看影片大全网站| 久久九九热精品免费| 变态另类成人亚洲欧美熟女 | av欧美777| 十分钟在线观看高清视频www| 欧美 日韩 精品 国产| 最新的欧美精品一区二区| 国产精品国产高清国产av | 欧美日韩av久久| 精品免费久久久久久久清纯 | 亚洲av第一区精品v没综合| 国产激情欧美一区二区| 国产欧美亚洲国产| 丁香六月欧美| 欧美日韩中文字幕国产精品一区二区三区 | 成人特级黄色片久久久久久久| av网站免费在线观看视频| 无限看片的www在线观看| 老司机影院毛片| 看片在线看免费视频| 久久久久精品人妻al黑| 国产精品电影一区二区三区 | 真人做人爱边吃奶动态| 亚洲熟妇熟女久久| 欧美最黄视频在线播放免费 | 国产蜜桃级精品一区二区三区 | 国产免费av片在线观看野外av| 人妻久久中文字幕网| tube8黄色片| 国产亚洲欧美98| 国产在线一区二区三区精| 在线观看日韩欧美| 一进一出抽搐gif免费好疼 | 伦理电影免费视频| 他把我摸到了高潮在线观看| 搡老乐熟女国产| 丰满的人妻完整版| 久久人妻av系列| 亚洲第一青青草原| 精品第一国产精品| www.999成人在线观看| 国产在线精品亚洲第一网站| 男女床上黄色一级片免费看| 久久久久久久久免费视频了| www.999成人在线观看| 夜夜躁狠狠躁天天躁| 中文字幕人妻丝袜一区二区| 真人做人爱边吃奶动态| 国内毛片毛片毛片毛片毛片| 岛国在线观看网站| 在线观看午夜福利视频| 国产成人欧美| 很黄的视频免费| 人人妻,人人澡人人爽秒播| 两人在一起打扑克的视频| 波多野结衣av一区二区av| 精品久久蜜臀av无| 久热这里只有精品99| 校园春色视频在线观看| avwww免费| svipshipincom国产片| 一进一出好大好爽视频| 人人妻人人添人人爽欧美一区卜| 五月开心婷婷网| 亚洲第一av免费看| 日韩成人在线观看一区二区三区| 热99久久久久精品小说推荐| 在线看a的网站| 国产熟女午夜一区二区三区| 久久久久精品国产欧美久久久| 亚洲一区中文字幕在线| 亚洲精品久久成人aⅴ小说| 国产成人精品久久二区二区91| 成年女人毛片免费观看观看9 | 亚洲欧美一区二区三区久久| 老汉色∧v一级毛片| 99在线人妻在线中文字幕 | 18禁观看日本| 天天操日日干夜夜撸| 亚洲 欧美一区二区三区| 一进一出好大好爽视频| 亚洲第一欧美日韩一区二区三区| 中文字幕制服av| 欧美亚洲 丝袜 人妻 在线| 国产精品国产高清国产av | 欧美乱码精品一区二区三区| 人人妻人人爽人人添夜夜欢视频| 亚洲avbb在线观看| 涩涩av久久男人的天堂| 在线观看免费午夜福利视频| 侵犯人妻中文字幕一二三四区| 亚洲七黄色美女视频| 在线国产一区二区在线| 亚洲精品美女久久久久99蜜臀| 在线播放国产精品三级| 在线观看一区二区三区激情| 高清在线国产一区| 亚洲熟妇中文字幕五十中出 | 国产男靠女视频免费网站| 老司机午夜福利在线观看视频| 国产主播在线观看一区二区| 夜夜躁狠狠躁天天躁| 久久精品人人爽人人爽视色| 看黄色毛片网站| 国产精品.久久久| av片东京热男人的天堂| 国产97色在线日韩免费| 黑人巨大精品欧美一区二区蜜桃| 在线观看免费日韩欧美大片| 美国免费a级毛片| 久久香蕉国产精品| 丰满迷人的少妇在线观看| 黑人巨大精品欧美一区二区蜜桃| 欧美日韩视频精品一区| 成人特级黄色片久久久久久久| 美女视频免费永久观看网站| 大香蕉久久成人网| 亚洲av成人不卡在线观看播放网| 成人三级做爰电影| 国产免费av片在线观看野外av| 50天的宝宝边吃奶边哭怎么回事| 黑丝袜美女国产一区| 757午夜福利合集在线观看| 这个男人来自地球电影免费观看| 12—13女人毛片做爰片一| 久久这里只有精品19| 国产又爽黄色视频| 久久久久久久久免费视频了| 黑丝袜美女国产一区| 757午夜福利合集在线观看| 十八禁人妻一区二区| 日韩免费av在线播放| 18禁裸乳无遮挡动漫免费视频| 成年动漫av网址| 精品一区二区三区av网在线观看| 黄色视频,在线免费观看| 欧美激情久久久久久爽电影 | 亚洲熟妇中文字幕五十中出 | tube8黄色片| 法律面前人人平等表现在哪些方面| 欧美黑人欧美精品刺激| 天天躁日日躁夜夜躁夜夜| 亚洲国产欧美一区二区综合| 不卡一级毛片| 在线av久久热| 亚洲第一青青草原| 9191精品国产免费久久| 最近最新免费中文字幕在线| 少妇粗大呻吟视频| 婷婷丁香在线五月| 欧美黄色片欧美黄色片| 91九色精品人成在线观看| 人成视频在线观看免费观看| 悠悠久久av| 可以免费在线观看a视频的电影网站| 欧美午夜高清在线| 中文字幕高清在线视频| 一级片免费观看大全| 每晚都被弄得嗷嗷叫到高潮| 在线av久久热| 精品乱码久久久久久99久播| 天天躁日日躁夜夜躁夜夜| 中亚洲国语对白在线视频| 成人av一区二区三区在线看| 国产成人欧美在线观看 | 韩国av一区二区三区四区| 最近最新免费中文字幕在线| 成人国产一区最新在线观看| 国产成人啪精品午夜网站| 啦啦啦 在线观看视频| 不卡av一区二区三区| 18禁裸乳无遮挡免费网站照片 | 久久香蕉激情| 国产真人三级小视频在线观看| 亚洲情色 制服丝袜| 叶爱在线成人免费视频播放| 在线观看免费视频日本深夜| 国产成人一区二区三区免费视频网站| av在线播放免费不卡| 久久青草综合色| 亚洲欧美一区二区三区黑人| 999精品在线视频| 中文字幕色久视频| www.999成人在线观看| 国产免费男女视频| 欧美日韩成人在线一区二区| 亚洲少妇的诱惑av| 制服人妻中文乱码| 日韩欧美免费精品| 麻豆乱淫一区二区| 日本撒尿小便嘘嘘汇集6| 久久天堂一区二区三区四区| 亚洲欧美一区二区三区久久| 99riav亚洲国产免费| 十八禁高潮呻吟视频| 成人影院久久| 极品教师在线免费播放| 国产亚洲av高清不卡| 日本撒尿小便嘘嘘汇集6| 久久天堂一区二区三区四区| 搡老熟女国产l中国老女人| 1024视频免费在线观看| 十八禁高潮呻吟视频| 久久午夜综合久久蜜桃| 99精国产麻豆久久婷婷| 麻豆乱淫一区二区| 18禁裸乳无遮挡动漫免费视频| 久久精品国产亚洲av香蕉五月 | 精品国产美女av久久久久小说| 国产日韩一区二区三区精品不卡| 久久久久精品人妻al黑| 少妇猛男粗大的猛烈进出视频| 久久久久久久午夜电影 | 下体分泌物呈黄色| 国产成人影院久久av| 国产精品久久久久久精品古装| 午夜精品在线福利| 久久久久久久国产电影| 很黄的视频免费| 色在线成人网| 午夜久久久在线观看| 亚洲精品一二三| 国产精品电影一区二区三区 | 欧美日韩国产mv在线观看视频| 性色av乱码一区二区三区2| 老司机在亚洲福利影院| 久久精品成人免费网站| 欧美亚洲日本最大视频资源| 美女 人体艺术 gogo| 欧美精品高潮呻吟av久久| 午夜成年电影在线免费观看| 人妻一区二区av| 一区二区三区国产精品乱码| 免费女性裸体啪啪无遮挡网站| 精品福利观看| 日韩大码丰满熟妇| 成人av一区二区三区在线看| 性少妇av在线| 久久狼人影院| 50天的宝宝边吃奶边哭怎么回事| 国产伦人伦偷精品视频| 丝袜在线中文字幕| 日韩欧美在线二视频 | 免费日韩欧美在线观看| 日本一区二区免费在线视频| 欧美午夜高清在线| 老司机深夜福利视频在线观看| 一级作爱视频免费观看| 80岁老熟妇乱子伦牲交| 日韩免费高清中文字幕av| 国产熟女午夜一区二区三区| 一区二区日韩欧美中文字幕| 午夜免费鲁丝| 成在线人永久免费视频| 美女国产高潮福利片在线看| av中文乱码字幕在线| tocl精华| 日韩免费av在线播放| 18禁裸乳无遮挡动漫免费视频| 国产91精品成人一区二区三区| 日日爽夜夜爽网站| 成在线人永久免费视频| 岛国在线观看网站| 欧美亚洲 丝袜 人妻 在线| 久久精品国产a三级三级三级| 精品久久蜜臀av无| 一本一本久久a久久精品综合妖精| 亚洲av成人一区二区三| 亚洲av欧美aⅴ国产| 国产无遮挡羞羞视频在线观看| 精品国产一区二区久久| 美女午夜性视频免费| 国产aⅴ精品一区二区三区波| 黄色视频不卡| 久久精品亚洲精品国产色婷小说| 啪啪无遮挡十八禁网站| 国产无遮挡羞羞视频在线观看| 久久这里只有精品19| avwww免费|