田園,倪琪,彭奕冰
上海交通大學醫(yī)學院附屬瑞金醫(yī)院檢驗科,上海 200025
·論著·
Pdr1蛋白N端攜帶Flag標簽的光滑假絲酵母的構建
田園,倪琪,彭奕冰
上海交通大學醫(yī)學院附屬瑞金醫(yī)院檢驗科,上海 200025
近年來,光滑假絲酵母已成為第二位引起侵襲性真菌感染的病原體。光滑假絲酵母對唑類藥物(臨床一線抗真菌藥物)的敏感性低且易發(fā)生耐藥,一直是研究的熱點。介導光滑假絲酵母對唑類藥物耐藥的關鍵基因是轉(zhuǎn)錄因子pdr1,其功能性突變會使Pdr1蛋白功能過度活躍,導致下游唑類藥物外排泵基因高表達,從而對唑類藥物耐藥。本研究利用同源重組技術,構建在基因pdr1的5′端定點插入3×Flag標簽的重組菌株2a2和2b2,為后續(xù)利用免疫染色質(zhì)共沉淀技術尋找Pdr1直接調(diào)控基因奠定基礎。結果表明,3×Flag標簽添加到Pdr1蛋白N端可成功表達Flag-Pdr1蛋白;與野生型菌株相比,表達Flag-Pdr1的菌株對氟康唑的耐藥性增強。此外,與野生型菌株相比,表達Flag-Pdr1的菌株中cdr1和pup1基因表達水平顯著上升,提示在Pdr1蛋白N端加Flag標簽能使其功能活躍,表明N端對Pdr1蛋白功能具有重要意義。
光滑假絲酵母;pdr1基因;標簽;基因敲除;耐藥性
流行病學研究顯示,近年來光滑假絲酵母(Candidaglabrata,C.glabrata)已成為第二大引起侵襲性真菌感染的病原體,其血流感染的病死率接近50%[1-3]。光滑假絲酵母感染流行的重要原因是其易對唑類藥物耐藥,而唑類藥物是臨床主要抗真菌藥物。既往研究表明,光滑假絲酵母的唑類藥物獲得性耐藥機制主要有兩種[4-5],一種是光滑假絲酵母線粒體DNA丟失導致轉(zhuǎn)錄因子Pdr1過度活躍,在過度活躍的Pdr1蛋白作用下,其下游一些介導唑類藥物耐藥的基因(如ATP結合盒轉(zhuǎn)運蛋白CDR1)大量轉(zhuǎn)錄[6],加速唑類藥物排除,致使突變菌株對唑類藥物的敏感性大大減低;另一種是pdr1基因單個堿基突變引起Pdr1蛋白功能過度活躍,這種使Pdr1蛋白功能過度活躍的突變稱為Pdr1的功能性(gain of function,GOF)突變。
目前研究多局限于Pdr1 GOF突變引起的其他基因轉(zhuǎn)錄變化[7-9],罕有研究闡述作為轉(zhuǎn)錄因子的Pdr1直接結合的靶基因,而Pdr1蛋白單克隆抗體(簡稱單抗)缺乏是使這方面研究陷入困頓的主要原因。本研究利用兩個可循環(huán)使用的篩選標記:ura3基因和諾爾斯菌素抗性基因nat1,進行2次同源重組和4次化學轉(zhuǎn)化,在臨床分離株背景下構建Pdr1蛋白N端帶有Flag標簽的菌株,蛋白免疫印跡法證實Flag-Pdr1蛋白能正確表達,表達Flag-Pdr1的菌株耐藥性增強,且cdr1和pup1基因表達增加,提示Pdr1的N端修飾能使蛋白功能活躍。本研究以臨床分離菌株為背景,利用可循環(huán)的篩選標記,結合基因敲除和同源重組技術,使Pdr1蛋白帶有Flag標簽,建立了光滑假絲酵母表達融合蛋白的方法體系,為進一步研究Pdr1蛋白功能打下了基礎。
1.1 材料
光滑假絲酵母臨床菌株2a和2b均由本實驗室收集,其中2a為氟康唑敏感菌株,pdr1基因為野生型;2b為氟康唑耐藥菌株,pdr1基因帶有GOF突變。2a和2b分離自同一患者接受氟康唑治療前后。質(zhì)粒pBC1、pBC2和pRD16均由Irene Castano Navarro實驗室饋贈。光滑假絲酵母標準菌株ATCC 2001為本實驗室保存。質(zhì)粒pBC1帶有NAT1篩選標記,質(zhì)粒pBC2帶有NAT1標記和Flag標簽。
1.2 方法
1.2.1 培養(yǎng)基 按文獻配制酵母膏胨葡萄糖(yeast peptone dextrose,YPD)培養(yǎng)液及平板、含諾爾斯菌素YPD平板、LB培養(yǎng)液及平板、含氨芐西林LB培養(yǎng)液及平板、SD-URA平板、5-FOA平板[10-12]。
1.2.2 引物及測序 引物均由Primer3網(wǎng)站(http://primer3.ut.ee)設計,在美國國家生物技術信息中心(National Center for Biotechnology Information,NCBI) BLAST網(wǎng)站(http://blast.ncbi.nlm.nih.gov/Blast.cgi)檢查引物特異性后,由金唯智公司合成(表1)。本實驗涉及的所有聚合酶鏈反應(polymerase chain reaction,PCR)產(chǎn)物和質(zhì)粒均由鉑尚生物技術(上海)有限公司測序。
1.2.3 菌株DNA抽提 菌株在YPD液體培養(yǎng)基中培養(yǎng)過夜,用1.5 mL EP管收集菌體,1 mL ddH2O重懸,再次離心,棄上清液;在EP管中加入200 μL溶胞液〔1 u/μL溶壁酶(lyticase)、1%十二烷基硫酸鈉(sodium dodecyl sulfate,SDS)〕、200 μL苯酚/氯仿/異戊醇混合液(25∶24∶1)及200 μL 0.5 mm無菌玻璃珠(Sigma公司),水平振蕩儀振蕩5 min裂解細胞;氯仿抽提1次,無水乙醇沉淀,再用75%乙醇洗1次,ddH2O溶解,-20 ℃保存[13]。
1.2.4 質(zhì)粒抽提和轉(zhuǎn)化 從平板上挑取單克隆后接種于含有氨芐西林的LB液體培養(yǎng)基中過夜培養(yǎng),按高純度質(zhì)粒抽提試劑盒說明書(天根生化科技有限公司)抽提質(zhì)粒。感受態(tài)大腸埃希菌DH5α購自北京全式金生物技術有限公司,與轉(zhuǎn)化連接產(chǎn)物或質(zhì)粒混勻,置于冰上30 min,42 ℃熱激90 s,冰上放置2 min,加入1 mL LB培養(yǎng)液復蘇1 h,離心取100 μL沉淀,涂布于含有氨芐西林的LB平板。
1.2.5 光滑假絲酵母ura3基因敲除
1.2.5.1ura3基因上下游同源臂和篩選標記擴增ura3基因在光滑假絲酵母中編碼乳清苷5′-磷酸脫羧酶。若ura3基因失活,光滑假絲酵母無法在缺乏尿苷或尿嘧啶的培養(yǎng)基中生長。因此,ura3基因敲除株只能在SD-URA平板(添加尿嘧啶的培養(yǎng)基)上生長。參照Schwarzmüller等的方法,利用融合PCR敲除ura3基因[14]。以ATCC 2001基因組DNA為模板,U1和U2為引物,擴增ura3起始密碼子上游497 bp(UP);U5和U6為引物,擴增ura3終止密碼子下游約303 bp(DOWN)。以pBC1為模板,U3和U4為引物,擴增篩選標記NAT片段(圖1A),其中NAT篩選標記內(nèi)nat1基因兩端各有一個拷貝FRT。U2的5′端序列與U3的5′端序列反向互補,U4的5′端序列與U5的5′端序列反向互補。因此,擴增片段UP的3′端與篩選標記NAT片段5′端有39個bp互補序列,擴增片段DOWN的5′端與篩選標記NAT片段3′端有43個bp互補序列。PCR產(chǎn)物經(jīng)1.5%瓊脂糖凝膠電泳驗證大小,并用QIAquick PCR Purification Kit(Qiagen)純化。
1.2.5.2 融合PCR構建ura3基因敲除元件 將純化后的UP、DOWN和NAT片段混合作為模板,用引物U1和U6進行融合PCR擴增(圖1A)。PCR反應體系(50 μL):10×ExTaqBuffer 5 μL、2.5 mmol/L dNTP 4 μL、 10 μmol/L U1和U6各1 μL、UP和DOWN各50 ng、NAT片段170 ng,補 ddH2O至 50 μL。PCR反應條件: 95 ℃ 1 min預變性;95 ℃ 30 s,50 ℃ 30 s,72 ℃ 3 min,共30個循環(huán);72 ℃ 7 min延伸。PCR產(chǎn)物經(jīng)1.5%瓊脂糖凝膠電泳確認為單一條帶后用乙醇沉淀回收。
表1 引物序列
Tab.1 Primer sequences
PrimerSequenceU1ACCATTCCCGAGTTAAAACAATU2ACTGGCCGTCGTTTTACCTTGAGCTGGAGTATCCACTAAU3TTAGTGGATACTCCAGCTCAAGGTAAAACGACGGCCAGTU4TGTTGCTAGGTATGATCTAGCTTCGGAAACAGCTATGACCATGU5CATGGTCATAGCTGTTTCCGAAGCTAGATCATACCTAGCAACAU6CTTCTGATTAGAAGTCAGACGCURA3verFATCTTGCTGCCAGAAGGTCAURA3verRCCCCTCGAGGACGAAGTTCCTURAseqFCGAGAACCAATTGCATCATCCCURAseqRTCGGTTGTAAGATGATGTTGCTP1TCCCCGCGGCACCTGAGTTGTCCCGATGAP2CGCGGATCCGCATATTCTCTCAATAACGTAGCTP3CCGCTCGAGCAAACATTAGAAACTACATCAAAATCAAATCCAGGGGP4CGGGGTACCTCTCGCTGTCACTCCCTTTCAAmut1CACCTGAGTTGTCCCGATGAmut2GAACTTCGGATCATATAACTTGTCATCGTCATCTTTGTAGTCAGCmut3GACAAGTTATATGATCCGAAGTTCCTATACTTTCTAGAGAATAGGAmut4TCTCGCTGTCACTCCCTTTCAAM13FWGTAAAACGACGGCCAGTGM13RVGGAAACAGCTATGACCATGNtag5’verFTGTAAAACGACGGCCAGTGANtag5’verRTGGTTCAAAAGCGCACGAAGPdr1seqFACAAGCATAGAGGCGCTGTTPdr1seqRGGAACCTGGGACCAACATGA
表2 菌株
Tab.2 Strains used in this study
菌株表型親代菌株用途來源2a———臨床菌株2b———臨床菌株2a1ura3Δ∷FRT∶NAT∶FRT2a帶nat1基因的ura3基因敲除株本研究2b1ura3Δ∷FRT∶NAT∶FRT2b帶nat1基因的ura3基因敲除株本研究2a2ura3Δ∷FRT2a1ura3基因敲除株本研究2b2ura3Δ∷FRT2b1ura3基因敲除株本研究2a3ura3Δ∷FRT∶3×Flag-Pdr12a2Pdr1蛋白N端表達3×Flag的菌株本研究2b3ura3Δ∷FRT∶3×Flag-Pdr12b2Pdr1蛋白N端表達3×Flag的菌株本研究
A: Construction ofura3 gene deletion with fusion PCR. B: Homologous recombination ofura3 gene deletion cassette.
圖1ura3基因敲除元件的構建和ura3基因敲除
Fig.1 Methods of construction ofura3 deletion cassette andura3 gene deletion
1.2.5.3 光滑念珠菌ura3基因敲除株的構建 按Ueno等的醋酸鋰轉(zhuǎn)化方法[15],將ura3基因敲除元件轉(zhuǎn)入2a和2b(圖1B),用無菌玻璃珠在YPD-NAT平板上均勻涂布菌液,30 ℃培養(yǎng)48 h;挑取單克隆,在YPD中增菌后抽提基因組,在接頭處設計引物URA3 verF和URA3 verR,確認敲除元件同源重組成功(圖2A),獲得ura3基因敲除的2a和2b,命名為2a1和2b1。所有構建的菌株在表2中列出。
1.2.5.4 NAT篩選標記的循環(huán)利用 參照Navarro的方法。由于pRD16帶有釀酒酵母Flp1重組酶,該酶能識別nat基因兩端的34 bp FRT,催化重組,使兩個FRT之間的nat1基因及一個FRT拷貝丟失,留下一個FRT標記。此外,pRD16帶有URA3標記。因此,ura3缺陷菌株若被轉(zhuǎn)化入pRD16,能在尿嘧啶缺乏的條件下生存(圖2B)。同樣,用醋酸鋰轉(zhuǎn)化方法將質(zhì)粒pRD16轉(zhuǎn)化入2a1和2b1,在SD-URA平板上用玻璃珠涂布菌液,30 ℃培養(yǎng)48 h,挑取單克隆,用URA seqF和URA seqR驗證(圖2C)。將驗證的nat丟失菌株轉(zhuǎn)接到5-FOA平板,使pRD16質(zhì)粒丟失,獲得不帶NAT篩選標記的ura3基因敲除株2a2和2b2。
1.2.6 構建表達Pdr1 N端帶有Flag標簽的光滑假絲酵母
1.2.6.1 構建Pdr1 N端加Flag元件 以2a基因組DNA為模板,P1和P2為引物,擴增pdr1基因起始密碼子前約500 bp片段(pdr1 UP);P3和P4為引物,擴增pdr1基因起始密碼子后約500 bp片段(pdr1 DOWN)。引物P1和P2的5′端帶有SacⅡ和BamHⅠ酶切位點和保護堿基,引物P3和P3的5′端帶有KpnⅠ和XhoⅠ酶切位點和保護堿基。因此,pdr1 UP片段5′ 端和3′端分別帶有SacⅡ和BamHⅠ酶切位點,pdr1 DOWN片段5′端和3′端帶有KpnⅠ和XhoⅠ酶切位點。將pdr1 UP片段和pBC2質(zhì)粒用SacⅡ和BamHⅠ雙酶切過夜,所有酶切產(chǎn)物經(jīng)1.5%瓊脂糖凝膠電泳,在紫外燈下用刀片切下目的條帶,QIAquick Gel Extraction Kit(Qiagen)純化,DNA Ligation Kit Ver.2.1(TaKaRa)將pdr1 UP酶切回收產(chǎn)物與pBC2酶切回收產(chǎn)物連接,并轉(zhuǎn)化感受態(tài)DH5α。挑取單克隆轉(zhuǎn)化子,抽取質(zhì)粒DNA,用引物M13 FW和M13 RV進行PCR擴增驗證,獲得質(zhì)粒pBC21(圖3)。將質(zhì)粒pBC21和pdr1 DOWN片段用KpnⅠ和XhoⅠ雙酶切切開。同樣方法,將pdr1 DOWN片段連入pBC21質(zhì)粒,用M13 FW和M13 RV引物PCR擴增驗證,獲得質(zhì)粒pBC22。由于pBC2質(zhì)粒中Flag序列后有兩個終止密碼子,用mut1、mut2引物對擴增mutUP,mut3、mut4引物對擴增mutDOWN。mutUP的3′端與mutDOWN的5′端有40 bp反向互補序列,通過在mut2和mut3引物對上設計突變位點,將Flag序列后的終止密碼子突變,再利用融合PCR技術以mutUP和mutDOWN為模板,mut1和mut4為引物,擴增Pdr1 N端加Flag元件(圖3B)。
1.2.6.2 表達Pdr1 N端帶有Flag標簽的光滑假絲酵母的構建 用醋酸鋰方法使N端加Flag元件轉(zhuǎn)化菌株2a2和2b2,并在YPD-NAT平板上進行篩選,轉(zhuǎn)化子用Ntag5’verF和Ntag5’verR引物對PCR擴增驗證(圖4)。將pRD16轉(zhuǎn)化入正確的轉(zhuǎn)化子,在SD-URA平板上進行篩選并挑取單克隆,用Pdr1 seqF和Pdr1 seqR引物對驗證正確克隆后,在5-FOA平板上轉(zhuǎn)接1次,使pRD16質(zhì)粒丟失,獲得不帶NAT篩選標記、ura3基因敲除、pdr1基因N端帶有Flag序列的菌株2a3和2b3。
1.2.6.3 Pdr1蛋白N端Flag表達的驗證 菌株2a3、2b3、2a2和2b2在YPD中培養(yǎng)過夜,0.1×OD600時轉(zhuǎn)接,長至1×OD600后收菌;用冰水洗1次,1 mL冰水重懸,并加入2 mol/L NaOH 150 μL,冰上放置30 min,期間振蕩2~3次;再加入150 μL 50%三氯乙酸,冰上放置30 min,期間振蕩2~3次;最大轉(zhuǎn)速離心取沉淀,加入適量的HU Buffer,于65 ℃金屬浴加熱溶解,再次離心去上清液, -80 ℃保存。將2a3和2b3的蛋白經(jīng)SDS-聚丙烯酰胺凝膠電泳(SDS-polyacrylamide gel electrophoresis,SDS-PAGE),轉(zhuǎn)移至聚偏氟乙烯(polyvinylidene fluoride,PVDF)膜,用1∶10 000稀釋的Flag M2單抗為一抗(Sigma公司),Tubulin(1∶2 000稀釋,Novus公司)為內(nèi)參,辣根過氧化物酶(horseradish peroxidase,HRP)標記山羊抗小鼠(與Flag M2一抗對應)為二抗,HRP標記山羊抗大鼠(與Tubulin一抗對應)為二抗,經(jīng)增強化學發(fā)光(enhanced chemiluminescence,ECL)顯色,檢測Flag-Pdr1的表達[16]。
A: Verification of correct integration ofura3 deletion cassette. B: Flipping of NAT marker. C: Verification of flipping NAT marker with PCR.
圖2ura3 基因敲除株的驗證和NAT篩選標記的循環(huán)利用
Fig.2 Verification ofura3 knock-out transformants and recycling of NAT marker
1.2.7 構建菌株表型驗證
1.2.7.1 滴板實驗驗證 菌株過夜培養(yǎng)于YPD中,離心收集后用滅菌水重懸,調(diào)整菌液密度至2×107/mL,用水依次10倍稀釋成4個密度,每個密度取5 μL點于含氟康唑的培養(yǎng)板上,30 ℃培養(yǎng)48 h后拍攝菌落形態(tài)[17]。
1.2.7.2 熒光定量PCR 菌株于YPD中培養(yǎng)至對數(shù)生長期,離心收集,用Yeast RNAiso Kit(TaKaRa公司)提取mRNA,PrimeScriptTMRT reagent Kit with gDNA Eraser(TaKaRa公司)將mRNA反轉(zhuǎn)成cDNA,用SYBR?Premix Ex TaqTMII(Tli RNaseH Plus)于Roche LightCycler 480系統(tǒng)定量檢測cDNA。
2.1 2a和2b菌株的鑒定
經(jīng)鑒定,2a和2b能在CHROMagar假絲酵母顯色培養(yǎng)基、尿嘧啶營養(yǎng)缺陷SD-URA平板上生長,但無法在YPD-NAT平板及5-FOA平板上生長。
2.2ura3基因敲除元件的鑒定
ura3基因敲除元件UP-nat-DOWN由上段ura3 UP(497 bp)、nat(1 764 bp)及下段ura3 DOWN(303 bp)3段經(jīng)融合PCR構成,全長2 564 bp。如圖5A所示,電泳條帶大小正確。
A: Construction of plasmid pBC22. B: Mutation of stop codons with fusion PCR. C: Verification of plasmid pBC21 and pBC22.
圖3 Pdr1蛋白N端加Flag元件的構建原理
Fig.3 Method of construction of N-terminally Flag-tagged cassette of Pdr1
圖4 Pdr1蛋白N端加Flag元件轉(zhuǎn)化及轉(zhuǎn)化子驗證原理
Fig.4 Methods of transforming N-terminally Flag-tagged cassette of Pdr1 and verification of correct integration
2.3ura3基因敲除株的鑒定
驗證ura3基因敲除株時,用接頭處引物對URA3 verF和URA3 verR 進行PCR擴增, PCR產(chǎn)物大小應為860 bp,電泳結果(圖5B)與預期大小一致,產(chǎn)物經(jīng)測序與預期一致,ura3基因開放讀碼框成功被NAT篩選標記替代。ura3基因敲除株2a1和2b1無法在營養(yǎng)缺陷培養(yǎng)基SD-URA平板上生長,但可在5-FOA平板上生長。
2.4ura3基因敲除株NAT篩選標記的剔除
pRD16轉(zhuǎn)入ura3基因敲除菌株后,在SD-URA平板上挑選單克隆并抽提基因組,用引物對URA3 seqF和URA3 seqR驗證,PCR產(chǎn)物應為304 bp,電泳結果與預期一致(圖5B),NAT篩選標記成功切除。在5-FOA平板上轉(zhuǎn)接NAT篩選標記切除株,使pRD16質(zhì)粒丟失。
2.5pdr1基因N端加Flag元件的鑒定
以質(zhì)粒pBC2為模板,M13 FW和M13 RV為引物,進行PCR擴增,產(chǎn)物長度為1 868 bp,而pdr1 UP片段長度為590 bp,因此pdr1 UP片段連入pBC2質(zhì)粒構建為pBC21后,M13 FW和M13 RV擴增產(chǎn)物應為2 458 bp;pdr1 DOWN片段長度為577 bp,其連入pBC21質(zhì)粒構建為pBC22質(zhì)粒后,M13 FW和M13 RV擴增產(chǎn)物應為3 035 bp。電泳結果均符合預期(圖6A)。融合PCR介導的終止密碼子突變中,mutUP長度為712 bp,mutDOWN長度為2 197 bp,兩端融合后大小為2 869 bp,電泳結果符合預期(圖6B)。
A:ura3 deletion cassette was constructed with fusion PCR. Size of UP was 497 bp (lane 1), DOWN 303 bp (lane 2) andnat1 764 bp (lane 3). Fusion PCR was done with UP, DOWN andnatas templates, and size of PCR product should be as long as 2 564 bp. B: Verification ofura3 knock-out strain and flipping away NAT marker. Correct integration of deletion cassette was verified by PCR with URA3 verF and URA3 verR, and PCR product size should be as long as 860 bp. NAT marker was flipped away by transforming correct transformants with pRD16, and cells were selected on SD-URA plates. URA3 seqF and URA3 seqR were used to amplify the genomic DNA of transformants, and expected PCR product size was as long as 304 bp.
圖5ura3基因敲除元件構建及敲除株的鑒定
Fig.5 Identification ofura3 deletion cassette andura3 knock-out mutants
A: Construction of plasmids pBC21 and pBC22. Plasmids pBC21 and pBC22 were constructed and verified by PCR with primers M13 FW and M13 RV. PCR products were separated by electrophoresis. PCR product should be as long as 1 868 bp (lane 3) if pBC2 was used as template, 2 458 bp (lane 2) if pBC21 was used as template, and 3 035 bp (lane 1) if PBC22 was used as template. B: PCR mediated point mutation. Point mutation to construct Pdr1 N-terminally Flag-tagged cassette was done with PCR. Size ofmutUP was 712 bp (lane 4), and formutDOWN 2 179 bp (lane 5). Fusion PCR withmutUP andmutDOWN as template produced Pdr1 N-terminally Flag-tagged cassette, which was as long as 2 869 bp (lane 6 ). C: Verification of correct transformants with N-terminally Flag-tagged Pdr1. Correct integration of Pdr1 N-terminally Flag-tagged cassette was verified by PCR with Ntag5’verF and Ntag5’verR, and PCR product size was as long as 814 bp (lane 7). NAT marker was flipped away as described, and verification was done by PCR with Pdr1 seqF and Pdr1 seqR. The product size was as long as 673 bp.
圖6 Pdr1蛋白N端加Flag元件構建及表達Flag-Pdr1菌株的鑒定
Fig.6 Construction of Pdr1 N-terminally Flag-tagged cassette
2.6 Pdr1蛋白N端表達Flag菌株的鑒定
用醋酸鋰法轉(zhuǎn)化2a2和2b2后,將YPD平板上挑選出的單克隆通過PCR檢測正確的整合,Ntag5’verF和Ntag5’verR引物對的產(chǎn)物大小應為814 bp(圖6C),電泳結果符合預期。用質(zhì)粒pRD16去除NAT篩選標記后,在SD-URA平板上挑取單克隆,抽提基因組DNA,用引物對Pdr1 seqF和Pdr1 seqR擴增后,產(chǎn)物大小應為673 bp(圖6C),電泳結果符合預期。
2.7 Pdr1蛋白N端表達Flag標簽的驗證
在對數(shù)生長期抽提2a3、2b3及2a菌株蛋白作為陰性對照,經(jīng)10% SDS-PAGE電泳后,蛋白被轉(zhuǎn)移到PVDF膜上,封閉,加入一抗、二抗后顯影。結果顯示,菌株2a3和2b3在蛋白Marker(120 000)處有條帶,2a菌株蛋白沒有任何條帶,符合預期結果(圖7),表明2a3和2b3菌株能表達N端帶有Flag標簽的Pdr1蛋白。
圖7 蛋白免疫印跡法檢測Flag-Pdr1蛋白的表達
Fig.7 Detection of protein expression of Flag-Pdr1 by Western blotting
2.8 菌株表型的驗證
2.8.1 滴板實驗驗證Flag-Pdr1菌株表型 Pdr1蛋白在光滑假絲酵母中主要介導耐藥表型。用滴板實驗驗證Pdr1蛋白N端加上Flag標簽后對菌株表型的影響,驗證2a、2b、2a2、2a3、2b2及2b3菌株的藥物敏感性(氟康唑),結果如圖8所示。2a與2a2在含氟康唑的YPD平板上生長沒有差異,而2a3比2a和2a2對氟康唑更耐藥,但耐藥率低于2b。2b、2b2與2b3在含氟康唑的YPD平板上生長沒有差異;而微量肉湯稀釋法顯示2b3的MIC80(氟康唑)值為256 μg/mL,2b2的MIC80(氟康唑)為128 μg/mL(表3)。
表3 菌株MIC80(氟康唑)
Tab.3 MIC80values of fluconazole
菌株來源FluconazoleMIC80(μg/mL)2a臨床 82b臨床 1282a1本研究82a2本研究82a3本研究322b1本研究1282b2本研究1282b3本研究256
YPD, YPD agar plates without fluconazole; FLC64, YPD plates with 64 μg/mL fluconazole.
圖8ura3基因敲除株及表達Flag-Pdr1蛋白菌株的氟康唑藥敏表型鑒定
Fig.8 Fluconazole-susceptibility ofura3 gene deleted strains and strains expressing Flag-Pdr1
2.8.2 實時定量PCR驗證Flag-Pdr1菌株表型 與2a相比,2a3中cdr1和pup1基因的表達水平顯著增加;與2b相比,2b3中cdr1和pup1基因的表達水平顯著增加(P<0.05)(圖9)。
For each sample, three biological replicates were included. Statistical significance was determined with Student’s unpairedttest.*P<0.05,**P<0.01. Error bars indicate the standard deviations.
圖9 Flag-Pdr1菌株與野生型菌株基因表達水平的差異
Fig.9 Relative gene expression levels in strains expressing Flag-Pdr1 and wild-type
圖10 在野生型光滑假絲酵母中構建Pdr1融合蛋白的流程圖
Fig.10 Flow chart of tagging Pdr1 in clinic isolatedC.glabrata
光滑假絲酵母所致系統(tǒng)性感染的病死率達50%[1]。由于其天然對唑類藥物不敏感,極易對唑類藥物耐藥,導致其感染治療很困難。光滑假絲酵母的耐藥機制主要是藥物外排泵表達增多,其中cdr1基因編碼的ABC轉(zhuǎn)運蛋白表達增加在唑類藥物耐藥發(fā)生中極為重要。Ferrari等發(fā)現(xiàn),調(diào)控cdr1基因表達的轉(zhuǎn)錄因子pdr1基因突變會導致cdr1表達持續(xù)增高。pdr1基因突變被稱為GOF突變,可導致光滑假絲酵母對唑類藥物尤其是氟康唑耐藥。除耐藥性改變外,GOF突變菌株的毒力和黏附力也增強[9]。這些研究表明,pdr1的GOF突變在光滑假絲酵母感染宿主過程中起重要作用。
本研究利用酵母高頻同源重組的原理,將蛋白標簽與目的蛋白融合表達。在白假絲酵母,同源重組最常用的篩選標記是SAT1-flipper組件,該組件同時帶有nat1基因和flp1基因。當其整合至酵母后,菌株表現(xiàn)出諾爾斯菌素耐藥表型;當轉(zhuǎn)化子在麥芽糖培養(yǎng)基中培養(yǎng)時,F(xiàn)lp1表現(xiàn)出微弱的活性,將篩選標記去除。Flp1的活性在麥芽糖培養(yǎng)基中太過微弱,給篩選標記的循環(huán)使用帶來很大困難[18],因此本研究參考Beese-Sims的基因敲除方法[19],通過4次轉(zhuǎn)化光滑假絲酵母,使目的蛋白N端表達Flag標簽。第1次轉(zhuǎn)化以nat1作為篩選標記,敲除ura3基因;第2次轉(zhuǎn)化以ura3基因作為篩選標記,將第1次轉(zhuǎn)化在酵母基因組ura3基因座上的NAT標記用pRD16質(zhì)粒上的Flp1重組酶剔除,使NAT篩選標記能循環(huán)使用;第3次轉(zhuǎn)化再次以NAT作為篩選標記,將Flag標簽核酸序列融合到pdr1基因N端;第4次轉(zhuǎn)化再次用質(zhì)粒pRD16上的Flp1重組酶剔除位于pdr1基因N端的NAT篩選標記,使Flag標簽能在pdr1基因啟動子作用下與Pdr1蛋白融合表達。與SAT1-flipper篩選標記相比,本研究需兩種篩選標記,多次轉(zhuǎn)化,較為繁瑣。在SAT1-flipper篩選中,通過在麥芽糖培養(yǎng)基催化下啟動Flp1活性,在低濃度諾爾斯菌素平板上篩選菌落較大的單克隆,會大大增加假陽性的可能;而本研究通過將質(zhì)粒pRD16轉(zhuǎn)入去除NAT篩選標記,由于pRD16的轉(zhuǎn)化效率非常高,且flp1基因由強啟動子啟動,NAT篩選標記的剔除十分簡便,其成功率幾乎為100%,假陽性極低,重復性高,可靠性好(圖10)。
滴板實驗證實,與野生型菌株相比,表達Flag-Pdr1的菌株耐藥性顯著增加。實時定量PCR進一步證實,與野生型菌株相比,表達Flag-Pdr1的菌株中介導對唑類藥物耐藥的cdr1基因表達水平顯著增加。結果表明,在Pdr1蛋白N端添加Flag標簽不僅使唑類藥物敏感菌變得耐藥,還使唑類藥物耐藥菌變得更耐藥,提示N端修飾Pdr1能使其功能更活躍,與pdr1基因GOF突變類似。后續(xù)可通過免疫染色質(zhì)沉淀實驗,用anti-Flag抗體免疫沉淀中與N端帶有3×Flag標簽Pdr1結合的DNA片段,驗證N端帶有Flag標簽的Pdr1與下游基因啟動子是否具有更強的結合力。
本研究在臨床菌株背景下,利用兩個篩選標記建立了一個可在同一株菌中同源重組多次的方法體系,構建了表達N端帶有Flag標簽的Pdr1蛋白的光滑假絲酵母。滴板實驗和實時定量PCR證實N端帶有Flag標簽的Pdr1功能變得更活躍,可進一步對Pdr1蛋白N端進行功能研究。關于GOF突變后的Pdr1蛋白結合下游靶基因發(fā)生的改變,以及GOF突變后的Pdr1蛋白會與哪些新的蛋白相互作用,需進一步研究。
[1] Zaoutis TE, Argon J, Chu J, Berlin JA, Walsh TJ, Feudtner C. The epidemiology and attributable outcomes of candidemia in adults and children hospitalized in the United States: a propensity analysis [J]. Clin Infect Dis, 2005, 41(9): 1232-1239.
[2] Borah S, Shivarathri R, Srivastava VK, Ferrari S, Sanglard D, Kaur R. Pivotal role for a tail subunit of the RNA polymerase II mediator complex CgMed2 in azole tolerance and adherence in Candida glabrata [J]. Antimicrob Agents Chemother, 2014, 58(10): 5976-5986.
[3] Nishikawa JL, Boeszoermenyi A, Vale-Silva LA, Torelli R, Posteraro B, Sohn YJ, Ji F, Gelev V, Sanglard D, Sanguinetti M, Sadreyev RI, Mukherjee G, Bhyravabhotla J, Buhrlage SJ, Gray NS, Wagner G, N??r AM, Arthanari H. Inhibiting fungal multidrug resistance by disrupting an activator-mediator interaction [J]. Nature, 2016, 530(7591): 485-489.
[4] Vermitsky JP, Edlind TD. Azole resistance in Candida glabrata: coordinate upregulation of multidrug transporters and evidence for a Pdr1-like transcription factor [J]. Antimicrob Agents Chemother, 2004, 48(10): 3773-3781.
[5] Tsai HF, Krol AA, Sarti KE, Bennett JE. Candida glabrata PDR1, a transcriptional regulator of a pleiotropic drug resistance network, mediates azole resistance in clinical isolates and petite mutants [J]. Antimicrob Agents Chemother, 2006, 50(4): 1384-1392.
[6] Sanglard D, Ischer F, Calabrese D, Majcherczyk PA, Bille J. The ATP binding cassette transporter gene CgCDR1 from Candida glabrata is involved in the resistance of clinical isolates to azole antifungal agents [J]. Antimicrob Agents Chemother, 1999, 43(11): 2753-2765.
[7] Caudle KE, Barker KS, Wiederhold NP, Xu L, Homayouni R, Rogers PD. Genomewide expression profile analysis of the Candida glabrata Pdr1 regulon [J]. Eukaryot Cell, 2011, 10(3): 373-383.
[8] Tsai HF, Sammons LR, Zhang X, Suffis SD, Su Q, Myers TG, Marr KA, Bennett JE. Microarray and molecular analyses of the azole resistance mechanism in Candida glabrata oropharyngeal isolates [J]. Antimicrob Agents Chemother, 2010, 54(8): 3308-3317.
[9] Ferrari S, Ischer F, Calabrese D, Posteraro B, Sanguinetti M, Fadda G, Rohde B, Bauser C, Bader O, Sanglard D. Gain of function mutations in CgPDR1 of Candida glabrata not only mediate antifungal resistance but also enhance virulence [J]. PLoS Pathog, 2009, 5(1): e1000268.
[10] Gutiérrez-Escobedo G, Orta-Zavalza E, Castao I, De Peas A. Role of glutathione in the oxidative stress response in the fungal pathogen Candida glabrata [J]. Curr Genet, 2013, 59(3): 91-106.
[11] Healey KR, Zhao Y, Perez WB, Lockhart SR, Sobel JD, Farmakiotis D, Kontoyiannis DP, Sanglard D, Taj-Aldeen SJ, Alexander BD, Jimenez-Ortigosa C, Shor E, Perlin DS. Prevalent mutator genotype identified in fungal pathogen Candida glabrata promotes multi-drug resistance [J]. Nat Commun, 2016, 7: 11128. doi: 10.1038/ncomms11128.
[12] Poláková S, Blume C, Zárate JA, Mentel M, J?rck-Ramberg D, Stenderup J, Piskur J. Formation of new chromosomes as a virulence mechanism in yeast Candida glabrata [J]. Proc Natl Acad Sci USA, 2009, 106(8): 2688-2693.
[13] van Burik JA, Schreckhise RW, White TC, Bowden RA, Myerson D. Comparison of six extraction techniques for isolation of DNA from filamentous fungi [J]. Med Mycol, 1998, 36(5): 299-303.
[14] Schwarzmüller T, Ma B, Hiller E, Istel F, Tscherner M, Brunke S, Ames L, Firon A, Green B, Cabral V, Marcet-Houben M, Jacobsen ID, Quintin J, Seider K, Frohner I, Glaser W, Jungwirth H, Bachellier-Bassi S, Chauvel M, Zeidler U, Ferrandon D, Gabaldón T, Hube B, d’Enfert C, Rupp S, Cormack B, Haynes K, Kuchler K. Systematic phenotyping of a large-scale Candida glabrata deletion collection reveals novel antifungal tolerance genes [J]. PLoS Pathog, 2014, 10(6): e1004211.
[15] Ueno K, Uno J, Nakayama H, Sasamoto K, Mikami Y, Chibana H. Development of a highly efficient gene targeting system induced by transient repression of YKU80 expression in Candida glabrata [J]. Eukaryot Cell, 2007, 6(7): 1239-1247.
[16] Lavoie H, Sellam A, Askew C, Nantel A, Whiteway M. A toolbox for epitope-tagging and genome-wide location analysis in Candida albicans [J]. BMC Genomics, 2008, 9:578. doi: 10.1186/1471-2164-9-578.
[17] Alonso-Monge R, Navarro-García F, Román E, Negredo AI, Eisman B, Nombela C, Pla J. The Hog1 mitogen-activated protein kinase is essential in the oxidative stress response and chlamydospore formation in Candida albicans [J]. Eukaryot Cell, 2003, 2(2): 351-361.
[18] Reuss O, Vik A, Kolter R, Morschh?user J. The SAT1 flipper, an optimized tool for gene disruption in Candida albicans [J]. Gene, 2004, 341: 119-127.
[19] Beese-Sims SE, Pan SJ, Lee J, Hwang-Wong E, Cormack BP, Levina DE. Mutants in the Candida glabrata glycerol channels are sensitized to cell wall stress [J]. Eukaryot Cell, 2012, 11(12): 1512-1519.
. PENG Yibing, E-mail: pyb9861@sina.com
Amino terminus Flag tagging on Pdr1 inCandidaglabrata
TIAN Yuan, NI Qi, PENG Yibing
ClinicalLaboratory,RuijinHospital,ShanghaiJiaoTongUniversitySchoolofMedicine,Shanghai200025,China
Candidaglabrata(C.glabrata) is emerging as the second most common cause for invasive candidiasis and early studies indicate that it is relatively insensitive to azole treatment. Transcription factor Pdr1 is the key regulator of azole resistance genes inC.glabrata. In this study, a Flag sequence was introduced into amino terminus ofpdr1 gene at its native locus in chromosome through homologous recombination in clinical isolates ofC.glabrata. Western blotting analysis with anti-Flag antibody showed a single immunoreactive species matching the predicted size of Pdr1. Spot assay showed that mutants expressing Flag-Pdr1 were more resistant to fluconazole than wild-type. Real-time quantitative polymerase chain reaction showed that gene expression levels ofcdr1 andpup1 in mutants expressing Flag-Pdr1 were significantly increased than those in wild-type strains.
Candidaglabrata;pdr1; Tag; Gene deletion; Resistance
國家自然科學基金 (81371873、81301462、81572053)
彭奕冰
2016-12-21)