張浩,王千,劉偉
北京大學第一醫(yī)院皮膚性病科,北京大學真菌和真菌病研究中心,皮膚病分子診斷北京市重點實驗室,北京 100034
·論著·
兩株希木龍假絲酵母14α-去甲基化酶基因(ERG11)的克隆及其功能初步驗證
張浩,王千,劉偉
北京大學第一醫(yī)院皮膚性病科,北京大學真菌和真菌病研究中心,皮膚病分子診斷北京市重點實驗室,北京 100034
為探討希木龍假絲酵母(假絲酵母又稱念珠菌)的耐藥機制,首先克隆出兩株希木龍念珠菌ERG11基因,初步驗證其功能,從而為后續(xù)研究奠定基礎。從美國國家生物技術信息中心(National Center of Biotechnology Information,NCBI)基因數(shù)據(jù)庫中獲取白念珠菌、熱帶念珠菌、近平滑念珠菌和光滑念珠菌Erg11蛋白的保守序列,設計簡并引物,聚合酶鏈反應(polymerase chain reaction,PCR)擴增獲得希木龍念珠菌ERG11 cDNA部分片段;用快速cDNA末端擴增法(rapid amplification of cDNA ends,RACE)分別擴增其5′和3′端,獲得完整的ERG11編碼序列(coding sequence,CDS);將CDS克隆到pYES2表達載體中,在尿嘧啶營養(yǎng)缺陷型釀酒酵母中過表達ERG11;用微量液基稀釋法檢測轉(zhuǎn)化后的釀酒酵母對氟康唑的敏感性,初步驗證其功能。結果顯示,簡并PCR擴增獲得預期708 bp片段,5′RACE和3′RACE分別獲得385 bp和1 336 bp片段,經(jīng)純化、克隆、測序、比對分析,獲得兩株菌的ERG11 CDS;比對其編碼的蛋白,與其他念珠菌的Erg11蛋白高度同源;分別檢測克隆了這兩株希木龍念珠菌ERG11 CDS表達載體的釀酒酵母對氟康唑的敏感性,發(fā)現(xiàn)過表達ERG11明顯降低其對氟康唑的敏感性。結果提示,簡并PCR聯(lián)合RACE能準確有效地克隆出希木龍念珠菌ERG11基因,用pYES2釀酒酵母表達系統(tǒng)能初步驗證其功能。
希木龍假絲酵母;簡并聚合酶鏈反應;快速cDNA末端擴增法
近年來,希木龍假絲酵母(Candidahaemulonii,C.haemulonii;假絲酵母又稱念珠菌)感染所致真菌性疾病的發(fā)病率逐漸增高,特別是新生兒感染[1-4]。希木龍念珠菌作為機會性致病菌,主要引起免疫低下或受損者發(fā)生感染[5],所致疾病包括甲癬、導管相關真菌血癥等[6-7]。希木龍念珠菌對多種抗菌藥物耐藥,臨床上治療其引起的侵入性念珠菌病的效果較差[7-9],因此研究其耐藥機制具有重要臨床意義。念珠菌對氟康唑的耐藥機制主要包括靶酶14α-去甲基化酶基因(ERG11)突變或過表達、外排泵過表達及細胞應激反應異常。其中,ERG11突變或過表達是最常見的原因[10-11]。研究希木龍念珠菌中氟康唑靶酶的差異,首先要克隆出希木龍念珠菌ERG11基因。鑒于希木龍念珠菌基因組序列未知,本研究采用簡并聚合酶鏈反應(degenerate polymerase chain reaction,degenerate PCR)及快速cDNA末端擴增法(rapid amplification of cDNA ends,RACE),成功克隆出希木龍念珠菌ERG11基因,并在pYES2釀酒酵母表達系統(tǒng)中初步驗證其功能[12-15]。
1.1 實驗菌株
兩株希木龍念珠菌臨床分離株編號為 BMU05228(Candidahaemulonii)和BMU05314(Candidaduobushaemulonii),分屬兩個群。
1.2 主要數(shù)據(jù)庫和軟件
主要數(shù)據(jù)庫和軟件有:美國國家生物技術信息中心(National Center of Biotechnology Information,NCBI)數(shù)據(jù)庫(http://www.ncbi.nih.nlm.gov)、BlockMaker軟件(http://blocks.fhcrc.org/blocks/make_blocks.html)、共有序列簡并雜合寡核苷酸引物(consensus-degenerate hybrid oligonucleotide primers,CODEHOP)軟件(http://blocks.fhcrc.org/blocks/codehop.html)。
1.3 試劑
TRIzol 購自Thermo Fisher公司,PFUDNA聚合酶、TaqDNA聚合酶、T4 DNA連接酶購自NEB公司,cDNA擴增試劑盒購自Thermo Fisher公司,5′RACE和3′RACE試劑盒購自Clontech公司,酵母基因組提取試劑盒購自Bioflux公司,pYES2質(zhì)粒和釀酒酵母表達系統(tǒng)購自Thermo Fisher公司。
1.4 菌株DNA和RNA提取及cDNA生成
將兩株菌分別接種于馬鈴薯葡萄糖瓊脂(potato dextrose agar,PDA)斜面培養(yǎng)基上復蘇,30 ℃培養(yǎng)48 h,轉(zhuǎn)接于酵母膏胨葡萄糖(yeast extract peptone dextrose,YPD)液體培養(yǎng)基中,30 ℃,200 r/min,培養(yǎng)24 h,離心收集孢子。一部分菌用酵母基因組提取試劑盒提取基因組DNA,另一部分經(jīng)液氮研磨后用TRIzol法提取總RNA,然后用cDNA擴增試劑盒反轉(zhuǎn)錄獲得cDNA。
1.5 簡并PCR擴增獲得中間段cDNA序列
在NCBI數(shù)據(jù)庫中分別選取CandidaalbicansErg11 protein(GenBank:ACT21069.2和XP_716761.1)、CandidaparapsilosisErg11 protein(GenBank:ACT67904.1)、CandidatropicalisErg11 protein(GenBank:AAX39316.1和AAX39313.1)、CandidaglabrataErg11 protein (GenBank:AAX39317.1和ACI24047.1)序列。經(jīng)BlockMaker和CODEHOP在線軟件處理獲得分數(shù)較高(>75)的引物(表1),進行簡并PCR。反應體系:cDNA 3.0 μL、2×PFU mix、上下游引物各1 μL,加水至25 μL。反應條件為:95 ℃ 3 min,95 ℃ 30 s,50 ℃ 30 s,72 ℃ 1 min,共30循環(huán),且每一個循環(huán)退化溫度上升0.3 ℃; 72 ℃延伸10 min。PCR產(chǎn)物經(jīng)純化、克隆、測序、比對分析,獲得中間段目的片段。
表1 本研究中使用的引物
Tab.1 Primers used in this study
PrimerSequence(5'-3')DegenerateprimersF:CCCCATGGTGTTCTACTGGATHCCNTGGR:CGATCAGCAGGTTGGCGATYTCYTGRTC5'RACEBMU05228GSP1:GCCTCGGCAGAAACGTCAGCGAGCTTGSP2:TTCTGCCGAGGCCGCTTACTCGCATT3'RACEBMU05314GSP1:GGGCGTAAGCTGCCTCGGCGGAAACGSP2:CGCCGAGGCAGCTTACGCCCACTTGERG11CDSBMU05228F:ATGGGCTATCTCGTTGATCTTR:TTAGTACACGCATGTCTCCCTBMU05314F:ATGACCTTGAAGGATCATCTTGR:TTAGTAAACACAAGTCTCTCTCTTC
1.6 RACE法獲得ERG11 cDNA全長
根據(jù)上述獲得的目的片段序列,設計5′RACE和3′RACE所需GSP1和GSP2引物(表1)。按Clontech RACE試劑盒說明書進行5′RACE和3′RACE,分別獲得ERG11 cDNA 5′端和3′端片段。經(jīng)純化、克隆和測序,獲得片段序列。將上述3種方法獲得的3段序列進行拼接,得ERG11 cDNA全長序列。
1.7ERG11編碼序列(coding sequence,CDS)分析
根據(jù)上述獲得的ERG11 cDNA全長序列,于頭尾設計一對引物(表1),以希木龍念珠菌基因組為模板,擴增ERG11。經(jīng)克隆測序分析,獲得ERG11 CDS。
1.8 pYES2表達載體的構建
根據(jù)ERG11 CDS頭尾序列分別設計含有KpnⅠ和XbaⅠ酶切位點的引物,PCR擴增,回收純化PCR產(chǎn)物。用KpnⅠ和XbaⅠ限制性內(nèi)切酶酶切pYES2質(zhì)粒,使PCR產(chǎn)物與質(zhì)粒酶切產(chǎn)物在T4連接酶作用下進行連接,獲得含有BMU05228和BMU05314ERG11 CDS的質(zhì)粒,命名為p28ERG和p14ERG。
1.9 質(zhì)粒轉(zhuǎn)化和菌株篩選
根據(jù)Thermo Fisher公司pYES2釀酒酵母表達系統(tǒng)說明書,用醋酸鋰轉(zhuǎn)化法將p28ERG和p14ERG分別轉(zhuǎn)入尿嘧啶營養(yǎng)缺陷型釀酒酵母(INVSC1)中,涂布于SC-U培養(yǎng)基。待菌落長出后進行鑒定。挑取菌落,用T7引物進行PCR,測序鑒定PCR產(chǎn)物。
1.10 氟康唑敏感性測定
根據(jù)美國臨床和實驗室標準協(xié)會(Clinical and Laboratory Standards Institute,CLSI)M27-A3方案,測定轉(zhuǎn)化后的INVSC1對氟康唑的敏感性。
2.1 簡并PCR結果
PCR產(chǎn)物于預期708 bp處出現(xiàn)目的條帶,經(jīng)切膠純化、克隆、測序、分析,并與其他酵母的ERG11 序列進行比對,確證該片段為希木龍念珠菌ERG11 cDNA片段。
2.2 5′RACE和3′RACE結果
BMU05228和BMU05314ERG11 cDNA經(jīng)5′RACE和3′RACE分別獲得385 bp和1 336 bp產(chǎn)物,經(jīng)切膠純化、克隆、測序、比對分析,確證這兩段序列分別為ERG11 cDNA 5′端和3′端序列(圖1)。
2.3ERG11 CDS分析
以兩株菌ERG11 cDNA為模,分別獲得3段序列(5′端、3′端和中間段),將這3段序列進行比對拼接,獲得兩株菌的ERG11 cDNA全長序列。用cDNA頭尾引物,以兩株菌基因組DNA為模板,PCR擴增,獲得ERG11基因。測序、比對分析后得知序列中無內(nèi)含子,所得序列即為ERG11 CDS。BMU05228ERG11 CDS全長1 566 bp,編碼521個氨基酸。而BMU05314ERG11 CDS全長1 575 bp, 編碼525個氨基酸。將其蛋白序列與其他念珠菌的Erg11蛋白序列進行比對,發(fā)現(xiàn)序列之間具有很高的同源性,證實所得序列為希木龍念珠菌ERG11基因序列。
A: BMU05228. B: BMU05314. M, DNA marker.
圖1 簡并PCR、5′RACE和3′RACE PCR產(chǎn)物電泳圖Fig.1 The electrophoretogram of the products from degenerate PCR, 5′RACE and 3′RACE PCR
2.4 p28ERG和p14ERG轉(zhuǎn)化后的INVSC1鑒定
挑取SC-U平板上的菌落,用T7引物進行菌落PCR,于1 700 bp處出現(xiàn)陽性條帶菌落,為轉(zhuǎn)化成功的菌落。將PCR產(chǎn)物進行測序、比對分析,提示為ERG11。
2.5 氟康唑敏感性檢測
采用CSLI M27-A3方案,檢測轉(zhuǎn)化p28ERG和p14ERG質(zhì)粒后的INVSC1對氟康唑的敏感性。結果顯示(表2),轉(zhuǎn)化p28ERG和p14ERG質(zhì)粒后,INVSC1對氟康唑的敏感性明顯降低。這一方面表明表達載體能在釀酒酵母中使插入的ERG11基因過度表達,并導致其對氟康唑的敏感性明顯下降;另一方面初步驗證了RACE法獲得的希木龍念珠菌ERG11基因的功能,即作為氟康唑的靶酶。
表2 釀酒酵母轉(zhuǎn)化pYES2-ERG11表達載體后對氟康唑的耐藥性
Tab.2 The susceptibility ofSaccharomycescerevisiaeto fluconazole after transforming with pYES2-ERG11
MIC50offluconazole(μg/mL)INVSC12pYES2vector4p28ERG1132p14ERG1164
研究希木龍念珠菌對氟康唑的耐藥機制,首先要關注氟康唑的靶酶Erg11蛋白的突變或過表達,但其基因組序列未知,因此克隆其基因序列并驗證其功能是迄需解決的問題。針對這一問題,最常用的方法是簡并PCR聯(lián)合RACE法[13-15]。
簡并PCR是根據(jù)其他已知同源基因序列擴增未知基因片段。本研究利用其他念珠菌Erg11蛋白的保守序列設計簡并引物,包括白念珠菌、光滑念珠菌、熱帶念珠菌和近平滑念珠菌,然后以cDNA為模板進行簡并PCR,最后成功獲得兩株希木龍念珠菌ERG11 cDNA的中間片段。在進行簡并PCR過程中,為有效擴增出目的片段并減少非特異性擴增,退火溫度的設置尤其重要。本研究中,簡并PCR的退火溫度以低于引物較低Tm值5 ℃開始,每一個循環(huán)退火溫度上升0.3 ℃,進行30個循環(huán)。以此條件進行簡并PCR能有效獲得目的條帶,并減少非特異性擴增。
目前,5′RACE和3′RACE法很成熟,有多種試劑盒選擇。本研究中的Clontech RACE試劑盒使用方法簡單,效率較高,但獲得的5′端序列從翻譯起始密碼子ATG開始,因此不能確定ERG11 mRNA的5′端是否含有5′非翻譯區(qū)(5′-untranslated region,5′UTR),3′RACE也不能確定是否含有3′UTR。
念珠菌Erg11蛋白作為氟康唑的靶酶,其突變和過表達均能導致念珠菌對氟康唑的敏感性減低,可用于初步鑒定克隆出的基因是否為ERG11。本研究將ERG11克隆到pYES2載體中,并轉(zhuǎn)化進尿嘧啶營養(yǎng)缺陷型釀酒酵母中,使其在釀酒酵母中過表達,藥敏結果顯示轉(zhuǎn)化后的釀酒酵母對氟康唑的敏感性明顯降低。這一方法能較快速準確地對克隆出的基因功能進行初步驗證。為進一步驗證克隆出的ERG11功能,可在對氟康唑敏感的希木龍念珠菌中過表達ERG11,或在對氟康唑耐藥的希木龍念珠菌中敲除ERG11后檢測其對藥物的敏感性。常見的希木龍念珠菌為多重耐藥菌,其耐藥機制可能不僅僅與ERG11基因相關,后續(xù)研究可進行全基因組測序和轉(zhuǎn)錄組測序,從中尋找耐藥機制。
[1] Ramos LS, Figueiredo-Carvalho MH, Barbedo LS, Ziccardi M, Chaves AL, Zancopé-Oliveira RM, Pinto MR, Sgarbi DB, Dornelas-Ribeiro M, Branquinha MH, Santos AL. Candida haemulonii complex: species identification and antifungal susceptibility profiles of clinical isolates from Brazil [J]. J Antimicrob Chemother, 2015, 70(1): 111-115.
[2] Hou X, Xiao M, Chen SC, Wang H, Cheng JW, Chen XX, Xu ZP, Fan X, Kong F, Xu YC. Identification and antifungal susceptibility profiles of Candida haemulonii species complex cinical isolates from a multicenter study in China [J]. J Clin Microbiol, 2016, 54(11): 2676-2680. doi:10.1128/JCM.01492-16.
[3] de Almeida JN Jr, Assy JG, Levin AS, Del Negro GM, Giudice MC, Tringoni MP, Thomaz DY, Motta AL, Abdala E, Pierroti LC, Strabelli T, Munhoz AL, Rossi F, Benard G. Candida haemulonii complex species, Brazil, January 2010-March 2015 [J]. Emerg Infect Dis, 2016, 22(3): 561-563.
[4] Jie Q, Lin S, Zhang H, Hu Y, Huang X, Chen S, Chen S, Lin Z. Clinical analysis of 8 cases of neonatal septicemia caused by Candida haemulonii in neonatal intensive care unit [J]. Zhonghua Er Ke Za Zhi, 2016, 54(3): 197-200.
[5] Kumar A, Prakash A, Singh A, Kumar H, Hagen F, Meis JF, Chowdhary A. Candida haemulonii species complex: an emerging species in India and its genetic diversity assessed with multilocus sequence and amplified fragment-length polymorphism analyses [J]. Emerg Microbes Infect, 2016, 5: e49.
[6] Merseguel KB, Nishikaku AS, Rodrigues AM, Padovan AC, e Ferreira RC, de Azevedo Melo AS, Briones MR, Colombo AL. Genetic diversity of medically important and emerging Candida species causing invasive infection [J]. BMC Infect Dis, 2015, 15: 57.
[7] Cendejas-Bueno E, Kolecka A, Alastruey-Izquierdo A, Theelen B, Groenewald M, Kostrzewa M, Cuenca-Estrella M, Gómez-López A, Boekhout T. Reclassification of the Candida haemulonii complex as Candida haemulonii (C. haemulonii group I), C. duobushaemulonii sp. nov. (C. haemulonii group II), and C. haemulonii var. vulnera var. nov.: three multiresistant human pathogenic yeasts [J]. J Clin Microbiol, 2012, 50(11): 3641-3651.
[8] Kim MN, Shin JH, Sung H, Lee K, Kim EC, Ryoo N, Lee JS, Jung SI, Park KH, Kee SJ, Kim SH, Shin MG, Suh SP, Ryang DW. Candida haemulonii and closely related species at 5 university hospitals in Korea: identification, antifungal susceptibility, and clinical features [J]. Clin Infect Dis, 2009, 48(6): e57-e61.
[9] Ruan SY, Kuo YW, Huang CT, Hsiue HC, Hsueh PR. Infections due to Candida haemulonii: species identification, antifungal susceptibility and outcomes [J]. Int J Antimicrob Agents, 2010, 35(1): 85-88.
[10] Shapiro RS, Robbins N, Cowen LE. Regulatory circuitry governing fungal development, drug resistance, and disease [J]. Microbiol Mol Biol Rev, 2011, 75(2): 213-267.
[11] Cowen LE, Sanglard D, Howard SJ, Rogers PD, Perlin DS. Mechanisms of antifungal drug resistance [J]. Cold Spring Harb Perspect Med, 2014, 5(7): a019752.
[12] Hoot SJ, Brown RP, Oliver BG, White TC. The UPC2 promoter in Candida albicans contains two cis-acting elements that bind directly to Upc2p, resulting in transcriptional autoregulation [J]. Eukaryot Cell, 2010, 9(9): 1354-1362.
[13] 王曉慧, 劉偉, 李若瑜. 簡并PCR結合RACE技術克隆申克孢子絲菌未知過氧化氫酶基因 [J]. 中國真菌學雜志, 2011, 6(5): 271-275.
[14] 曹存巍, 劉偉, 李若瑜. 簡并PCR結合RACE技術克隆馬爾尼菲青霉未知基因 [J]. 中國皮膚性病學雜志, 2007, 21(11): 660-662.
[15] Okeke CN, Tsuboi R, Kawai M, Yamazaki M, Reangchainam S, Ogawa H. Reverse transcription-3′ rapid amplification of cDNA ends-nested PCR of ACT1 and SAP2 mRNA as a means of detecting viable Candida albicans in an in vitro cutaneous candidiasis model [J]. J Invest Dermatol, 2000, 114(1): 95-100.
. LIU Wei, E-mail: liuwei@bjmu.edu.cn
Cloning and functional identification of 14α-demethylase genes (ERG11) from two differentCandidahaemuloniistrains with degenerate PCR combined with RACE
ZHANG Hao, WANG Qian, LIU Wei
DepartmentofDermatologyandVenereology,PekingUniversityFirstHospital,ResearchCenterforMedicalMycology,BeijingKeyLaboratoryofMolecularDiagnosisonDermatoses,PekingUniversity,Beijing100034,China
ERG11 genes from two differentCandidahaemuloniistrains were cloned and their functions were verified for studying the mechanism of antifungal resistance. To obtainERG11 gene, degenerate primers were designed according to the conserved sequences in Erg11 protein from the other four types ofCandidaspp. PartialERG11 cDNA was amplified by degenerate polymerase chain reaction (PCR). And 5′ cDNA and 3′ cDNA were amplified by rapid amplification of cDNA ends (RACE) method. The full-lengthERG11 coding sequences (CDSs) were obtained after aligning and splicing. Furthermore,ERG11 CDSs were cloned into pYES2 and transformed intoSaccharomycescerevisiae(S.cerevisiae) which is auxotrophic for uracil. The susceptibility of yeasts to fluconazole was assayed following Clinical and Laboratory Standards Institute (CLSI) M27-A3. The results showed that the completeERG11 CDSs were obtained and identified through homologous alignment of Erg11 proteins with otherCandidaspp. Moreover, the susceptibility of yeasts to fluconazole was obviously reduced by overexpression of Erg11 proteins inS.cerevisiae. It is suggested thatERG11 genes can be effectively cloned by degenerate PCR combined with RACE and their functions could be preliminarily verified in pYES2 yeast expression system.
Candidahaemulonii; Degenerate polymerase chain reaction; Rapid amplification of cDNA ends
國家自然科學基金(81471925)
劉偉
2016-11-10)