• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Characterization of cyclophilin D in freshwater pearl mussel (Hyriopsis schlegelii)

    2017-05-06 06:17:11XiuXiuLiuChengYuanWangChunLuoJunQingShengDiWuBeiJuanHuJunHuaWangYiJiangHong
    Zoological Research 2017年2期

    Xiu-Xiu Liu, Cheng-Yuan Wang, Chun Luo, Jun-Qing Sheng, Di Wu, Bei-Juan Hu, Jun-Hua Wang, Yi-Jiang Hong,2,*

    ?

    Characterization of cyclophilin D in freshwater pearl mussel ()

    Xiu-Xiu Liu1, Cheng-Yuan Wang1, Chun Luo1, Jun-Qing Sheng1, Di Wu1, Bei-Juan Hu1, Jun-Hua Wang1, Yi-Jiang Hong1,2,*

    1School of Life Sciences, Nanchang University, Nanchang Jiangxi 330031, China2Key Laboratory of Aquatic Animals Resources and Utilization of Jiangxi, Nanchang University, Nanchang Jiangxi 330031, China

    Cyclophilin D (referred to as) was obtained from the freshwater pearl mussel (). The full-length cDNA was 2 671 bp, encoding a protein consisting of 367 amino acids. HsCypD was determined to be a hydrophilic intracellular protein with 10 phosphorylation sites and four tetratricopeptide repeat (TPR) domains, but no signal peptide. The core sequence region YKGCIFHRIIKDFMVQGG is highly conserved in vertebrates and invertebrates. Phylogenetic tree analysis indicated that CypD from all species had a common origin, and HsCypD had the closest phylogenetic relationship with CypD from. The constitutive mRNA expression levels ofexhibited tissue-specific patterns, with the highest level detected in the intestines, followed by the gonads, and the lowest expression found in the hemocytes.

    ; Cyclophilin D; Sequence analysis

    INTRODUCTION

    Cyclophilin is a type of intracellular receptor of cyclosporin A (CsA). It has a peptidyl-prolyl cis-trans isomerase (PPIase) region and can be combined with CsA (Feng & Xin, 2013). Widely found, cyclophilins have a conserved structure and biological function. Cyclophilin D (CypD) is a mitochondrial matrix protein, and plays a crucial role in protein folding, cell apoptosis, necrosis, and immunosuppression (Thomas et al., 2012). The CypD protein protect cells from death that is induced by oxidative stress and mediated by mitochondria (Basso et al., 2005). It is a key factor in the regulation of the mitochondrial permeability transition pore (MPTP), which plays a role in the release of cytochrome C and other apoptotic factors from mitochondria during cell apoptosis (Forte & Bernardi, 2006). CypD may also interact with mitochondrial adenine nucleotide transporters (ANT, Halestrap et al., 1998; Hunter & Haworth, 1979) and promote “open” conformation of ANT (Hunter & Haworth, 1979). Moreover, CypD can suppress apoptosis when it is overexpressed (Li et al., 2004; Lin & Lechleiter, 2002; Schubert & Grimm, 2004).

    Cyclophilins from the freshwater pearl mussel ()(Wang et al., 2016) are related to cell growth and immunity (Luo et al., 2015; Xie et al., 2011). However, whether CypD from(HsCypD) has a conserved structure remains unclear and its predicted function has yet to be reported. Here, we describe the predicted cDNA sequence and protein structural features of HsCypD.[1]

    MATERIALS AND METHODS

    Experimental animals

    Healthy four-year-oldindividuals (=15), with shell lengths averaging 150.0±10.4 mm, were obtained from the Fuzhou Hongmen Reservoir Exploitation Corporation, Jiangxi Province. They were kept in aerated freshwater at 23±2 °C for one week before the tissues were harvested.

    Total RNA extraction, cDNA synthesis, and cloning

    Total RNA extraction was performed using TRIzol Reagent (Invitrogen) per the manufacturer’s protocols. After the evaluation of RNA quantity, purity, and integrity, RNA from the gonads was used to prepare cDNA with the SMART RACE Kit (Clontech, USA). A cDNA library forwas constructed using the SMART cDNA Library Construction Kit (Clontech, USA). The full-length cDNA ofwas cloned by RACE methods, with gene specific primers (Supplementary Table 1) based on the known EST sequence.

    Bioinformatics analysis

    The cDNA fragments ofwere assembled into complete full-length cDNA. The open reading frame was examined using ORF Finder.

    Protein molecular weight, isoelectric point (pI), and amino acid composition were analyzed with the Compute pI/Mw function of the ExPASy-ProtParam tool (http://web.expasy.org/protparam/). Protein hydrophobicity was analyzed using ExPASy-ProtScale (http://web.expasy.org/protscale/). Protein subcellular localization was predicted with PSORT II (http://www.genscript.com/tools/psort). Signal peptides were predicted using SignalP 3.0 (http://www.cbs.dtu.dk/services/SignalP-3.0/). The protein folding model was predicted using Predict Protein from Columbia University (https://www.predictprotein.org/). The protein domains were predicted using the Conserved Domain Database (https: //www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi). The three-dimensional structures of the protein sequences were predicted using the ExPASy SWISS-MODEL program (http://swissmodel.expasy.org/).

    Alignment of the amino acid sequences of HsCypD, HsCypC, and HsCypH with other species was performed using ClustalW Multiple Alignment (http: //www.ebi.ac.uk/clustalw/). A phylogenetic tree was constructed by neighbor-joining (NJ) using MEGA 4.0 (Tamura et al., 2007) with 1 000 bootstrap replicates, based on amino acids alignment.

    mRNA expression analysis by quantitative real-time PCR

    Real-time PCR was applied to examine the mRNA levels ofin 10 tissues using primer pairs-F and-R (Supplementary Table 1). Each assay was performed in triplicate with β-actin as the internal reference. Real-time PCR was performed for each cDNA sample on a Mastercycle ep Realplex2 Real-Time Thermal Cycler (Eppendorf) with SYBR Premix Ex TaqTM (TaKaRa). The 2-??CTmethod (Schmittgen & Livak, 2008) was used to analyze expression levels. All data were relative mRNAs expressed as mean±(=3), and subjected to Student’s-test.

    RESULTS

    cDNA sequence ofand predicted protein features

    The complete cDNA sequence ofwas 2 671 bp in length, containing a 5'-untranslated region (UTR, 80 bp), 3'-UTR (1 487 bp), polyadenylation signal (AATAAA), and unstable signal (ATTTTTA). The open reading frame (ORF) was 1 104 bp, encoding 367 amino acids (Figure 1). The sequence was deposited in GenBank under accession number KJ747387. The predicted protein ofhad a predicted isoelectric point (pI) of 5.43. The largest portion of the HsCypD residues was hydrophobic (131 amino acids), followed by uncharged polar amino acids (103 amino acids) (Supplementary Table 2). The hydrophobicity score of HsCypD was highest (1.544) at the 24thand 275thsites and lowest (–2.856) at the 260thsite (Supplementary Figure 1). Hydrophobicity of HsCypD was not obvious on the atlas, but the strength of hydrophilicity was clear. From the 330thto 360thresidues, there was a small area of hydrophilicity that appeared to be very dense (Supplementary Figure 1). Moreover, the grand average of hydropathicity (GRAVY) of HsCypD was –0.703, thus showing obvious hydrophilicity. The proportion of hydrophilic amino acids (about 64%) was much larger than that of hydrophobic amino acids (about 36%) (Supplementary Table 2). Therefore, HsCypD was predicted to be a hydrophilic protein.

    Protein subcellular localization results showed that 69.6%, 8.7%, and 4.3% of the HsCypD protein was distributed in the cytoplasm, cell nucleus, and cell membrane, respectively. The distribution of the protein inside the cell was higher than that outside, indicating an intracellular protein. No obvious signal peptide characteristics were observed at the N-terminal (Supplementary Figure 2A,B).

    Eight possible folding patterns of HsCypD were identified: a N-glycosylation site at 118–122; casein kinase II (CKII) phosphorylation sites at 78–82, 83–87, 199–203, and 257–261; N-myristoylation sites at 74–80, 177–183, 200–206, and 312–318; protein kinase C (PKC) phosphorylation sites at 99–102, 159–162, and 204–207; a cyclophilin peptidyl-proline cis-trans isomerase signal area at 58–76; CAMP and CGMP dependent protein kinase phosphorylation sites at 237–241 and 267–271; a leucine zipper model at 277–299; and a tyrosine kinase phosphorylation site at 354–362 (SupplementaryTable 3). The secondary structures observed not only included α-helices, but also β-pleated sheets, β-turns, and random coils. Among them, α-helices (H) accounted for 37.87%, β-turns (E) accounted for 14.44%, and other structures (L) accounted for the remaining 47.68%. Random coils and α-helices were distributed uniformly throughout the protein; however, the α-helices were more obvious at the C terminal.

    The HsCypD had four tetratricopeptide repeat (TPR) domains that contained TPR-1 and TPR-11, each having two hits. The final specific hit was for a cyclophilin_ABH_like, cyclophilin A, B, and H-like cyclophilin-type peptidylprolyl cis-trans isomerase (PPIase) domain, representing an archetypal cytosolic cyclophilin similar to human cyclophilin A, B, and H.

    The predicted three-dimensional structure was mainly composed of three α-helices, eight β-strands, some β-turns, and random coils. It was barrel-shaped, and the top and bottom were a combination of loops and three α-helices, which connected with both ends of the β-strands. The α-helices were more obvious in the C terminal (Supplementary Figure 3).

    Phylogenetic relationship of HsCypD to homologs of other species

    The HsCypD was homologous with CypD from other species (Supplementary Table 4), and exhibited the highest homology (61%) with. Multiple alignments revealed that the signature sequence of the CypD family could be identi?ed in HsCypD (YKGCIFHRIIKDFMVQGG), and that the residues involved in CsA binding and PPIase activities were well conserved (Figure 2).

    Two major branches of vertebrates and invertebrates were classified on the CypD phylogenetic tree. HsCypD was found on the same branch as.andbelonged to the same branch, and were the most distant from HsCypD (Figure 3). Furthermore, the phylogenetic tree based on CypD, CypC, and CypH sequences showed that HsCypH and CypDs from most species were grouped together. In particular, the CypC family and most of the CypD family were grouped together on a large branch. CypD frombelonged to a lineage near the CypH group and CypH frombelonged to a lineage near the CypC group (Supplementary Figure 4).

    Tissue expression pro?le of HsCypD

    The constitutive mRNA expression level ofwas examined in 10 different tissues, including hemocytes, gill, mantle, kidney, heart, intestine, hepatopancreas, adductor muscle, gonad, and foot. The highest expression ofwas detected in the intestine, with remarkable tissue expression patterns (Figure 4).

    Figure 1 cDNA and deduced amino acid sequence of HsCypD

    *: Stop codon. Initiation codon (ATG), stop codon (TGA), unstable signal ATTTTTA, poly(A), and poly adenosine signal (AATAAA) are in bold. Conserved amino acid residues are shadowed. Framed area is proline cis-trans isomerase signal area.

    Figure 2 Identi?cation of a highly-conserved region across CypD amino acid sequences and their homologs

    Sequences were aligned using ClustalW alignment. (*) single fully-conserved residue; (: ) conservation of strong group; (.) conservation of weak group. Boxes show the well-conserved amino acid regions (18 aa residues) of all analyzed CypDs. The sequences used in the analyses are listed in Supplementary Table 4.

    DISCUSSION

    HsCypD was identified and characterized in the freshwater pearl mussel. It comprised a cyclophilin-type peptidyl-prolyl cis-trans isomerase (PPIase) region, four significant TPR domains, and specific tertiary structure, as shared by other Cyps families (Blackburn et al., 2015; Ottiger et al., 1997; Wang et al., 2009). The PPIase region is highly-conserved in cyclophilins in vertebrates and invertebrates (Wang et al., 2009). The TPR domain connects to the single N-terminal cyclophilin domain of Cyp40 by a 30-amino acid linker (Taylor et al., 2001). Similar to the tertiary structure of human CypA and CypB (Mikol et al., 1994; Ottiger et al., 1997), HsCypD exhibited a right-handed barrel structure formed by eight β-strands. The top and bottom of this structure combined loops and three α-helices connected with both ends of the β-strands. HsCypDshowed high conservativeness in these domains and tertiary structure.

    Figure 3 Phylogenetic tree (neighbor-joining) of CypD sequences includingand 16 other species constructed using MEGA 4.0

    The values at the nodes indicate the percentage of trees in which this grouping occurred after bootstrapping (1 000 replicates; shown only when >60%). The sequences used in the analyses are listed in Supplementary Table 4.

    Figure 4mRNA expression levels in different tissues of

    transcript levels in hemocytes, gill, mantle, kidney, heart, intestine, hepatopancreas, adductor muscle, gonad, and foot were normalized to that of hemocytes. Three individuals were used in each experiment for tissue collection and the experiment was repeated three times. Vertical bars represent mean±(=3).

    The phylogenetic tree confirmed that HsCypD was more distantly related to CypDs from vertebrates than from invertebrates, similar to the evolutionary structure of CypA from(Chen et al., 2011). Generally, the same types of cyclophilins (e.g., CypA and CypD) but isolated from different species are more closely related to each other than different types of cyclophilins from the same species (Lee et al., 2002), although there are exceptions (Chen et al., 2011). In this study, HsCypH belonged to a lineage near the CypD group on the phylogenetic tree, withCypD fromgrouped with CypH and CypH fromgrouped with CypC (Supplementary Figure 4). These findings demonstrate the close phylogenetic relationship of cyclophilins and suggest that this family likely has a common origin and is highly conserved.

    N-myristoylation is a lipid anchor modification of some proteins targeting them to membrane locations, thus transforming the function of the modified proteins, and plays a significant role in many cellular pathways, such as apoptosis, signal transduction, and alternative extracellular protein export (Borgese et al., 1996; Maurer-Stroh et al., 2002). PKC is an important neurotransmitter in intracellular signal transduction and participates in transmembrane signaling (Nishizuka, 1984). Another protein kinase, CKII, a highly conserved serine/threonine kinase of eukaryotic cells, is responsible for responding to growth factors (Marais et al., 1992). Tyrosine kinase is a key molecule in signal transduction and growth control (Cheng et al., 1993). The TPR domain can bind competitively to Hsp90 or Hsp70 and thus serve as co-chaperones (Young et al., 1998). The predicted HsCypD possessed these binding sites and domains. Thus, wespeculated that HsCypD might have the ability to anchor to membranes, and might be involved in specific transfer processes of signal transduction and growth of cells, as well as performing as a chaperone.

    Cyps are widely distributed in various tissues (Danielson et al., 1988; Qiu et al., 2009). The high expression of Cyps in tissues is related to certain functional mechanisms (Qiu et al., 2009; Watashi et al., 2005). In this study, the highest mRNA expression level ofwas detected in the intestine. We speculated that HsCypD was very active in the intestine and might be involved in specific transfer processes of signal transduction and cytoprotection (Hausenloy et al., 2012; Tavecchio et al., 2013). Further systematic research is currently underway to characterize the functions and regulatorymechanisms of HsCypD.

    Basso E, Fante L, Fowlkes J, Petronilli V, Forte MA, Bernardi P. 2005. Properties of the permeability transition pore in mitochondria devoid of Cyclophilin D.280(19): 18558-18561.

    Blackburn EA, Wear MA, Landré V, Narayan V, Ning J, Erman B, Ball KL, Walkinshaw MD. 2015. Cyclophilin40 isomerase activity is regulated by a temperature-dependent allosteric interaction with Hsp90.35(5): e00258.

    Borgese N, Aggujaro D, Carrera P, Pietrini G, Bassetti M. 1996. A role for N-myristoylation in protein targeting: NADH-cytochrome b5 reductase requires myristic acid for association with outer mitochondrial but not ER membranes.135(6): 1501-1513.

    Chen LL, Mu CK, Zhao JM, Wang CL. 2011. Molecular cloning and characterization of two isoforms of cyclophilin A gene from.31(6): 1218-1223.

    Cheng HC, Matsuura I, Wang JH. 1993.substrate specificity of protein tyrosine kinases.: Khandelwal RL, Wang JH. Reversible Protein Phosphorylation in Cell Regulation. US: Springer, 103-112.

    Danielson PE, Forss-Petter S, Brow MA, Calavetta L, Douglass J, Milner RJ, Sutcliffe JG. 1988. pl Bl5: a cDNA clone of the rat mRNA encoding cyclophilin.7(4): 261-267.

    Feng WH, Xin Y. 2013. Progress in research on cyclophilin A and malignant tumors.33(10): 928-934. (in Chinese)

    Forte M, Bernardi P. 2006. The permeability transition and BCL-2 family proteins in apoptosis: co-conspirators or independent agents?13(8): 1287-1290.

    Halestrap AP, Kerr PM, Javadov S, Woodfield KY. 1998. Elucidating the molecular mechanism of the permeability transition pore and its role in reperfusion injury of the heart.1366(1-2): 79-94.

    Hausenloy DJ, Boston-Griffiths EA, Yellon DM. 2012. Cyclosporin A and cardioprotection: from investigative tool to therapeutic agent.165(5): 1235-1245.

    Hunter DR, Haworth RA. 1979. The Ca2+-induced membrane transition in mitochondria: I. The protective mechanisms.195(2): 453-459.

    Kyte J, Doolittle RF. 1982. A simple method for displaying the hydropathic character of a protein.157(1): 105-132.

    Lee YK, Hong CB, Suh Y, Lee IK. 2002. A cDNA clone for cyclophilin fromand phylogenetic analysis of cyclophilins.13(1): 12-20.

    Li YM, Johnson N, Capano M, Edwards M, Crompton M. 2004. Cyclophilin-D promotes the mitochondrial permeability transition but has opposite effects on apoptosis and necrosis.383(1): 101-109.

    Lin DT, Lechleiter JD. 2002. Mitochondrial targeted cyclophilin D protects cells from cell death by peptidyl prolyl isomerization.277(34): 31134-31141.

    Luo C, Xu L, He J, Shi JW, Sheng JQ, Peng K, Wang JH, Huang B, Hong YJ. 2015. The expression of cyclophilin a (CyPA) inin response to pathogens and its effect on the growth of hela cells.39(3): 475-481. (in Chinese)

    Marais RM, Hsuan JJ, McGuigan C, Wynne J, Treisman R. 1992. Casein kinase II phosphorylation increases the rate of serum response factor-binding site exchange.11(1): 97-105.

    Maurer-Stroh S, Eisenhaber B, Eisenhaber F. 2002. N-terminal-myristoylation of proteins: refinement of the sequence motif and its taxon-specific differences.317(4): 523-540.

    Mikol V, Kallen J, Walkinshaw MD. 1994. X-ray structure of a cyclophilin B/cyclosporin complex: comparison with cyclophilin A and delineation of its calcineurin-binding domain.91(11): 5183-5186.

    Nishizuka Y. 1984. The role of protein kinase C in cell surface signal transduction and tumour promotion.308(5961): 693-698.

    Ottiger M, Zerbe O, Güntert P, Wüthrich K. 1997. The NMR solution conformation of unligated human cyclophilin A.272(1): 64-81.

    Qiu LH, Jiang SG, Huang JH, Wang WF, Zhu CY, Su TF. 2009. Molecular cloning and mRNA expression of cyclophilin A gene in black tiger shrimp ().26(1): 115-121.

    Schmittgen TD, Livak KJ. 2008. Analyzing real-time PCR data by the comparativeTmethod.3(6): 1101-1108.

    Schubert A, Grimm S. 2004. Cyclophilin D, a component of the permeability transition-pore, is an apoptosis repressor.64(1): 85-93.

    Tamura K, Dudley J, Nei M, Kumar S. 2007. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0.24(8): 1596-1599.

    Tavecchio M, Lisanti S, Lam A, Ghosh JC, Martin NM, O'Connell M, Weeraratna AT, Kossenkov AV, Showe LC, Altieri DC. 2013. Cyclophilin D extramitochondrial signaling controls cell cycle progression and chemokine-directed cell motility.288(8): 5553-5561.

    Taylor P, Dornan J, Carrello A, Minchin RF, Ratajczak T, Walkinshaw MD. 2001. Two structures of cyclophilin 40: folding and fidelity in the TPR domains.9(5): 431-438.

    Thomas B, Banerjee R, Starkova NN, Zhang SF, Calingasan NY, Yang LC, Wille E, Lorenzo BJ, Ho DJ, Beal MF, Starkov A. 2012. Mitochondrial permeability transition pore component cyclophilin D distinguishes nigrostriatal dopaminergic death paradigms in the MPTP mouse model of Parkinson's disease.16(9): 855-868.

    Wang CY, Sheng JQ, Hong YJ, Peng K, Wang JH, Wu D, Shi JW, Hu BJ. 2016. Molecular characterization and expression of metallothionein from freshwater pearl mussel,.80(7): 1327-1335.

    Wang QF, Wang FQ, Ge HL. 2009. The progress of cyclophilin A in cancer research.32(2): 99-103. (in Chinese)

    Watashi K, Ishii N, Hijikata M, Inoue D, Murata T, Miyanari Y, Shimotohno K. 2005. Cyclophilin B is a functional regulator of hepatitis C virus RNA polymerase.19(1): 111-122.

    Xie K, Xu L, Sheng JQ, Zeng LG, Wang JH, Hong YJ. 2011. The full-length cDNA library of hemocyte induced byand molecular characteristics offrom.35(5): 783-789. (in Chinese)

    Young JC, Obermann WMJ, Hartl FU. 1998. Specific binding of tetratricopeptide repeat proteins to the C-terminal 12-kDa domain of hsp90.273(29): 18007-18010.

    10.24272/j.issn.2095-8137.2017.018

    07 November 2016; Accepted: 07 March 2017

    This study was supported by the National Natural Science Foundation of China (31660337), Special Aquatic Products Industry Technology System of Jiangxi (JXARS-10), Scientific and Technological Program of Jiangxi Province (KJLD12001, 20152ACF60013 and 150166), and Natural Science Foundation of Jiangxi Province (20122BAB204016)

    E-mail: yijianghong@126.com

    狂野欧美激情性bbbbbb| 国产日韩一区二区三区精品不卡| 精品一区二区三区四区五区乱码 | 五月天丁香电影| 成人影院久久| 国产精品免费大片| 桃花免费在线播放| 欧美bdsm另类| a级毛片在线看网站| 最近最新中文字幕大全免费视频 | 亚洲国产精品999| tube8黄色片| 美女视频免费永久观看网站| 在线免费观看不下载黄p国产| 美女福利国产在线| 啦啦啦视频在线资源免费观看| 爱豆传媒免费全集在线观看| 国产福利在线免费观看视频| 色网站视频免费| av有码第一页| 国产色婷婷99| 一个人免费看片子| 亚洲伊人色综图| 18禁动态无遮挡网站| 国产精品一二三区在线看| 在线 av 中文字幕| www日本在线高清视频| 欧美日韩视频高清一区二区三区二| 中文字幕最新亚洲高清| 一级毛片电影观看| 国产亚洲最大av| 日韩av免费高清视频| 爱豆传媒免费全集在线观看| 亚洲综合色惰| 久久精品久久久久久噜噜老黄| 超色免费av| 久久免费观看电影| 国产永久视频网站| 国产福利在线免费观看视频| 国产有黄有色有爽视频| 国产av精品麻豆| 大陆偷拍与自拍| 波野结衣二区三区在线| 国产一区二区激情短视频 | 国产视频首页在线观看| 男女边吃奶边做爰视频| 国产精品三级大全| 国产高清国产精品国产三级| 国产亚洲午夜精品一区二区久久| 五月玫瑰六月丁香| 日韩中文字幕视频在线看片| 十分钟在线观看高清视频www| 中国三级夫妇交换| 少妇人妻 视频| 久久精品久久久久久噜噜老黄| 中文字幕人妻熟女乱码| 免费在线观看黄色视频的| 99热国产这里只有精品6| 欧美日韩视频精品一区| 在线观看免费日韩欧美大片| 只有这里有精品99| 2022亚洲国产成人精品| 欧美日韩成人在线一区二区| 国产黄色免费在线视频| 汤姆久久久久久久影院中文字幕| 亚洲av中文av极速乱| 久久免费观看电影| 亚洲一区二区三区欧美精品| 久久久亚洲精品成人影院| 国产永久视频网站| 只有这里有精品99| 最黄视频免费看| 一区二区av电影网| av片东京热男人的天堂| 精品一区二区三区四区五区乱码 | 人体艺术视频欧美日本| 国产免费现黄频在线看| 男女免费视频国产| 免费女性裸体啪啪无遮挡网站| 九九在线视频观看精品| 99视频精品全部免费 在线| 夫妻性生交免费视频一级片| 中文字幕另类日韩欧美亚洲嫩草| 国产熟女欧美一区二区| 欧美精品人与动牲交sv欧美| 丝袜人妻中文字幕| 久久99蜜桃精品久久| 一区二区三区精品91| 婷婷色麻豆天堂久久| 亚洲精品av麻豆狂野| 色94色欧美一区二区| 高清视频免费观看一区二区| 人人妻人人爽人人添夜夜欢视频| 亚洲精品美女久久久久99蜜臀 | 少妇高潮的动态图| 国产在线免费精品| 国产男女超爽视频在线观看| 满18在线观看网站| av播播在线观看一区| 观看av在线不卡| 少妇人妻久久综合中文| 99久久中文字幕三级久久日本| 日韩大片免费观看网站| 中文精品一卡2卡3卡4更新| 一级毛片电影观看| 人人妻人人添人人爽欧美一区卜| 精品少妇内射三级| 夜夜骑夜夜射夜夜干| 亚洲精品日本国产第一区| a 毛片基地| 一边摸一边做爽爽视频免费| 999精品在线视频| 香蕉精品网在线| av线在线观看网站| 成人综合一区亚洲| 午夜免费男女啪啪视频观看| 人人妻人人爽人人添夜夜欢视频| 亚洲中文av在线| 成年人免费黄色播放视频| 色网站视频免费| 纵有疾风起免费观看全集完整版| 日韩av不卡免费在线播放| av播播在线观看一区| 国产成人91sexporn| 国产精品欧美亚洲77777| 色视频在线一区二区三区| 国产免费一区二区三区四区乱码| 大香蕉97超碰在线| 国产精品99久久99久久久不卡 | 一级,二级,三级黄色视频| 欧美精品一区二区免费开放| 亚洲伊人久久精品综合| 在线观看三级黄色| 亚洲欧洲精品一区二区精品久久久 | 寂寞人妻少妇视频99o| 满18在线观看网站| av在线观看视频网站免费| 免费在线观看黄色视频的| 亚洲成国产人片在线观看| 多毛熟女@视频| xxxhd国产人妻xxx| av电影中文网址| a级毛片黄视频| 丰满饥渴人妻一区二区三| 十八禁高潮呻吟视频| 国产免费又黄又爽又色| 少妇的逼水好多| 女人久久www免费人成看片| 天堂中文最新版在线下载| 18在线观看网站| 亚洲色图 男人天堂 中文字幕 | 亚洲精品,欧美精品| 91午夜精品亚洲一区二区三区| 中文字幕人妻丝袜制服| 亚洲av国产av综合av卡| 又大又黄又爽视频免费| 日韩av免费高清视频| 国产成人av激情在线播放| 亚洲综合精品二区| 妹子高潮喷水视频| av在线app专区| 亚洲人成网站在线观看播放| 性高湖久久久久久久久免费观看| 最近最新中文字幕大全免费视频 | 国产黄色免费在线视频| 搡女人真爽免费视频火全软件| 久久久国产一区二区| 日本爱情动作片www.在线观看| 夜夜骑夜夜射夜夜干| 999精品在线视频| 亚洲精品456在线播放app| 精品99又大又爽又粗少妇毛片| 美女中出高潮动态图| 十八禁网站网址无遮挡| 全区人妻精品视频| 22中文网久久字幕| 日韩中字成人| 色哟哟·www| 少妇猛男粗大的猛烈进出视频| 美女国产高潮福利片在线看| 国产精品久久久久久久久免| 国产xxxxx性猛交| 亚洲,欧美,日韩| 99国产综合亚洲精品| 国产精品成人在线| 成人国语在线视频| 校园人妻丝袜中文字幕| 亚洲国产色片| 在线亚洲精品国产二区图片欧美| 成年女人在线观看亚洲视频| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 国产精品久久久久久精品电影小说| 久久久久久人人人人人| 国产日韩欧美在线精品| 国产在线免费精品| 国产极品天堂在线| 日日撸夜夜添| 综合色丁香网| 下体分泌物呈黄色| 九九爱精品视频在线观看| av视频免费观看在线观看| 久久女婷五月综合色啪小说| 亚洲精品日韩在线中文字幕| 日韩大片免费观看网站| 黄色怎么调成土黄色| 老司机影院成人| 超碰97精品在线观看| 亚洲国产毛片av蜜桃av| www.av在线官网国产| 男女啪啪激烈高潮av片| 久久久久久伊人网av| 精品一区在线观看国产| 美女内射精品一级片tv| 亚洲五月色婷婷综合| 91成人精品电影| 久久久久精品人妻al黑| 美女大奶头黄色视频| 又大又黄又爽视频免费| 亚洲欧洲精品一区二区精品久久久 | 校园人妻丝袜中文字幕| 久久国内精品自在自线图片| 久久久久久人人人人人| 午夜视频国产福利| 国产av精品麻豆| av免费观看日本| 一级片'在线观看视频| 久久午夜福利片| 天堂俺去俺来也www色官网| 巨乳人妻的诱惑在线观看| 成人亚洲精品一区在线观看| 亚洲一区二区三区欧美精品| 国产欧美另类精品又又久久亚洲欧美| 看免费av毛片| 麻豆精品久久久久久蜜桃| 男女无遮挡免费网站观看| 欧美最新免费一区二区三区| 欧美亚洲 丝袜 人妻 在线| 2018国产大陆天天弄谢| 18禁在线无遮挡免费观看视频| 丰满饥渴人妻一区二区三| 免费人成在线观看视频色| 久久国产精品大桥未久av| 午夜av观看不卡| 男女边吃奶边做爰视频| 9191精品国产免费久久| 亚洲av综合色区一区| 蜜桃在线观看..| 亚洲欧美一区二区三区黑人 | 日韩伦理黄色片| 亚洲av电影在线观看一区二区三区| 亚洲av免费高清在线观看| 日韩制服丝袜自拍偷拍| 久久av网站| 成人毛片60女人毛片免费| 美女国产视频在线观看| 亚洲色图综合在线观看| 国产亚洲一区二区精品| 久久这里有精品视频免费| 欧美日韩一区二区视频在线观看视频在线| 最黄视频免费看| 免费大片18禁| 免费黄色在线免费观看| 亚洲欧美色中文字幕在线| 99视频精品全部免费 在线| 人人妻人人澡人人看| 青青草视频在线视频观看| 免费黄色在线免费观看| 日本欧美视频一区| 色网站视频免费| 少妇被粗大猛烈的视频| 久久人人爽av亚洲精品天堂| 国产精品嫩草影院av在线观看| 国产亚洲av片在线观看秒播厂| 亚洲久久久国产精品| 亚洲av中文av极速乱| 一级a做视频免费观看| 亚洲av免费高清在线观看| 国产高清三级在线| 久久国产精品大桥未久av| 日韩制服骚丝袜av| 黄色毛片三级朝国网站| 免费看av在线观看网站| 欧美老熟妇乱子伦牲交| 亚洲精品自拍成人| 高清av免费在线| 亚洲情色 制服丝袜| 成年人午夜在线观看视频| 一级爰片在线观看| 人人妻人人澡人人爽人人夜夜| 日本午夜av视频| 欧美日韩视频高清一区二区三区二| 最近2019中文字幕mv第一页| 亚洲国产看品久久| 欧美xxⅹ黑人| 亚洲国产欧美在线一区| videossex国产| 日韩制服丝袜自拍偷拍| 女人久久www免费人成看片| 看非洲黑人一级黄片| 亚洲,一卡二卡三卡| 美女视频免费永久观看网站| 久久久久精品人妻al黑| 国产精品成人在线| 在线观看美女被高潮喷水网站| 激情视频va一区二区三区| 国产伦理片在线播放av一区| 一区二区三区精品91| av天堂久久9| 韩国av在线不卡| 亚洲欧美成人精品一区二区| 在线观看免费日韩欧美大片| av天堂久久9| 久久精品久久久久久久性| 久久av网站| 男人操女人黄网站| 青青草视频在线视频观看| a 毛片基地| 久久毛片免费看一区二区三区| 亚洲精品视频女| 国产亚洲最大av| 妹子高潮喷水视频| 久久久久国产网址| av福利片在线| 丝袜美足系列| 亚洲精品一区蜜桃| 全区人妻精品视频| 777米奇影视久久| 国产精品久久久久久精品电影小说| 久热这里只有精品99| 纵有疾风起免费观看全集完整版| 成人国语在线视频| 黄色视频在线播放观看不卡| 久久毛片免费看一区二区三区| 超色免费av| 最近中文字幕高清免费大全6| 中文字幕亚洲精品专区| 国产欧美亚洲国产| 一区二区av电影网| 我要看黄色一级片免费的| 欧美97在线视频| 男女啪啪激烈高潮av片| 制服人妻中文乱码| 在线观看www视频免费| 不卡视频在线观看欧美| 亚洲美女黄色视频免费看| xxxhd国产人妻xxx| 亚洲精品国产av蜜桃| 免费高清在线观看日韩| 18禁裸乳无遮挡动漫免费视频| 欧美国产精品va在线观看不卡| 久久国产精品男人的天堂亚洲 | 精品卡一卡二卡四卡免费| 极品少妇高潮喷水抽搐| av.在线天堂| 国产精品免费大片| 久久人人爽人人片av| 亚洲久久久国产精品| 国产极品粉嫩免费观看在线| 丰满少妇做爰视频| 亚洲三级黄色毛片| 超色免费av| 亚洲,一卡二卡三卡| 久久精品国产鲁丝片午夜精品| 你懂的网址亚洲精品在线观看| 精品午夜福利在线看| 亚洲欧美一区二区三区国产| 97超碰精品成人国产| 午夜av观看不卡| 热re99久久国产66热| 国产高清三级在线| 母亲3免费完整高清在线观看 | 人体艺术视频欧美日本| 欧美精品国产亚洲| 99热全是精品| 久久亚洲国产成人精品v| 日本色播在线视频| 午夜福利视频精品| 国产亚洲精品第一综合不卡 | 亚洲国产最新在线播放| 国产又爽黄色视频| 亚洲精品,欧美精品| 久久 成人 亚洲| 男女午夜视频在线观看 | 午夜91福利影院| 久久这里有精品视频免费| 日本与韩国留学比较| 黄色毛片三级朝国网站| 日韩视频在线欧美| 国产 一区精品| 国产免费一区二区三区四区乱码| 少妇精品久久久久久久| 午夜日本视频在线| 久久国产亚洲av麻豆专区| av在线老鸭窝| 91午夜精品亚洲一区二区三区| 在线观看免费高清a一片| tube8黄色片| 午夜av观看不卡| 久久精品国产综合久久久 | 亚洲一级一片aⅴ在线观看| 国产精品99久久99久久久不卡 | 黄片播放在线免费| 亚洲图色成人| 国产永久视频网站| 亚洲 欧美一区二区三区| 午夜福利视频在线观看免费| 这个男人来自地球电影免费观看 | 亚洲精品美女久久av网站| 成人国产av品久久久| 美女xxoo啪啪120秒动态图| 久久久久久人人人人人| 在线天堂最新版资源| 91aial.com中文字幕在线观看| 久久97久久精品| 欧美97在线视频| 制服诱惑二区| 五月天丁香电影| 欧美人与善性xxx| 我的女老师完整版在线观看| 国内精品宾馆在线| 亚洲,欧美,日韩| 国产精品国产三级国产av玫瑰| 麻豆精品久久久久久蜜桃| 美女脱内裤让男人舔精品视频| 欧美国产精品一级二级三级| 久久久久久人妻| 中文天堂在线官网| 国产av国产精品国产| 久久国产精品男人的天堂亚洲 | 最近2019中文字幕mv第一页| 在线天堂中文资源库| 大码成人一级视频| 99热这里只有是精品在线观看| 欧美日韩综合久久久久久| 中文字幕最新亚洲高清| 极品少妇高潮喷水抽搐| 国产极品天堂在线| 99九九在线精品视频| av视频免费观看在线观看| 久久精品久久久久久噜噜老黄| 熟女人妻精品中文字幕| 国产精品.久久久| 夫妻午夜视频| 亚洲av在线观看美女高潮| 国产黄色免费在线视频| 99九九在线精品视频| 欧美激情 高清一区二区三区| 精品一区二区免费观看| 久久人人爽人人片av| 美女脱内裤让男人舔精品视频| 精品少妇久久久久久888优播| 国产在线免费精品| 亚洲内射少妇av| 中文字幕亚洲精品专区| 美女大奶头黄色视频| 国产1区2区3区精品| 日韩电影二区| 搡女人真爽免费视频火全软件| 国产 精品1| 大陆偷拍与自拍| 观看美女的网站| 精品一区二区三卡| 少妇人妻久久综合中文| 激情视频va一区二区三区| 免费观看av网站的网址| 综合色丁香网| 日韩一区二区视频免费看| 精品国产一区二区久久| 麻豆乱淫一区二区| 国产成人精品久久久久久| 日日爽夜夜爽网站| 成人午夜精彩视频在线观看| 久久这里只有精品19| 成人二区视频| 亚洲av欧美aⅴ国产| 丝袜美足系列| 深夜精品福利| 国产国拍精品亚洲av在线观看| 国产在线一区二区三区精| 国产精品成人在线| 丝袜脚勾引网站| 久久国产精品大桥未久av| 久久综合国产亚洲精品| 亚洲国产看品久久| 一区二区av电影网| 性色av一级| 欧美精品人与动牲交sv欧美| 咕卡用的链子| 日韩,欧美,国产一区二区三区| 久久人人爽人人爽人人片va| 老熟女久久久| 免费观看a级毛片全部| 国产成人aa在线观看| 国产成人精品久久久久久| 中文字幕av电影在线播放| 少妇的逼水好多| 欧美精品国产亚洲| 日韩制服丝袜自拍偷拍| 久久99蜜桃精品久久| 国产精品久久久久久精品电影小说| 波野结衣二区三区在线| 午夜免费鲁丝| 国产不卡av网站在线观看| 五月玫瑰六月丁香| 老熟女久久久| av福利片在线| 亚洲av综合色区一区| 亚洲av欧美aⅴ国产| 午夜福利影视在线免费观看| 看十八女毛片水多多多| 青青草视频在线视频观看| 国产成人午夜福利电影在线观看| 国产成人免费观看mmmm| 久久久久久久国产电影| 只有这里有精品99| 99久国产av精品国产电影| 欧美最新免费一区二区三区| 国产精品女同一区二区软件| 久久精品国产a三级三级三级| 看非洲黑人一级黄片| 黄网站色视频无遮挡免费观看| 成人毛片60女人毛片免费| 午夜老司机福利剧场| 免费大片黄手机在线观看| 在线观看美女被高潮喷水网站| 日韩一区二区视频免费看| 国产欧美另类精品又又久久亚洲欧美| 丝瓜视频免费看黄片| 欧美人与性动交α欧美精品济南到 | 国产熟女欧美一区二区| 黄色怎么调成土黄色| a级片在线免费高清观看视频| 亚洲国产av影院在线观看| av电影中文网址| 精品酒店卫生间| 国产亚洲最大av| 18禁动态无遮挡网站| av网站免费在线观看视频| 99久国产av精品国产电影| 久久国产精品大桥未久av| 国产1区2区3区精品| 九草在线视频观看| 在线观看美女被高潮喷水网站| 80岁老熟妇乱子伦牲交| 国产精品三级大全| 欧美97在线视频| 又粗又硬又长又爽又黄的视频| 免费黄频网站在线观看国产| 国产精品秋霞免费鲁丝片| 久久久久久人人人人人| 欧美人与性动交α欧美精品济南到 | 人成视频在线观看免费观看| 色婷婷久久久亚洲欧美| 免费女性裸体啪啪无遮挡网站| 午夜福利视频精品| 性高湖久久久久久久久免费观看| 免费观看无遮挡的男女| 久久精品国产亚洲av涩爱| 黑人欧美特级aaaaaa片| 国产午夜精品一二区理论片| 亚洲精品色激情综合| tube8黄色片| 久久久久视频综合| 精品亚洲乱码少妇综合久久| 又大又黄又爽视频免费| 熟妇人妻不卡中文字幕| 亚洲欧美成人综合另类久久久| 日日爽夜夜爽网站| 久久久久精品人妻al黑| 精品少妇久久久久久888优播| 国产成人一区二区在线| 丰满迷人的少妇在线观看| 赤兔流量卡办理| av一本久久久久| 亚洲精品久久成人aⅴ小说| 亚洲av福利一区| 飞空精品影院首页| 香蕉国产在线看| 国产成人欧美| 日本午夜av视频| 纯流量卡能插随身wifi吗| 国产 一区精品| 18禁动态无遮挡网站| 久久精品国产自在天天线| 欧美成人午夜免费资源| 极品人妻少妇av视频| 精品亚洲成a人片在线观看| 最近最新中文字幕免费大全7| av在线老鸭窝| 亚洲综合色网址| 久久这里有精品视频免费| 久久久精品94久久精品| 亚洲精华国产精华液的使用体验| 午夜激情久久久久久久| 在线观看免费视频网站a站| 91久久精品国产一区二区三区| 少妇被粗大的猛进出69影院 | 9热在线视频观看99| av网站免费在线观看视频| 国产乱来视频区| 男人操女人黄网站| 久久久久久人人人人人| 国产国语露脸激情在线看| 亚洲精品一区蜜桃| 国产精品国产三级国产av玫瑰| 巨乳人妻的诱惑在线观看| 亚洲内射少妇av| 少妇的逼水好多| 视频中文字幕在线观看| 少妇高潮的动态图| 美女福利国产在线| 美女脱内裤让男人舔精品视频| 2021少妇久久久久久久久久久| 男女下面插进去视频免费观看 | 亚洲av日韩在线播放|