• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      生物經(jīng)濟(jì)中的生物準(zhǔn)則城市

      2017-04-28 00:22:55喬基姆布朗JoachimvonBraun
      世界建筑 2017年4期
      關(guān)鍵詞:生物經(jīng)濟(jì)

      喬基姆·馮·布朗/Joachim von Braun

      生物經(jīng)濟(jì)中的生物準(zhǔn)則城市

      Bioprincipled Cities in the Bioeconomy

      喬基姆·馮·布朗/Joachim von Braun

      城市化并不是一種現(xiàn)代的現(xiàn)象——早在工業(yè)革命時(shí)代,由于經(jīng)濟(jì)和政治權(quán)力集中于城市,城市化對(duì)于人群和商業(yè)的吸引力就已與日俱增。最近幾十年來(lái),城市化這一趨勢(shì)并未改變——而且發(fā)展速度和規(guī)模達(dá)到了史無(wú)前例的水平[1]。在今后的30年內(nèi),城市發(fā)展和建設(shè)所需的資源可能會(huì)超過(guò)整個(gè)人類(lèi)歷史上的任何一個(gè)時(shí)代。為了讓特大城市能夠以可持續(xù)的方式運(yùn)作,并為城市的居民以及眾多(瀕臨滅絕的)生物體提供食物及保證其生活質(zhì)量,創(chuàng)新解決方案是必不可少的手段[2]。而且當(dāng)今的城市還需要向生物敏感型城市轉(zhuǎn)型。這就需要將生物經(jīng)濟(jì)放在可持續(xù)城市發(fā)展戰(zhàn)略的中心位置。通過(guò)將生物準(zhǔn)則整合到城市規(guī)劃和城市生活之中,發(fā)展生物經(jīng)濟(jì),有助于打造更加綠色環(huán)保的城市,提高生活質(zhì)量水平。

      1 什么是生物經(jīng)濟(jì)?

      生物經(jīng)濟(jì)理論是由尼古拉斯·喬治斯庫(kù)-羅根1971年創(chuàng)立的[3],而胡安·恩里克斯-卡博特和羅德里格·馬丁內(nèi)茲于1997年在描述那些主要由現(xiàn)代生命科學(xué)突破所推動(dòng)的經(jīng)濟(jì)部分時(shí)首次對(duì)生物經(jīng)濟(jì)這一術(shù)語(yǔ)給出了定義[4]。在歐洲,一群來(lái)自學(xué)術(shù)界和產(chǎn)業(yè)界的專(zhuān)家于2005年在政治層面引入了知識(shí)型生物經(jīng)濟(jì)這一概念,并且向歐盟介紹了生物經(jīng)濟(jì)的相關(guān)知識(shí)和觀點(diǎn)看法。2007年5月30日,時(shí)任歐盟理事會(huì)主席國(guó)的德國(guó)主持召開(kāi)了“邁向基于知識(shí)的生物經(jīng)濟(jì)”大會(huì),并發(fā)布了 《科隆文件》1)。

      當(dāng)時(shí)主要是針對(duì)日益稀缺的油氣資源而倡導(dǎo)發(fā)展生物經(jīng)濟(jì)。鑒于在過(guò)去5年中出現(xiàn)了新的鉆探方法(液壓破碎法)并且生物能源供應(yīng)量進(jìn)一步增加,油氣儲(chǔ)量有望堅(jiān)持更長(zhǎng)的時(shí)間,而且其價(jià)格也出現(xiàn)了大幅下跌。化石資源價(jià)格的預(yù)期上漲已經(jīng)不再是推動(dòng)當(dāng)今生物經(jīng)濟(jì)的決定性因素了。然而,生物經(jīng)濟(jì)依然以保護(hù)資源和氣候作為戰(zhàn)略導(dǎo)向。經(jīng)濟(jì)體需要轉(zhuǎn)向可再生資源和采取可循環(huán)的方式,以免給全球生態(tài)系統(tǒng)造成不可逆轉(zhuǎn)的損害以及不可估量的經(jīng)濟(jì)風(fēng)險(xiǎn)[5]。

      作為一種全新的而非基于政治和科學(xué)的概念,“生物經(jīng)濟(jì)”尚未形成一個(gè)被廣泛認(rèn)可的定義,這種情況并不奇怪。全球各地對(duì)于生物經(jīng)濟(jì)的理解有所不同——無(wú)論是在范圍還是在方向上。我們可以廣泛地將其定義為通過(guò)對(duì)生物資源、過(guò)程和原則的可持續(xù)生產(chǎn)和使用,為所有經(jīng)濟(jì)部門(mén)提供產(chǎn)品和服務(wù)[6]。這種生物經(jīng)濟(jì)定義并不專(zhuān)指替代其他資源的生物資源,而且也重點(diǎn)涉及了以生物知識(shí)和原則為基礎(chǔ)開(kāi)發(fā)新的以及可持續(xù)性更佳的替代產(chǎn)品和過(guò)程。如果脫離自然資源和生態(tài)資源的保護(hù)與再生這一基礎(chǔ)原則,生物經(jīng)濟(jì)則無(wú)從談起。

      1.1 生物經(jīng)濟(jì)的經(jīng)濟(jì)相關(guān)性

      一方面,生物經(jīng)濟(jì)具有非常悠久的歷史和傳統(tǒng)(烤制面包、釀造啤酒、貯藏食物、生產(chǎn)焦炭),另一方面,其又是一個(gè)新興并具有創(chuàng)新性的事物(新型生物材料,生物藥物,采用生物技術(shù)生產(chǎn)的食品配料、飼料和化妝品)。創(chuàng)新的生物經(jīng)濟(jì)建立在科學(xué)和技術(shù)過(guò)程的基礎(chǔ)上。生物經(jīng)濟(jì)所涉及的領(lǐng)域包括醫(yī)療保健、化學(xué)、建筑、信息通信技術(shù)(ICT)和工程等。其足以和數(shù)字化相提并論,即ICT已滲透了整個(gè)經(jīng)濟(jì)。

      生物經(jīng)濟(jì)(尤其是食品和醫(yī)療保?。缀踉谌蛩械慕?jīng)濟(jì)體中都扮演了重要角色。盡管可以通過(guò)生物資源來(lái)確定和量度經(jīng)濟(jì)部門(mén)的規(guī)模,但卻難以衡量各個(gè)領(lǐng)域的生物過(guò)程和技術(shù)的增值情況。舉例來(lái)說(shuō),歐洲的生物型經(jīng)濟(jì)在2013年實(shí)現(xiàn)的年度總營(yíng)收為2.1萬(wàn)億歐元左右,雇傭的人員超過(guò)了1700萬(wàn)人——約占?xì)W洲勞動(dòng)人口的9%。歐洲的生物型行業(yè)的非食品類(lèi)生產(chǎn)活動(dòng)的年?duì)I收額達(dá)到了4800億歐元,其中的10%是由創(chuàng)新型生物經(jīng)濟(jì)(生物基化學(xué)品、藥物和塑料)貢獻(xiàn)的[7]。美國(guó)在這方面的數(shù)據(jù)與歐洲大體相當(dāng)。在2013年,非食品類(lèi)生物型產(chǎn)業(yè)的營(yíng)收達(dá)到了3700億美元左右,并且提供了大約400萬(wàn)個(gè)就業(yè)崗位[8]。

      許多工業(yè)化國(guó)家和新興國(guó)家都將生命科學(xué)和生物技術(shù)視為前景光明的創(chuàng)新領(lǐng)域和未來(lái)的增長(zhǎng)源[9]。例如,印度和中國(guó)的生物技術(shù)型經(jīng)濟(jì)在過(guò)去的10年已經(jīng)取得了長(zhǎng)足的發(fā)展[10,11],并且建立了一套競(jìng)爭(zhēng)力十足的科學(xué)和產(chǎn)業(yè)基礎(chǔ)設(shè)施。而且巴西也在生物燃料和酒精能源汽車(chē)領(lǐng)域走在了世界前列[12,13]。

      1.2 可持續(xù)生物經(jīng)濟(jì)的前景

      2015年,聯(lián)合國(guó)的193個(gè)成員國(guó)就可持續(xù)發(fā)展目標(biāo)達(dá)成了共識(shí)(《2030議程》),此舉掀起了發(fā)展生物經(jīng)濟(jì)的勢(shì)頭以應(yīng)對(duì)嚴(yán)峻的社會(huì)挑戰(zhàn)。實(shí)際上,17個(gè)可持續(xù)發(fā)展目標(biāo)(SGDs)中的大多數(shù)都離不開(kāi)可持續(xù)生物經(jīng)濟(jì):消除饑餓(SDG 2)、良好健康與福祉(SDG 3)、清潔飲水和衛(wèi)生設(shè)施(SDG 6)、廉價(jià)和清潔能源(SDG 7)、體面工作和經(jīng)濟(jì)增長(zhǎng)(SDG 8)、可持續(xù)城市和社區(qū)(SDG 11)、負(fù)責(zé)任的消費(fèi)和生產(chǎn)(SDG 12)、氣候行動(dòng)(SDG 13)、水下生物(SDG 14)和陸地生物(SDG 15)2)。

      2 生物準(zhǔn)則城市面臨的挑戰(zhàn)和前景

      德國(guó)生物經(jīng)濟(jì)理事會(huì)在2015年主導(dǎo)開(kāi)展了生物經(jīng)濟(jì)的一項(xiàng)“旗艦項(xiàng)目”——國(guó)際德?tīng)柗蒲芯縤。此次活動(dòng)的目的是就進(jìn)一步的創(chuàng)新支持和新政策找出那些最為重要的生物經(jīng)濟(jì)相關(guān)領(lǐng)域,并向德國(guó)政府提供建議。生物準(zhǔn)則城市是德國(guó)生物經(jīng)濟(jì)理事會(huì)提出的四大旗艦項(xiàng)目(生物準(zhǔn)則城市、人造光合作用、新食品系統(tǒng)、全球治理)之一。這些旗艦項(xiàng)目經(jīng)過(guò)了兩輪評(píng)估、討論和改進(jìn),并且在經(jīng)典的德?tīng)柗普{(diào)查框架下加入了新的項(xiàng)目。來(lái)自世界各地以及各類(lèi)學(xué)科的2000多名與生物經(jīng)濟(jì)相關(guān)的專(zhuān)家受邀對(duì)旗艦項(xiàng)目的相關(guān)性和可取性進(jìn)行評(píng)估。共計(jì)有292名參與者完成了第一輪調(diào)查工作,149名參與者參加了第二輪調(diào)查。在第一輪調(diào)查中,生物經(jīng)濟(jì)德?tīng)柗普{(diào)查為各個(gè)旗艦項(xiàng)目給出了更加全面的愿景,以便進(jìn)行評(píng)估并征求意見(jiàn)(框1)。調(diào)查還要求參與者另行提出并說(shuō)明其他對(duì)于今后全球經(jīng)濟(jì)發(fā)展有重要意義的旗艦項(xiàng)目。3個(gè)新的旗艦項(xiàng)目(可持續(xù)的海洋產(chǎn)業(yè)、生物煉制4.0和發(fā)展消費(fèi)市場(chǎng))正是源自于參與者的反饋意見(jiàn)和建議。在第二輪時(shí),以匿名的形式提供了第一輪調(diào)查匯總之后的答復(fù)并且提供了(重新)評(píng)估7項(xiàng)旗艦項(xiàng)目的機(jī)會(huì)[2]。

      “生物準(zhǔn)則城市”被列為相關(guān)度最高的旗艦項(xiàng)目之一。約有40%的參與者將相關(guān)性評(píng)為極高,約有1/3的參與者認(rèn)為其具有相關(guān)性。大多數(shù)參與者估計(jì)這一愿景有望在2040年之前實(shí)現(xiàn)。在第二輪的時(shí)候,調(diào)查要求參與者評(píng)價(jià)此旗艦項(xiàng)目各個(gè)相關(guān)方面的相關(guān)性。在匯總之后,他們給出的答案可歸入三大領(lǐng)域:城市規(guī)劃、建造及建筑和城市生產(chǎn)(圖1)[2]。

      在城市規(guī)劃領(lǐng)域,參與者認(rèn)為發(fā)展可持續(xù)城市代謝這一方面的相關(guān)度最高。其涉及了城市封閉的材料和營(yíng)養(yǎng)循環(huán),即通過(guò)雨水收集、飲水梯度利用、廢水凈化和營(yíng)養(yǎng)恢復(fù)來(lái)實(shí)現(xiàn)這一理念。在這一領(lǐng)域已經(jīng)實(shí)現(xiàn)了生物經(jīng)濟(jì)創(chuàng)新。舉例來(lái)說(shuō),德國(guó)最大的城市供水公司柏林自來(lái)水公司已開(kāi)發(fā)了一套獲得專(zhuān)利的從廢水污泥中回收磷的解決方案。磷屬于全球稀缺資源并且正在不斷消耗殆盡。但這一元素卻是植物營(yíng)養(yǎng)和食品生產(chǎn)不可或缺的成分。利用發(fā)酵器以生物方式對(duì)廢水進(jìn)行第一道處理。借助化學(xué)物理過(guò)程,該公司能夠從污泥中回收磷酸氨鎂(MAP)—— 一種優(yōu)質(zhì)的長(zhǎng)效礦物肥料。這種名為“柏林植物”的MAP長(zhǎng)效肥料產(chǎn)品的銷(xiāo)售對(duì)象是城市園藝工作者和城市園藝農(nóng)場(chǎng)(圖2)。該產(chǎn)品中含有重要的礦物質(zhì)和微量元素,并且不含任何有害物質(zhì)。這一磷回收技術(shù)可以更輕松、更好地處理污泥,同時(shí)也節(jié)約了大量的金錢(qián)[14]。另一個(gè)城市中的封閉材料循環(huán)例子是使用咖啡渣來(lái)生產(chǎn)生物復(fù)合材料(采用咖啡渣和其他生物資源制成的塑料)。這些材料可用于家具、燈或餐具??Х仍€可以作為建筑材料使用,例如用于道路[15]。

      綠化城市空間的創(chuàng)新方法被認(rèn)為是另一個(gè)與未來(lái)城市規(guī)劃相關(guān)的方面。綠化有助于凈化空氣和平衡城市內(nèi)的極端溫度。其有利于社會(huì)福祉及提高城市的復(fù)原能力,例如吸收雨水。這一方面包括將住宅安排在城市中心,讓工作、購(gòu)物和休閑場(chǎng)所融為一體[2]。綠化城市空間已經(jīng)成為了全球各個(gè)城市的重要手段。舉例來(lái)說(shuō),在紐約(如布魯克林大橋公園)、柏林(如公主花園)或米蘭,城市園林綠化這一概念已被徹底改造。米蘭博埃里建筑設(shè)計(jì)事務(wù)所的設(shè)計(jì)師們?cè)O(shè)計(jì)了一整套名為“垂直森林”的充滿(mǎn)森林氣息的高層建筑群。這些混凝土建筑物的4個(gè)外立面幾乎都種滿(mǎn)了樹(shù)木,樹(shù)木的數(shù)量在900株左右,這些樹(shù)木種植在伸出樓外的陽(yáng)臺(tái)上(圖3)。綠化區(qū)域涉及的森林面積約為20,000m2。這些植物并不只是裝飾點(diǎn)綴物,而是體現(xiàn)了建筑理念的一部分,包括一套灌溉系統(tǒng)和負(fù)責(zé)植物修剪的“空中園丁”[16]。博埃里建筑工作室將在一個(gè)新項(xiàng)目上將綠色設(shè)計(jì)提升至更高層次。在名為山地森林酒店的項(xiàng)目中,他們?cè)O(shè)想建造一座從地基到屋頂全部實(shí)現(xiàn)綠化并擁有250個(gè)房間的酒店。山地森林將會(huì)建在中國(guó)的貴州,并且將被設(shè)計(jì)成垂直的“森林山地”風(fēng)格(圖4)[17]。

      在德國(guó),一家名為綠色城市解決方案的創(chuàng)業(yè)公司發(fā)明了一套旨在對(duì)付城市中的最大健康風(fēng)險(xiǎn)之一——空氣污染的移動(dòng)式自行維護(hù)綠化系統(tǒng)。發(fā)明者將這種結(jié)構(gòu)叫做“城市樹(shù)木”,其原因是這些高科技元素(圖5)的作用如同自然界的樹(shù)木一般,4m高的城市樹(shù)木上覆有一種特別的苔蘚類(lèi)植物,能夠吸收惡劣的空氣。實(shí)際上,它每年能夠吸收30kg的CO2。該公司進(jìn)一步指出這種人工樹(shù)木的作用相當(dāng)于275棵自然樹(shù)木,并且尤其適合于市區(qū)環(huán)境。為了避免它們脫水,利用“物聯(lián)網(wǎng)技術(shù)”為苔蘚提供水分[18]。舉例來(lái)說(shuō),香港的灣仔將會(huì)放置一棵城市樹(shù)木,因?yàn)檫@里是游客量最大的區(qū)域之一[19]。

      在建筑領(lǐng)域,參與德?tīng)柗蒲芯康娜藛T將生物啟發(fā)式設(shè)計(jì)解決方案評(píng)為未來(lái)生物準(zhǔn)則城市相關(guān)度最高的方面。在設(shè)想中,此類(lèi)設(shè)計(jì)解決方案利用能源庫(kù)、自然照明、廢水處理系統(tǒng)和戰(zhàn)略性種植來(lái)實(shí)現(xiàn)能源和水的自主性[2,20]。這一領(lǐng)域已經(jīng)開(kāi)展了一些項(xiàng)目,例如,德國(guó)漢堡擁有全球第一座采用了透明的生物反應(yīng)器制成的水藻外立面的建筑(圖6)。這種外立面不僅能夠產(chǎn)生熱量和生物量,而且還可以通過(guò)綠藻生長(zhǎng)時(shí)的化合作用吸收CO2。根據(jù)模型計(jì)算得出的數(shù)據(jù),這種外立面可以將48%的入射陽(yáng)光轉(zhuǎn)化成可用的生物能源。另外,小球藻可以起到光線(xiàn)防護(hù)的作用,它們可以根據(jù)陽(yáng)光的強(qiáng)度來(lái)調(diào)節(jié)自身的顏色。每個(gè)反應(yīng)器以?xún)蓧K玻璃板進(jìn)行固定,從而進(jìn)一步保證了隔熱和隔音效果[21]。

      生物基材料和剩余材料的使用被列為未來(lái)建造和建筑項(xiàng)目的另一個(gè)相關(guān)方面。它們有助于最大限度地減少能源密集型建筑材料和不可再生建筑材料的使用,并且還可以在保證成本效益的情況下用于翻新現(xiàn)有的建筑物[2,20]。鑒于其優(yōu)秀的材料性能以及更好的環(huán)境平衡性,自然資源可以作為建筑材料,通用結(jié)構(gòu)材料或施工及室內(nèi)施工材料使用。自人類(lèi)開(kāi)始修建房屋以來(lái),他們已將諸如木材和稻草之類(lèi)的生物資源作為建筑材料來(lái)使用。近年來(lái),可持續(xù)性和節(jié)能已成為了建筑行業(yè)日益重要的話(huà)題。目前已從可再生資源中開(kāi)發(fā)出了創(chuàng)新高科技建筑材料。這就是生物基建筑材料再次得到廣泛認(rèn)可的原因[22]。荷蘭出現(xiàn)了利用生物基塑料材料以3D打印方式建成的立面和建筑構(gòu)件。這些構(gòu)件可以回收利用或者重新塑造(圖7,見(jiàn)本刊64-67頁(yè))。舉例來(lái)說(shuō),奧地利維也納的一些高層建筑已經(jīng)采用了創(chuàng)新的木制結(jié)構(gòu),當(dāng)?shù)卣谛藿ㄈ蜃罡叩哪局平ㄖ铩癏oHo大廈”(圖8)。

      近年來(lái),天然隔熱材料的需求量也有所上升。其生產(chǎn)耗能更少,并且還可以為家庭的氣候及人體健康帶來(lái)積極的影響。木纖維隔熱材料正是其中的一個(gè)例子,那些來(lái)自于去纖維廢紙、麻類(lèi)植物、牧草、稻草和羊毛的纖維素也可以作為隔熱原料。

      另一個(gè)即將興起的建筑業(yè)話(huà)題是天然涂料的應(yīng)用,生產(chǎn)這些涂料的原料包括天然礦物質(zhì)和可再生植物資源,與傳統(tǒng)的化學(xué)產(chǎn)品相比(例如丙烯酸產(chǎn)品和醇酸樹(shù)脂產(chǎn)品),這些涂料中的溶劑含量更低。在100多種天然涂料產(chǎn)品中,最為重要的包括墻面涂料、木器漆、天然樹(shù)脂涂料、油和蠟[22]。

      Urbanization is not a modern phenomenon– during the industrial revolution cities already became more and more attractive to people and business due to their concentration of economic and political powers. The trend of urbanization has not changed in recent decades–in contrary, it continues apace in unprecedented speed and scale[1]. In the coming 30 years, urban development and construction may require more resources than in the entire human history. Innovative solutions are needed in order to enable these mega cities to function in a sustainable way, to provide food and quality of life for their inhabitants and for a multitude of (endangered) living organisms[2]. And the cities of today also need to change toward biosensitivity. Tis puts the bioeconomy at the centre of sustainable urban development strategies. While integrating biological principles in urban planning and city life, the development of the bioeconomy can contribute to greener cities with higher levels of quality of life.

      1 What is the Bioeconomy?

      Bioeconomic theory was established by Nicholas Georgescu-Roegen in 1971[3]and the term bioeconomy was probably first defined by Juan Enriquez-Cabot and Rodrigo Martinez in 1997[4]who intended to describe the part of the economy which is primarily driven by the breakthroughs in modern life sciences. In Europe, the concept of a knowledgebased bioeconomy was politically introduced in 2005 by a group of experts from academia and industry who outlined the understanding and perspectives of such a Bioeconomy for the European Union. Te resulting so-called 'Cologne Paper' was published on 30 May 2007 in Cologne at the conference 'En Route to the Knowledge-Based Bio-Economy' hosted by the German Presidency of the Council of the European Union1).

      At that time, bioeconomy development was particularly promoted in the face of ever-scarcer oil and gas resources. In view of new explorations (fracking) and an increase in the supply of renewable energy in the past 5 years, the oil and gas reserves are expected to last longer and prices have gone down dramatically. The bioeconomy of today is no longer predominantly driven by rising price expectations for fossil resources. However, resource and climate protection remain the strategic orientation for the Bioeconomy. Economies need to switch to renewable resources and adopt circular approaches in order to avoid irreversible damages of global ecosystems and incalculable economic risks[5].

      Being a new, rather political and science-based concept, it should not be surprising that no generally accepted definition of 'bioeconomy' emerged right away. The understanding of bioeconomy differs worldwide – both in scope and in direction. It can be broadly defined as the knowledge-based production and use of biological resources, processes and principles to sustainably provide goods and services across all economic sectors[6]. This definition of bioeconomy does not refer exclusively to biological resources acting as substitutes for other resources, but focuses on the development of new and more sustainable products and processes on the basis of biological knowledge and principles. Bioeconomy can only work if it succeeds in protecting and regenerating natural resources and ecosystems.

      1.1 Economic relevance of the bioeconomy

      Bioeconomy is on the one hand very ancient and traditional (bread baking, beer brewing, food conservation, char coal production), and on the other hand new and innovative (novel biomaterials, biopharmaceuticals, biotechnologically produced ingredients for food, feed and cosmetics). The innovative bioeconomy is based on scientific and technological progress. It cuts across sectors, such as health care, chemistry, building, ICT and engineering. It can be compared to digitalization, i.e., ICT's penetration of the whole economy.

      The Bioeconomy, especially food and health care, plays an important role in nearly all economies around the globe. Whereas it is possible to identify and gauge the size of economic sectors using biological resources, it is difficult to measure the value-added of biological processes and technology across sectors. The European biobased economy, for example, produced a total annual turnover of about 2100 billion EUR in 2013 and employed more than 17 million people – approximately 9% of the European workforce. Te non-food production of the European biobased industry generated an annual turnover of about 480 billion EUR, 10% of which are attributable to the more innovative bioeconomy (biobased chemicals, pharmaceuticals and plastics)[7]. In the US, the numbers are comparable. Te non-food biobased industry generated a turnover of about 370 billion USD and represented about four million jobs in 2013[8].

      In many industrialized and emerging countries, the life-sciences and biotechnology are seen as a promising field of innovation and source of future growth[9]. India's and China's biotechnology –based economies, for example, have registered significant growth over the past ten years and established a competitive scientific and industrial infrastructure[10,11], Brazil, for example, has been at the forefront in the area of biofuels and ethanoldriven cars[12,13].

      1.2 Te vision of a sustainable bioeconomy

      The adoption of the Sustainable Development Goals (Agenda 2030) by 193 countries in 2015 builds a momentum for the bioeconomy and its contributions to meeting the great societal challenges. In fact, a sustainable bioeconomy will be necessary to achieve a majority of the 17 sustainable development goals (SGDs): zero hunger (SDG 2), good health and well-being (SDG 3), clean water and sanitation (SDG 6), affordable and clean energy (SDG 7), decent work and economic growth (SDG 8), sustainable cities and communities (SDG 11), responsible consumption and production (SDG 12), climate action (SDG 13), life below water (SDG 14) and life on land (SDG 15)2).

      2 Challenges and visions of Bioprincipled cities

      In 2015, the German Bioeconomy Council commissioned an international Delphi study on 'flagship projects' of the bioeconomy. The aim of this exercise was to recommend to the German Government where the most important bioeconomy-related fields for further innovation support and new policy may be found. BioprincipledCity was one of four flagship projects (Bioprincipled City, Artificial Photosynthesis, New Food systems, Global Governance) proposed by the German Bioeconomy Council. These flagship projects were assessed, discussed, improved, and new projects were added within the framework of a classic Delphi survey in two rounds. More than 2000 bioeconomyrelated experts from all over the world and from a broad range of disciplines were invited to evaluate both the relevance and desirability of the flagship projects. In total 292 participants completed the first survey round, and 149 participants the second round. In the first round, the Bioeconomy Delphi survey provided a more comprehensive vision of each flagship project for assessment and comments (BOX 1). The participants were also asked to add and describe additional flagship projects that are seen as very important for the development of the future global economy. Tree new flagship projects (Sustainable Marine Production, Biorefineries 4.0 and Developing Consumer Markets) were derived from participants' feedback and recommendations. In the second round, the aggregated but anonymous answers from the first round were provided alongside the opportunity to (re)assess the seven flagship projects[2].

      'Bioprincipled City' was rated as one of the most relevant flagship projects. About 40% of participants rated the relevance as very high and around one third of participants considered it as relevant. Te majority of participants estimated that the vision could be realized by 2040.

      In the second round, the participants were asked to rate the relevance of single aspects related to this flagship project. Teir answers were clustered into three areas: urban planning, architecture/ buildings and urban production (Fig. 1)[2].

      In the field of urban planning, the participants considered the aspect of developing a sustainable city metabolism as most relevant. It relates to closing material and nutrient loops in cities, e. g. by rainwater collection, cascading use of drinking water, wastewater purification and nutrient recovery. Bioeconomy innovations in this area already exist. For example, the Berliner Wasserbetriebe, Germany's largest municipal water supply company, has developed a patented solution for recovering phosphorus from sewage sludge. Phosphorus resources are scarce globally and depleting quickly. However, they are vital for plant nutrition and thus food production. The waste water is first treated biologically in a fermenter. With the help of a chemical-physical process the company is able to recover magnesium-ammonium-phosphate (MAP)– a high-quality mineral long-term fertilizer – from the sludge. Under the name of 'Berliner Pflanze' (Berlin plant) the MAP is marketed to city gardeners and urban horticultural farms as a long-term fertilizer (Fig. 2). It contains important minerals and trace minerals and is free from any harmful substances. Thanks to the phosphor recovery the sludge is easier and better to treat which saves a lot of money[14]. Another example of closing material loops in cities is the use of waste coffee grounds for producing bio-composite materials (plastics made out of coffee grounds and other biological resources bound by bio-resins). These are used in furniture, lamps or for dishes. Coffee grounds might also serve for building materials, e.g. for roads[15].

      Innovative ways of greening urban spaces were rated as another relevant aspect of urban planning in the future. Greening helps cleaning the air and balancing temperature extremes in cities. It contributes to resilience, e.g. absorption of rain water, and to social well-being. This aspect includes the vision that housing is organized in urban centres where work, shopping and leisure space become much more integrated[2]. Greening urban spaces has become an important instrument for a variety of cities around the globe. Examples can be found in New York (e. g. Brooklyn Bridge Park), Berlin (e. g. Prinzessinneng?rten) or Milan, where the concept of urban gardening has been reinvented. Te architects of the Milan architecture Studio Boeri designed an ensemble of forested high-rise buildings, called 'Bosco Verticale' (vertical forest). Both concrete buildings were planted on almost all four facades with about 900 trees, which were placed on projecting balconies (Fig. 3). The greening area relates to a forest area of about 20,000 m2. The plants are thereby not to be meant as decorative attachment, they rather represent a part of an architectural concept, including an irrigation system and 'flying gardeners' who are responsible for trimming the plants[16]. With a new project the architects of Studio Boeri will take the green design to a next level. Under the so-called Mountain Forest Hotel project, they envisaged to build a 250-room hotel which will be greened from the foundation to the roof. Te Mountain Hotel will be built in Guizhou/China and will be designed as a vertical 'forest mountain' (Fig. 4)[17].

      In Germany, the start-up company Green City Solutions invented a mobile and self-maintaining greening system with the aim to cope with one of the greatest health risks in cities – air pollution. The inventors call their quadratic structures 'City Trees' as the high-tech elements (Fig. 5) are working like natural trees. The four-meter-tall City Trees are cladded with a special species of moss, which absorbs poor air. In fact, it binds 30 kilos of carbon dioxide per year. The company further states that one of the artificial trees performs as 275 real trees and that they are therefore in particular suitable for urban areas. In order to prevent them from drying out, a 'internet-of the things-technology' provides the mosses with water[18]. In Hong Kong, for example, a City Tree will be placed in Wan Chai, one of Hong Kong's most heavily-travelled areas[19].

      In the field of architecture and buildings the participants of the Delphi study rated bio-inspireddesign solutions as most relevant aspect of a future Bioprincipled city. According to the vision, such design solutions make use of energy depots, natural lighting, waste water systems and strategic planting to achieve energy and water autonomy[2,20]. Existing projects in this field can be seen, for example, in Hamburg/Germany, where the world's first building was equipped with an algae facade made of glassy bioreactors (Fig. 6). This facade does not only produce heat and biomass; it also binds carbon dioxide through the photosynthesis of growing green algae. According to model calculations, the facade could convert about 48% of the incoming sunlight into usable bioenergy. Moreover, the chlorella algae serve as light protection as they adjust its colour to the sun's intensity. Every reactor is fixed with two glass plates, which further ensure thermal insulation and noise protection[21].

      Usage of biobased and residual materials were rated as another relevant aspect of future architecture and building projects. They should help to minimize the use of energy-intensive and non-renewable building materials and should also be used for costefficient retrofits of existing buildings[2,20]. In the light of their good material properties and their improved environmental balance, natural resources can serve as materials for buildings, general construction materials, or for construction and interior construction. Since humans have built houses, they have used biological resources such as wood and straw as building materials. In recent years, sustainability and energy efficiency have become increasingly important topics in the construction sector. Innovative and high-tech building materials have been developed from renewable resources. This is why the acceptance of biobased building materials is rising again[22].In the Netherlands, facades and building elements are 3D-printed with biobased plastic materials. These elements can be recycled or re-modelled if needed (Fig. 7, page 64-67). Innovative wood construction, for example, is used for high-rise buildings in Vienna/Austria, where the world's highest wooden building, the HoHo Building, is currently under construction (Fig. 8).

      Since recent years, also natural insulation materials have enjoyed greater demand. Their production requires less energy and they have positive effects on household climate and human health. Examples are wood fibre insulation materials, but also cellulose from defibrated old paper, hemp, ax, meadow grass, straw and sheep's wool serve as raw material for insulation.

      Another upcoming topic in the construction sector is the application of natural paints, which are produced from natural mineral and regenerative plant sources, and contain far less solvent – in contrast to conventional chemical products, such as acrylic and alkyd products. Among the more than 100 natural natural-paint products, wall paints, wood lacquers, natural resin paints, oils and waxes are among the most important[22].

      In the area of urban production, the participants of the Delphi study rated the aspects of 'green' industrial production and urban farming as most relevant. Visions for green industrial production are developed, for example, by the Belgian architect Vincent Callebaut, whose 'Hyperions' project aims to combine archaeology and sustainable food systems, that grow up around six timber towers in New Delhi/India (Fig. 9, page 68-77). The project is further designed to integrate urban renaturation, small-scale farming, environmental protection and biodiversity. The vertical village provides spaces for business incubators, living labs, co-working spaces and multi-purpose rooms. All apartments are equipped with cascading hydroponic balconies and indoor furniture is made from natural materials like tamarind and sandalwood. Organic aquaponics and hydroponic greenhouses further provide all residents with fresh vegetables. Food is also produced in neighbouring agroforestry fields, which ensure food autonomy to the residents[23].

      But urban production is not only a future vision, it has started to become a reality in a variety of cities worldwide, e. g. in New York's Floating Food Forest called Swale, which sails around the city and offers fresh foods like vegetables but also offers plants, a seed exchange program, and a crowd-sourced cookbook[24]. In Berlin, for example, sustainable urban production takes place up on the roofs. Within the project 'roof water farm', scientists from the Technical University Berlin focus on combining fish farming and plant cultivation (Fig. 10). In the same time, they aim to demonstrate paths towards innovative city water management, while exploring and communicating potentials and risks of redesigning across sectors of infrastructure[25].

      The Delphi study revealed, that the Bioprincipled City is widely regarded as feasible but with limitations. Some participants, for example, doubted its validity in megacities, others instead saw it embedded in a regional context. Vertical farms and urban farming in general were regarded with scepticism and if participants argued in favour of urban farming, they stressed the limitations of crops and scale. Finally, it turned out that the surroundings, regions, existing infrastructure, situation and size need to be considered in order to realize the flagship project[2].

      3 The way forward–steps toward Bioprincipled cities

      A first field of action should focus on how bioeconomy can contribute to improve the urban quality of life. Relevant research topics include, i.e. greening technologies and greening systems, which should help to increase urban resilience and living climate. Sustainable solutions, e. g. for green roofs or mobile greening elements, require further basic and applied research. Furthermore, new concepts for urban gardening and the integration of existing allotment gardens were identified as important research topics.

      In the area of architecture and construction we need energy-positive or recyclable buildings, to ensure a reduced resource footprint. The development of biobased materials should be further promoted, while their contribution to sustainable building need to be monitored and evaluated. To combine all this with esthetics and beauty is the challenge for the architecture community.

      Moreover, large parts of urban transportation need to be shifted to electric drives and alternative fuels, such as new generation biofuels. Technological innovations in this area are an urged need, just like new concepts for urban food production. Concepts on sky and peri-urban farming, for example, require intensive research and technological breakthroughs in different disciplines (e. g. crop research, biological plant protection, farming and lighting techniques, nutrient cycling etc.). Research is necessary to demonstrate how changes in regulations can possibly contribute to implementation success.

      Another relevant research issue for the resource-efficient city of the future are circular systems for biobased materials and energy[26]. All these efforts in applying biobased principles and materials in urban planning and design will contribute to making urban areas more environmentally-friendly and more liveable for its residents.

      BOX 1: Flagship Project Bioprincipled City

      The integration of biological principles into urban planning and city life has become a key element for the achievement of greener cities with high levels of self-sufficiency and quality of life. Locally coordinated production, provision, use and recycling systems ensure that mega cities function on the basis of closed material and energy cycles. Emissions, waste and losses are minimized. Renewable resources, cropping techniques and biotechnology play a major role in closing the loops. Valuechains are based on the cascading use of natural and renewable resources, e.g. water. Urban (vertical) farms are economically and ecologically efficient high-tech production centres. Spaces for recreation, production, services, work and living are integrated and decentralized in city districts. Mega cities innovate sustainable building designs and construction techniques by referring to biological principles and renewable resources. Green areas, and especially the green belts of big cities, are recognized as important retreats and contribute to biodiversity, water regulation and filtration, air cleaning, halting soil erosion and desertification, mitigating temperature extremes (saving energy consumption) and human recreation.

      框1:旗艦項(xiàng)目生物準(zhǔn)則城市

      在城市規(guī)劃和城市生活中整合生物準(zhǔn)則已經(jīng)成為了打造更加綠色環(huán)保的城市,以及進(jìn)一步提高自給自足水平和改善生活品質(zhì)的關(guān)鍵要素。本地的協(xié)調(diào)化生產(chǎn)、供應(yīng)、使用和循環(huán)系統(tǒng)確保那些超大城市能夠在封閉的物料和能源循環(huán)支持下正常運(yùn)作。最大限度地減少排放物、廢物和損耗??稍偕Y源、雜交技術(shù)和生物技術(shù)在解決這些循環(huán)方面發(fā)揮了重要作用。價(jià)值鏈建立在自然和可再生資源(例如水)梯度利用的基礎(chǔ)上。從經(jīng)濟(jì)層面和生態(tài)層面而言,作為高科技生產(chǎn)中心的城市農(nóng)場(chǎng)無(wú)疑是一種十分高效的手段。休閑、生產(chǎn)、服務(wù)、工作和生活空間分散在市區(qū)各地。超級(jí)城市通過(guò)借助生物準(zhǔn)則和可再生資源,在可持續(xù)建筑設(shè)計(jì)和建筑技術(shù)方面不斷創(chuàng)新。綠化區(qū),尤其是大型城市的綠化帶,作為重要的棲息休養(yǎng)地,有助于保護(hù)生物多樣性、調(diào)節(jié)和過(guò)濾水資源、凈化空氣、阻止水土流失和土地荒漠化緩解極端溫度(節(jié)約能耗),以及為市民提供休憩場(chǎng)所。

      相關(guān)性 ,所有參與者/Relevance. All participants

      時(shí)間范圍,所有參與者/Time horizon. All participants

      特定方面的相關(guān)性

      城市規(guī)劃/Urban Planing

      ·城市封閉的材料循環(huán)可以有效地廢物利用(零廢棄),如通過(guò)雨水收集、廢水凈化、建立水資源的梯度利用、空氣凈化、取代不可回收材料或使用可再生材料等。(n=161) ·城市具有吸引力且完全融入到更大區(qū)域內(nèi)。郊區(qū)將成為城市可持續(xù)食品、原料和能源供應(yīng)體系的一部分,而非純粹的郊外住宅區(qū)。(n=163)

      ·為確保居民的社會(huì)幸福度,住宅被安置在有綠化空間的城市中心區(qū)。大多數(shù)居民可以使用自行車(chē)(占主導(dǎo)地位的個(gè)人交通方式),公共交通工具或步行作為日常生活的一部分,因?yàn)楣ぷ?、?gòu)物及休閑空間均已融入在居住區(qū)當(dāng)中。(n=164) ·大城市通過(guò)應(yīng)用環(huán)境生物技術(shù)、優(yōu)化植物和生物種植技術(shù),建立并恢復(fù)了濕地、森林和綠地。(n=163)

      ·Cities close material loops, e.g. by collecting rainwater, cleaning wastewater and establishing cascading use, purifying the air or substituting non-recyclable and renewable materials so that 'waste' is effectively abolished ('zero waste'). (n=161)

      ·Te cities are attractive and fully integrated into the region. Suburban areas will become part of sustainable urban supply systems for food, feedstocks and energy instead of being designed as purely dormitory towns. (n=163)

      ·Housing is organized in urban centre with green spaces ensuring social well-being. A majority of residents can use bicycles (dominant mode of private transport), public transport or walk as part of their daily routine, because work, shopping and leisure spaces are integrated into urban residential areas. (n=164)

      ·Big cities establish and recover territories for wetlands, forests and green spaces by applying enviromental biotechnology, optimized plants and biological cropping techniques. (n=163)

      ·基于仿生和自然法則的導(dǎo)航、交通規(guī)則及物流體系(如:來(lái)源于群居昆蟲(chóng)的演算)。(n=161)

      ·Navigation, traffic regulation and logistic systems function on the basis of bio-inspired and natural principles (e.g. algorithms derived from social insects). (n=161)

      建造及建筑/Architecture and Buildings

      ·設(shè)計(jì)方案與功能性材料通過(guò)能源儲(chǔ)藏、自然采光、廢水系統(tǒng)和戰(zhàn)略性的種植,實(shí)現(xiàn)了能源和水的自主性。(n=162) ·生物基材料和殘余材料(如木材或生物基復(fù)合材料等)將能源密集型材料和不可再生建筑材料的使用降至最低。它們也被用于既有建筑物成本效益的改造。(n=162)

      ·

      Design solutions and functional materials make use of energy depots, natural lighting, waste water systems and strategic planting to achieve energy and water autonomy. (n=162) ·Biobased and residual materials, such as wood or biobased composites, successfully minimize the use of energy-intensive and non-renewable building materials. Tey are also used for cost-efficient retrofits of existing buildings. (n=162)

      城市生產(chǎn)/Urban Production

      ·綠色的工業(yè)生產(chǎn)(潔凈的空氣、無(wú)噪音、綠色物流等)與住區(qū)生活共存。(n=163)

      ·城市農(nóng)場(chǎng)(如天臺(tái)或立面)和城市森林,采用集散的方式向商店、住宅區(qū)及餐廳提供新鮮食材。 (n=163)

      ·Industrial production is 'green' (clean air, silent, green logistics, etc) and co-exists with residential living. (n=163)

      ·Urban farms (e.g. on roof tops or facades) and urban forestry enable a decentralized and healthy provision of fresh food in shops, residential buildings and restaurants. (n=163)

      1 德?tīng)柗蒲芯坎糠纸Y(jié)果/Te part of Delphi study(圖片來(lái)源/Source: 參考文獻(xiàn)/Reference [2])

      2 “柏林植物”/ 'Berliner Pflanze'(圖片來(lái)源/Source: GreenTec Awards, http://www.ecowoman.de/25-haus-garten/4001-duengerberliner-pflanzen-erhielt-den-begehrten-greentec-award)

      3 意大利米蘭的“空中森林”/Bosco Verticale, Milan, Italy(圖片來(lái)源/Source: Stefano Boeri Architetti, http://www. stefanoboeriarchitetti.net/en/portfolios/bosco-verticale/#)

      4 山地森林酒店/Mountain Forest Hotel(圖片來(lái)源/Source: Stefano Boeri Architetti, http://inhabitat.com/vertical-forestmountain-hotel-will-clean-the-air-in-guizhou-china/)

      5 城中樹(shù)/City Tree(圖片來(lái)源/Source: Green City Solutions, http://greencitysolutions.de)

      6 德國(guó)漢堡藻墻大樓/Algae Building, Hamburg, Germany(圖片來(lái)源/Source: KOS Wulff Immobilien GmbH, http://www. biq-wilhelmsburg.de)

      7 荷蘭歐盟大樓的3D打印立面和建筑構(gòu)件/3D printed facades and building elements of the Dutch EU building(圖片來(lái)源/ Source: DUS Architects, https://www.dezeen.com/2016/01/ 12/european-union-3d-printed-facade-dus-architects-holland/)

      在城市生產(chǎn)領(lǐng)域中,參與德?tīng)柗蒲芯康娜藛T將“綠色”工業(yè)生產(chǎn)和城市農(nóng)業(yè)評(píng)為相關(guān)度最高的方面。在綠色工業(yè)生產(chǎn)的愿景上已經(jīng)取得了一定的發(fā)展,舉例來(lái)說(shuō),比利時(shí)建筑師文森特·卡勒博的“亥帕龍”項(xiàng)目計(jì)劃將考古學(xué)與可持續(xù)食品系統(tǒng)相結(jié)合,項(xiàng)目由位于印度新德里的6個(gè)花園塔構(gòu)成(圖9,見(jiàn)本刊68-77頁(yè))。項(xiàng)目設(shè)計(jì)進(jìn)一步整合了城市自然再造、小規(guī)模農(nóng)業(yè)、環(huán)境保護(hù)和生物多樣性。垂直村落為企業(yè)孵化器、生活實(shí)驗(yàn)室、聯(lián)合辦公場(chǎng)所和多用途房間提供了空間。所有的公寓住宅都配有階式水耕露臺(tái),并且室內(nèi)的家具均采用羅望子和檀香木等天然材料制造而成。有機(jī)養(yǎng)耕共生和水耕溫室進(jìn)而為所有的居民提供新鮮蔬菜。周邊的農(nóng)林場(chǎng)也可以出產(chǎn)食物,確保居民的食物自主性[23]。

      但城市生產(chǎn)并非只是一種未來(lái)的景象,在全球許多城市已開(kāi)始成為現(xiàn)實(shí)。它不僅能夠提供蔬菜之類(lèi)的食物,而且還能提供植物、種子交換項(xiàng)目和源于群眾的食譜[24]。舉例來(lái)說(shuō),在柏林,可持續(xù)城市生產(chǎn)在建筑屋頂發(fā)揚(yáng)光大。在“屋頂農(nóng)場(chǎng)”項(xiàng)目中,來(lái)自柏林工業(yè)大學(xué)的科學(xué)家專(zhuān)注于養(yǎng)魚(yú)業(yè)與植物種植相結(jié)合(圖10)。他們還打算在探索和交流基礎(chǔ)設(shè)施行業(yè)重新設(shè)計(jì)的潛力和風(fēng)險(xiǎn)的同時(shí)對(duì)創(chuàng)新型城市水管理途徑加以證明[25]。

      德?tīng)柗蒲芯勘砻鳎瑓⑴c人員普遍認(rèn)為生物準(zhǔn)則具備可行性但也有一些局限性。舉例來(lái)說(shuō),一些參與者對(duì)其在特大城市中的有效性表示懷疑,其他一些人則認(rèn)為其融入了地域環(huán)境。總的來(lái)說(shuō),他們對(duì)垂直農(nóng)場(chǎng)和城市農(nóng)業(yè)持懷疑態(tài)度,贊成城市農(nóng)業(yè)的參與者強(qiáng)調(diào)了作物和規(guī)模的局限性。最后,其結(jié)果表明,為了實(shí)現(xiàn)旗艦項(xiàng)目,需要對(duì)周邊環(huán)境、地區(qū)、現(xiàn)有的基礎(chǔ)設(shè)施、情況和規(guī)模大小加以考慮[2]。

      8 奧地利維也納Hoho大廈的視覺(jué)效果圖/Visualization of Hoho House, Wien, Austria(圖片來(lái)源/Source: Entwicklung Baufeld Delta GmbH, http://www.hoho-wien.at)

      9 文森特·卡勒博建筑設(shè)計(jì)事務(wù)所設(shè)計(jì)的“亥帕龍”視覺(jué)效果圖/Hyperions vision by Vincent Callebaut(圖片來(lái)源/Source: Vincent Callebaut Architecture, http://vincent.callebaut.org/ zoom/projects/160220_hyperions/hyperions_pl018.jpg)

      10 德國(guó)柏林的“屋頂農(nóng)場(chǎng)”/'Roof Water Farm' in Berlin, Germany(圖片來(lái)源/Source: Susanne Feldt, http:// zerowastelabs.com/ZWL/field-trip-roof-water-farm/)

      3 前進(jìn)之路——邁向生物準(zhǔn)則城市

      該領(lǐng)域的首項(xiàng)行動(dòng)應(yīng)將重點(diǎn)放在生物經(jīng)濟(jì)如何才能有助于提高城市生活質(zhì)量上。相關(guān)的研究課題包括有助于提高城市恢復(fù)能力和改善生活氣候的綠化技術(shù)和綠化系統(tǒng);可持續(xù)解決方案,例如綠色屋頂或移動(dòng)式綠化構(gòu)件,要求開(kāi)展進(jìn)一步的基本研究和應(yīng)用研究。此外,城市園林化及整合現(xiàn)有社區(qū)園林的新理念也被確認(rèn)為重要研究課題。

      在建造及建筑領(lǐng)域,我們需要低耗能或可回收利用的建筑物,以確??s減資源足跡;應(yīng)當(dāng)進(jìn)一步倡導(dǎo)開(kāi)發(fā)生物型材料,但需要對(duì)它們?cè)诳沙掷m(xù)建筑方面的貢獻(xiàn)力度進(jìn)行監(jiān)測(cè)和評(píng)估。將以上幾點(diǎn)與美學(xué)和美觀相結(jié)合則是建筑界面臨的挑戰(zhàn)之一。

      另外,大部分城市交通需要轉(zhuǎn)為電力驅(qū)動(dòng)和替代燃料(例如新一代的生物燃料)。這一領(lǐng)域迫切需要技術(shù)創(chuàng)新,正如城市食品生產(chǎn)新理念一樣。舉例來(lái)說(shuō),空中農(nóng)業(yè)和城市邊緣地區(qū)農(nóng)業(yè)理念需要在不同的學(xué)科開(kāi)展深入研究和取得技術(shù)突破(例如,作物研究、植物病蟲(chóng)害生物防治、農(nóng)業(yè)和光照技術(shù)、養(yǎng)分循環(huán)等)。為了證明修改法規(guī)有利于項(xiàng)目的實(shí)施成功,有必要開(kāi)展研究工作。

      另一個(gè)與未來(lái)的資源節(jié)約型城市相關(guān)的研究課題是生物型材料和能源的循環(huán)系統(tǒng)[26]。所有這些旨在于城市規(guī)劃和建筑設(shè)計(jì)中應(yīng)用生物準(zhǔn)則和生物材料的努力,都將為建筑居民營(yíng)造一個(gè)更加環(huán)保和宜居的城市環(huán)境做出貢獻(xiàn)。

      編注/Editor's Note

      i 德?tīng)柗品ǎ篋elphi Method,調(diào)查者擬定調(diào)查表,按照規(guī)定程序通過(guò)函件征詢(xún)專(zhuān)家組成員意見(jiàn),專(zhuān)家組成員之間通過(guò)調(diào)查者的反饋材料匿名地交流意見(jiàn),經(jīng)過(guò)若干輪反饋,專(zhuān)家們的意見(jiàn)逐漸集中,最后獲得有統(tǒng)計(jì)意義的專(zhuān)家集體判斷結(jié)果,具有匿名性、多次反饋性及統(tǒng)計(jì)性3個(gè)特點(diǎn)。

      注釋/Notes

      1)該文件體現(xiàn)了2007年1-6月期間舉行的6次研討會(huì)的研究討論結(jié)果。參與者對(duì)以下方面進(jìn)行了討論:(1)框架,(2)食物,(3)生物材料和生物工藝,(4)生物能源,(5)生物醫(yī)藥,(6)新理念和新興技術(shù)。/It presents the findings of six workshops which were held between January and March 2007. The participants discussed the following aspects: (1) Framework, (2) Food, (3) Biomaterials and Bioprocesses, (4) Bioenergy, (5) iomedicine and (6) New Concepts and Emerging Technologies.

      2)參見(jiàn)聯(lián)合國(guó)秘書(shū)長(zhǎng)可持續(xù)發(fā)展目標(biāo)特別顧問(wèn)及可持續(xù)發(fā)展解決方案網(wǎng)絡(luò)負(fù)責(zé)人杰弗里·薩克斯發(fā)表的演講/ See speech of Jeffrey Sachs, Special Advisor on Sustainable Development Goals to the UN-Secretary General and Director of the Sustainable Development Solutions Network. https://www.youtube.com/watch?v=K0E5Gvf8lPs

      參考文獻(xiàn)/References

      [1] Dobbs, R., Remes, J., Manyika, J., Roxburgh, C., Smit, S. & Schaer, F. Urban world: Cities and the rise of the consuming class. McKinsey Global Institute. (2012) [2016-11-25] http://www.mckinsey.com/globalthemes/urbanization/urban-world-cities-and-the-riseof-the-consuming-class.

      [2] German Bioeconomy Council. Global Visions for the Bioeconomy: an International Delphi-Study. (2015a) [2016-11-25] http://biooekonomierat.de/fileadmin/ Publikationen/berichte/Delphi-Study.pdf.

      [3] Nicholas Georgescu-Roegen: The Entropy Law and the Economic Process. Harvard University Press, Cambridge, Massachusetts, 1971.

      [4] Enriquez-Cabot, J. (1998). Genomics and the World's Economy. Science 281: 925-926. [2016-11-25] http://science.sciencemag.org/content/281/5379/925. [5] German Bioeconomy Council. Positionen und Strategien des Bio?konomierates. (2014) [2016-04-26] http://www.biooekonomierat.de/fileadmin/ Publikationen/empfehlungen/Strategiepapier.pdf.

      [6] Global Bioeconomy Summit. Making Bioeconomy Work for Sustainable Development. (2015) [2016-11-29] http://gbs2015.com/fileadmin/gbs2015/ Downloads/Communique_final.pdf.

      [7] Ronzon, T., Santini, F. & M'Barek, R. The Bioeconomy in the European Union in numbers. Facts and figures on biomass, turnover and employment. (2015) [2016-04-26] https://biobs.jrc.ec.europa. eu/sites/default/files/generated/files/documents/ BioeconomyFactsheet_Final.pdf.

      [8] Golden, J. S., Handfield, R. B., Daystar, J. & McConnell, T.E. An Economic Impact Analysis of the U.S. Biobased Products Industry: A Report to the Congress of the United States of America. (2015) [2016-05-10] http://www.biopreferred.gov/ BPResources/files/EconomicReport_6_12_2015.pdf.

      [9] OECD. G20 Innovation Report 2016. (2016) [2016-11-28] https://www.oecd.org/sti/inno/G20-innovation-report-2016.pdf.

      [10] Biotechnology Innovation Organisation (BIO). Accelerating Growth – Forging India's Bioeconomy. Verfügbar unter, 2014. [2016-04-26] https://www. bio.org/articles/accelerating-growth-forging-indiasbioeconomy.

      [11] Mengjie. China's bioindustry expands: official. (2015) [2016-11-25] http://news.xinhuanet.com/ english/2015-07/24/c_134444728.htm.

      [12] Brazilian Sugarcane Industry Association (UNICA). Why advanced sugarcane ethanol is a sweet deal for Brazil. (2015) [2016-04-26] http://www.unica.com. br/guest-columnist/25629667920310875715/whyadvanced-sugarcane-ethanol-is-a-sweet-deal-forbrazil/.

      [13] El-Chichakli, B., von Braun, J., Lang, C., Barben, D. & Philp, J. (2016). [2016-7-14] Policy: Five cornerstones of a global bioeconomy. Nature 535: 221–223. [2016-11-25] http://www.nature.com/news/policy-fivecornerstones-of-a-global-bioeconomy-1.20228.

      [14] Berliner Wasserbetriebe. Berliner Pflanze -Der mineralische Langzeitdünger. (2016) [2016-11-25] http://www.bwb.de/content/language1/html/6946.php.c

      [15] GIE Media. University adds coffee grounds to asphalt mix. (2016) [2016-11-28] http://www. recyclingtoday.com/article/university-adds-coffee-toasphalt-mix/.

      [16] Pollmeier, S. Faszination Wolkenkratzer. (2016) [2016-11-24] http://www.arte.tv/guide/de/058346-003-A/faszination-wolkenkratzer.

      [17] DiStasio, C. Vertical forest Mountain Hotel will clean the air in Guizhou, China. (2016) [2016-11-24] http://inhabitat.com/vertical-forest-mountain-hotelwill-clean-the-air-in-guizhou-china/.

      [18] Herberg, R. Künstliche B?ume sammeln CO2 ein. (2016) [2016-11-24] http://www.wiwo.de/ technologie/green/living/city-tree-kuenstlichebaeume-sammeln-co2-ein/13988458.html.

      [19] Trentmann, N. Diese genialen Quadrat-B?ume sollen Smog wegfiltern. (2016) [2016-11-24] https://www. welt.de/wirtschaft/article154677312/Diese-genialen-Quadrat-Baeume-sollen-Smog-wegfiltern.html.

      [20] German Bioeconomy Council. Bioeconomy Policy (Part II): Synopsis of National Strategies around the World. (2015b) [2016-04-26] http:// www.biooekonomierat.de/fileadmin/Publikationen/ berichte/Bioeconomy-Policy_Part-II.pdf.

      [21] Gabrielczyk, T. Diese lebende Hauswand produziert Energie. (2013) [2016-11-24] https:// www.welt.de/wissenschaft/article115860368/Dieselebende-Hauswand-produziert-Energie.html.

      [22] German Federal Ministry of Education and Research. Bioeconomy in Germany. (2014) [2016-11-24] https://www.bmbf.de/pub/Biooekonomie_in_ Deutschland_Eng.pdf.

      [23] Smith, H. Vincent Callebaut's hyperions is a sustainable ecosystem that resists climate change. (2016) [2016-11-24] http://www.designboom.com/ architecture/vincent-callebaut-hyperions-sustainableecosystem-02-22-2016/.

      [24] Swale. Swale. (2016) [2016-11-25] http://www. swaleny.org/about.

      [25] Technical University Berlin. Roof Water Farm. (2016) [2016-11-25] http://www.roofwaterfarm.com/ueber/.

      [26] German Bioeconomy Council. Empfehlungen des Bio?konomierates: Weiterentwicklung der "Nationalen Forschungsstrategie Bio?konomie 2030". (2016) [2016-11-25] http://biooekonomierat.de/ fileadmin/Publikationen/empfehlungen/181116_ Ratsempfelungen_fu__r_die_Weiterentwicklung_der_ Forschungsstrategie_final.pdf.

      [27] Efken, J., Dirksmeyer, W., Kreins, P. & Knecht, M. Measuring the importance of the bioeconomy in Germany: Concept and illustration. NJAS -Wageningen Journal of Life Sciences (77): 9–17. (2016) [2016-11-25] http://www.sciencedirect.com/science/ article/pii/S1573521416300082.

      [28] German Bioeconomy Council. Bio?konomie-Politik-Empfehlungen für die 18. (2013) [2016-04-26] Legislaturperiode.http://www.biooekonomierat. de/fileadmin/Publikationen/empfehlungen/ Politikempfehlungen.pdf.

      [29] Intensa san Paolo. La Bioeconomia in Europa. 2oRapporto. (2015) [2016-04-26] https://www. researchitaly.it/uploads/14174/Bioeconomia_%20 L abioeconomiaineuropa_dicembre2015. pdf?v=f9b7468.

      作者介紹:德國(guó)政府生物經(jīng)濟(jì)理事會(huì)主席,ZEF發(fā)展研究中心主任,波恩大學(xué)教授/Chair, German Government's Bioeconomy Council; Director, Centre for Development Research (ZEF); Professor, University of Bonn

      2016-12-18

      猜你喜歡
      生物經(jīng)濟(jì)
      “林下經(jīng)濟(jì)”助農(nóng)增收
      生物多樣性
      生物多樣性
      上上生物
      發(fā)現(xiàn)不明生物
      史上“最黑暗”的生物
      軍事文摘(2020年20期)2020-11-28 11:42:50
      增加就業(yè), 這些“經(jīng)濟(jì)”要關(guān)注
      民生周刊(2020年13期)2020-07-04 02:49:22
      第12話(huà) 完美生物
      航空世界(2020年10期)2020-01-19 14:36:20
      民營(yíng)經(jīng)濟(jì)大有可為
      分享經(jīng)濟(jì)是個(gè)啥
      天柱县| 堆龙德庆县| 英超| 志丹县| 襄汾县| 全南县| 忻州市| 明溪县| 通许县| 丹阳市| 兴义市| 兴宁市| 嘉黎县| 通化市| 延庆县| 德令哈市| 文登市| 枞阳县| 台安县| 津南区| 花莲县| 昭通市| 德庆县| 章丘市| 柳河县| 达孜县| 吴桥县| 腾冲县| 阿克陶县| 闵行区| 黄龙县| 容城县| 仁寿县| 宜昌市| 花莲市| 乌海市| 百色市| 阳原县| 卫辉市| 文山县| 山西省|