諶馥佳,王春弘,李大紅,李恩中(黃淮學(xué)院生物與食品工程學(xué)院,河南 駐馬店 463000)
動(dòng)物生產(chǎn)層
miRNA在哺乳動(dòng)物性腺發(fā)育中的功能
諶馥佳,王春弘,李大紅,李恩中
(黃淮學(xué)院生物與食品工程學(xué)院,河南 駐馬店 463000)
MicroRNA(miRNA)作為一種內(nèi)源性的非編碼RNA,以影響靶基因表達(dá)的方式來調(diào)節(jié)機(jī)體功能。miRNA能調(diào)控哺乳動(dòng)物性腺(睪丸和卵巢)的發(fā)育,促進(jìn)精子與卵母細(xì)胞的分化成熟,影響受精卵的發(fā)育過程,并可能作為診斷生殖疾病卵巢癌的重要指標(biāo)。本文對(duì)miRNA的生物合成過程,miRNA在哺乳動(dòng)物性腺發(fā)育以及卵巢癌變過程中的調(diào)控功能進(jìn)行了綜述,提出該領(lǐng)域主要發(fā)展方向是miRNA在哺乳動(dòng)物性腺發(fā)育中的體內(nèi)功能研究,希望以分子生物學(xué)和生物信息學(xué)手段,從分子、系統(tǒng)等不同角度闡明單一某種miRNA在哺乳動(dòng)物性腺發(fā)育及卵巢癌變過程中的具體調(diào)節(jié)機(jī)制和信號(hào)通路情況。這為研究哺乳動(dòng)物生殖疾病,選育畜牧生產(chǎn)中優(yōu)質(zhì)品種提供了新的思路和途徑。
miRNA;哺乳動(dòng)物;睪丸;卵巢;精子;卵巢癌;性腺發(fā)育
MicroRNA(miRNA)作為近年來新興的研究熱點(diǎn),是一類內(nèi)源性的非編碼RNA,長(zhǎng)21~24個(gè)核苷酸,通常與靶mRNA 3′端的非翻譯區(qū)結(jié)合,從而誘導(dǎo)靶mRNA的降解或抑制靶mRNA的表達(dá),它們廣泛存在于植物、微生物、線蟲、動(dòng)物和人類的細(xì)胞中[1]。1993年人們首次在秀麗新小桿線蟲(Caenorhabditiselegans)中發(fā)現(xiàn)了控制線蟲時(shí)序性發(fā)育的小分子miRNA:lin4基因[2]。接著在線蟲中發(fā)現(xiàn)了let7基因,該miRNA具有轉(zhuǎn)錄后調(diào)節(jié)功能[3]。之后許多miRNA被相繼發(fā)現(xiàn)[4]。在人類基因組中,2/3左右的人類基因由miRNA調(diào)控,在人體內(nèi)形成錯(cuò)綜復(fù)雜的調(diào)控網(wǎng)絡(luò),這些靶基因與miRNA存在著“一對(duì)多”或者“多對(duì)一”的關(guān)系[5]。目前發(fā)現(xiàn)miRNA可以有效調(diào)控生物體的生長(zhǎng)、發(fā)育和凋亡等過程,多種生物的miRNA已由miRBase收錄[6]。同生物體其他器官和組織一樣,哺乳動(dòng)物的性腺及其發(fā)育也受miRNA的調(diào)控。miRNA能夠在哺乳動(dòng)物的性腺及其組織中廣泛表達(dá),且表達(dá)量在性腺的不同發(fā)育時(shí)期呈現(xiàn)不同變化趨勢(shì),在性腺激素的參與下共同影響性腺發(fā)育,主要是調(diào)控睪丸、卵巢的正常發(fā)育,精子與卵母細(xì)胞進(jìn)一步的分化成熟,以及受精卵的整個(gè)發(fā)育過程。
miRNA的生物合成途徑通常包括3個(gè)步驟[7-14](圖1):1)在RNA聚合酶Ⅱ的催化作用下將miRNA轉(zhuǎn)錄成初級(jí)miRNA(pri-miRNA)。2)pri-miRNA被按步驟分區(qū)處理之后,最終以成熟的miRNA形式存在于細(xì)胞中;此過程中,首先pri-miRNA在核內(nèi)Ⅲ型RNA核酸內(nèi)切酶Drosha作用下,被剪切成前體miRNA(pre-miRNA),該前體miRNA 70~90 bp,接著Drosha酶能夠與DGCR8蛋白(即雙鏈RNA結(jié)合蛋白)結(jié)合而成微型絡(luò)合物[7];然后在Expotin-5輸出蛋白的作用下,由輔助因子Ran-GTP參與,pre-miRNA從核內(nèi)轉(zhuǎn)運(yùn)至胞質(zhì),在胞質(zhì)內(nèi)Ⅲ型RNA核酸內(nèi)切酶Dicer剪切作用下,形成一段雙鏈miRNA(約22 bp)[8];最后雙鏈miRNA解螺旋后形成成熟的單鏈miRNA[9]。3)成熟miRNA能夠與miRISC結(jié)合發(fā)揮功效。miRISC是一種miRNP即核糖核蛋白復(fù)合體(圖1),也是RNA誘導(dǎo)相關(guān)的沉默復(fù)合體。在核糖核蛋白復(fù)合體上,miRNA一般以兩種不同的方式來調(diào)控靶基因的表達(dá),miRNA 和Argonaute家族靶基因結(jié)合蛋白的互補(bǔ)程度決定了抑制翻譯或降解靶mRNA的方式:部分互補(bǔ)抑制靶mRNA的翻譯,完全互補(bǔ)則會(huì)使其降解[10-11],具體機(jī)制尚不清楚。miRNA或被羈留在核糖體上[12],或被補(bǔ)充到Pbodies中,Pbodies為細(xì)胞質(zhì)處理小體,最后該miRNA被降解[13]。
圖1 哺乳動(dòng)物miRNA生物合成途徑 Fig. 1 The biosynthetic pathway of miRNA of mammals
注:其中前體miRNA壽命短暫,miRNA的5′端被磷酸化,細(xì)胞質(zhì)中miRNA*在進(jìn)入核糖核蛋白復(fù)合體前被降解。
Note:The life of pre-miRNA is short, with the 5′ end of miRNA phosphorylated. The miRNA*is degradated before entering the miRISC in cytoplasm.
2.1 睪丸miRNA的表達(dá)與表達(dá)調(diào)控
睪丸miRNA表達(dá)情況存在著物種差異性和階段特異性。Yan等[15]以恒河猴(Macacamulatta)、人(Homosapiens)等靈長(zhǎng)類動(dòng)物的睪丸組織為材料,研究miRNA的表達(dá)情況,結(jié)果發(fā)現(xiàn),共有66個(gè)(占總數(shù)的26.4%)miRNA在恒河猴睪丸中差異性表達(dá),如hsa-miR-493-3p、hsa-miR-376b、hsa-miR-222等,其中有23個(gè)miRNA表達(dá)上調(diào),其余的miRNA下調(diào);而在人睪丸組織中檢測(cè)到76個(gè)(占總數(shù)的31.3%)miRNA差異表達(dá),如hsa-miR-181c、hsa-let-7e、hsa-miRNA-219等,其中有28個(gè)miRNA表達(dá)上調(diào),48個(gè)miRNA表達(dá)下調(diào);另外miRNA的表達(dá)在靈長(zhǎng)類睪丸的不同發(fā)育階段存在著階段特異性差異,例如hsa-miR-154、hsa-miR-181c、hsa-miR-181d和hsa-miR-487b等在未成熟的睪丸中表達(dá)上調(diào),在成熟的睪丸組織中表達(dá)下調(diào)。這些miRNAs可能通過調(diào)控精母細(xì)胞、精細(xì)胞的形成及分化過程來調(diào)控整個(gè)精子的發(fā)生過程。在研究不同miRNAs在豬睪丸發(fā)育過程中的作用時(shí)發(fā)現(xiàn),miR-122在睪丸發(fā)育成熟的過程中表達(dá)量升高,而miR-221卻表達(dá)量下調(diào),這說明miR-122與miR-221功能不同[16]。接著建立了關(guān)于豬睪丸的小RNA文庫,結(jié)果發(fā)現(xiàn)在豬睪丸組織中共有122個(gè)miRNAs可以進(jìn)行差異性表達(dá)[17],目前已經(jīng)逐步開展其功能驗(yàn)證工作。采用生物信息學(xué)與實(shí)時(shí)熒光定量PCR(Real-time PCR)等手段探討綿羊(Ovisaries)妊娠胎兒中睪丸miRNA在各妊娠時(shí)期的表達(dá)特點(diǎn)時(shí)發(fā)現(xiàn),30種miRNA的表達(dá)呈現(xiàn)出顯著性差異,有13種miRNA(如miRNA-99b、miRNA-149等)在妊娠初期(即第42天)的表達(dá)量顯著升高,另外17種miRNA(如miRNA-19b、miRNA-204等)在妊娠中期(即第75天)的表達(dá)量顯著升高[18]。在細(xì)胞內(nèi)外因素的調(diào)控下,睪丸miRNA的表達(dá)受到影響,睪丸基因表達(dá)乃至睪丸的發(fā)育和精子形成過程也受到miRNA的調(diào)控。這些細(xì)胞內(nèi)外因素包括激素、轉(zhuǎn)錄因子、酶和蛋白等。例如人們發(fā)現(xiàn)小鼠(Musmusculus)睪丸細(xì)胞miRNA的表達(dá)是由雄激素、酶或蛋白質(zhì)共同調(diào)節(jié)的[19]。另有研究表明,雄性生殖腺如果缺乏第2類的核糖核酸酶Ⅲ,可能會(huì)對(duì)成熟miRNA的形成過程產(chǎn)生阻礙作用,最終導(dǎo)致雄性不育[20]。
2.2 miRNA調(diào)控精子生成過程
成熟精子是一種單倍體生殖細(xì)胞,其特殊之處在于其生成過程需要相關(guān)因子一系列的精準(zhǔn)調(diào)控。例如在小鼠精子的精原細(xì)胞(prospermatogonia)中miR-17-92、miR-290-295家族能夠高效表達(dá)[21]。敲除了miR-17-92后,小鼠的睪丸會(huì)縮小,精子產(chǎn)生數(shù)量和質(zhì)量都會(huì)下降[22],表明miR-17-92與miR-106b-25協(xié)作調(diào)控精子發(fā)育與成熟過程。小鼠精子細(xì)胞中的miR-34c能夠高度表達(dá),與靶基因ATF1(活化轉(zhuǎn)錄因子)互作引起精子細(xì)胞等雄性生殖細(xì)胞凋亡[23]?,F(xiàn)階段,關(guān)于miRNA在整個(gè)精子成熟過程中調(diào)控作用的研究主要集中在前期發(fā)育階段,即是由原始生殖細(xì)胞(primordial germ cells, PGCs)至精原細(xì)胞的形成過程,而對(duì)從初級(jí)精母細(xì)胞(spermatocyte)至成熟精子細(xì)胞(spermatozoa)的后期發(fā)育階段研究較少[21-22,24-38](表1)。
3.1 miRNA在卵泡發(fā)育過程中的功能
卵泡發(fā)育、排卵等生理過程,由大量基因表達(dá)的產(chǎn)物以及miRNAs參與調(diào)控,以確保這些基因在表達(dá)和信息交流過程中的時(shí)空準(zhǔn)確性。Tang等[39]在小鼠成熟卵細(xì)胞中發(fā)現(xiàn)miR-16、let-7等家族的多種miRNAs。后來又從女性卵母細(xì)胞顆粒和卵丘細(xì)胞中發(fā)現(xiàn)miR-17-5p、miR-23a、miR-23b等多種miRNAs[40]。在牛卵巢miRNA的研究中發(fā)現(xiàn),miRNA克隆共74個(gè),其中新克隆有24個(gè),Bta-miR-29a能夠在卵泡細(xì)胞的整個(gè)發(fā)育過程中特異性表達(dá)[41]。在小鼠新生兒(NB)的卵巢中,miRNA-let-7家族和mmu-mir-322、mmu-mir-672家族等的表達(dá)最為豐富,后兩者是一類與X染色體連鎖的miRNA,其中mmu-mir-672家族通常會(huì)在性腺中優(yōu)先表達(dá)[42]。
3.2 miRNA在卵母細(xì)胞成熟過程中的功能
有研究發(fā)現(xiàn),miRNA在小鼠卵母細(xì)胞發(fā)育過程中發(fā)揮著重要功能,能夠敲除內(nèi)切核糖核酸酶Dicer,從而阻止前體miRNA生成miRNA,致使原始生殖細(xì)胞發(fā)育過程受阻,減數(shù)分裂停滯[43-44]。研究發(fā)現(xiàn),在減數(shù)分裂時(shí)期卵母細(xì)胞中共有861個(gè)轉(zhuǎn)錄產(chǎn)物即mRNA表達(dá)上調(diào),173個(gè)mRNA表達(dá)下調(diào),這說明,miRNA調(diào)節(jié)卵母細(xì)胞成熟的機(jī)制是通過調(diào)控這些mRNA的表達(dá)來實(shí)現(xiàn)的[45]。miRNA-224通過作用于SMAD4靶基因來調(diào)控由轉(zhuǎn)化生長(zhǎng)因子β(TGF-β)介導(dǎo)的小鼠卵母顆粒細(xì)胞的增殖途徑和激素分泌過程[46]。miR-21的功能是阻礙小鼠排卵前的卵母顆粒細(xì)胞凋亡[47]。
表1 部分調(diào)控精子生成的miRNAsTable 1 Some miRNAs in the regulation of spermatogenesis
3.3 miRNA與卵巢激素的關(guān)系
性腺激素在正常生殖過程、生殖紊亂疾病以及與雌激素相關(guān)的癌癥中起著重要作用[48]。以轉(zhuǎn)染的原代人卵母顆粒細(xì)胞為材料,檢測(cè)miRNAs對(duì)性腺激素的影響,發(fā)現(xiàn)36種miRNAs抑制孕酮的產(chǎn)生,16種促進(jìn)孕酮的產(chǎn)生,58種抑制睪酮的產(chǎn)生,miR-107促進(jìn)睪酮的產(chǎn)生,51種抑制雌激素的生成[49]。這說明miRNAs會(huì)影響卵巢類固醇激素的生成。
然而,類固醇激素也影響miRNA 的生成。Pan等[50]用乙酸甲羥孕酮和17β-雌二醇處理原代培養(yǎng)的腺上皮細(xì)胞和人子宮內(nèi)膜間質(zhì),結(jié)果發(fā)現(xiàn),miR-20a、miR-21和miR-26a這3種miRNA的表達(dá)受到影響?;罨拇萍に厥荏w(estrogen receptor,ER)與核內(nèi)Ⅲ型RNA核酸內(nèi)切酶(Drosha)互作可以抑制pri-miRNAs的成熟,從而增大這些miRNAs的靶基因表達(dá)量[51]。在人體處于增殖期和分泌期時(shí),miRNAs在子宮內(nèi)膜中的表達(dá)有明顯的差異,研究發(fā)現(xiàn)有12個(gè)miRNAs在分泌期時(shí)表達(dá)量顯著升高,這是由于孕酮在該時(shí)期起到了關(guān)鍵性作用[52]。
另外,促性腺激素也能調(diào)節(jié)miRNAs的生成。黃體生成素(LH)對(duì)人排卵期卵泡顆粒細(xì)胞中的13個(gè)miRNAs有調(diào)控作用[53]。卵泡刺激素(FSH)可以抑制小鼠卵母顆粒細(xì)胞中l(wèi)et-7a、miR-143與miR-125b這3個(gè)miRNAs的表達(dá)[54]。人絨毛膜促性腺激素(HCG)能夠下調(diào)小鼠卵母顆粒細(xì)胞和卵泡細(xì)胞中的個(gè)別miRNA的表達(dá)量[55]。
3.4 miRNAs與卵巢癌
上皮性卵巢癌(EOC)是最嚴(yán)重的女性惡性腫瘤之一[56],每年死于該疾病的女性約有12萬人之多,現(xiàn)階段雖然在EOC的診斷與治療領(lǐng)域取得了一定的進(jìn)展,但是對(duì)其發(fā)育過程分子機(jī)制的研究較少,目前研究表明miRNA能夠調(diào)控卵巢癌的發(fā)生過程[57]。卵巢癌中miRNA的表達(dá)通常用基因芯片表達(dá)譜來檢測(cè),卵巢癌中的部分miRNAs其表達(dá)量明顯上調(diào),如miR-141、miR-200a、miR-200b和miR-200c,而另外一些miRNAs(如miR-199a、miR-125b1、miR-145和miR-140)表達(dá)量則顯著下調(diào),可以根據(jù)卵巢癌的組織病理特點(diǎn)對(duì)這些發(fā)生變化的miRNAs進(jìn)行分類[58]。某些miRNAs的表達(dá)量上調(diào)可能是由于卵巢癌細(xì)胞中DNA的甲基化,例如miR-21、miR-205等。目前miRNA在許多腫瘤的發(fā)生發(fā)展過程中屬于抑癌基因,但是其分子機(jī)制尚不清楚[59]。原代腫瘤細(xì)胞中的miRNA表達(dá)量與基因組以及表觀的變化有一定的相關(guān)性[60],一些具有抑癌基因功能的miRNA會(huì)在卵巢癌的晚期表達(dá),且表達(dá)量下調(diào)。
另有研究表明,某些miRNAs可能調(diào)節(jié)腫瘤的形成,如miR-214和miR-200a,miR-214是在卵巢癌中表達(dá)上調(diào)最顯著的miRNA,能夠抑制PTEN抑癌基因的表達(dá),從而激活A(yù)kt信號(hào)通路;因?yàn)槿鄙?′非翻譯區(qū)的PTEN抑癌基因表達(dá)載體,Akt的抑制劑或者過表達(dá)可能會(huì)對(duì)miR-214誘導(dǎo)的細(xì)胞存活具有抑制效果[61]。這說明卵巢癌中某些miRNA表達(dá)量的變化,有可能是癌變信號(hào),這些miRNA可能成為潛在診斷及治療卵巢癌的重要指標(biāo)。
哺乳動(dòng)物的個(gè)體發(fā)育過程由受精卵開始,miRNA在精卵結(jié)合后的受精卵發(fā)育成熟過程中,也發(fā)揮了重要的調(diào)節(jié)功能。受精卵中的母源miRNAs含量最多的成員有l(wèi)et-7家族和miR-17-92家族[39],其miRNA的表達(dá)譜在早期胚胎個(gè)體發(fā)育的各個(gè)階段呈現(xiàn)一定的差異,其表達(dá)量在卵子成熟至受精卵的形成,再到早期胚胎的發(fā)育過程中呈現(xiàn)先下降后上調(diào)的現(xiàn)象。小鼠早期胚胎發(fā)育過程受到由miR-196a調(diào)控NOBOX靶基因(新生兒卵巢同源盒基因)表達(dá)的影響,miR-196a表達(dá)量持續(xù)上升,NOBOX基因表達(dá)量下降[62]。miR-135a通過下調(diào)靶基因SIAH1A的表達(dá)實(shí)現(xiàn)對(duì)早期胚胎體外發(fā)育的調(diào)控[63]。miR-181a通過抑制NPM2(核質(zhì),Nucleoplasm 2)基因的表達(dá)調(diào)控卵母細(xì)胞的激活與早期胚胎的發(fā)育過程,在此過程中,miR-181a與NPM2基因的表達(dá)一直呈現(xiàn)負(fù)相關(guān)性[64]。某些母源性miRNA對(duì)早期胚胎的發(fā)育至關(guān)重要,將胞質(zhì)內(nèi)Ⅲ型RNA核酸內(nèi)切酶(Dicer)突變體小鼠與正常小鼠的基因表達(dá)譜進(jìn)行比較分析發(fā)現(xiàn),miRNA以直接或間接作用對(duì)大部分母源性基因的表達(dá)進(jìn)行調(diào)控[43]。
miRNA在哺乳動(dòng)物性腺發(fā)育的各個(gè)階段均發(fā)揮著重要的功能,對(duì)一系列重要生殖活動(dòng)(例如精子發(fā)生和卵泡發(fā)育過程、激素分泌和受精卵發(fā)育過程)、生殖疾病及卵巢癌的發(fā)生進(jìn)行調(diào)控。miRNA通過與靶mRNA以堿基配對(duì)方式進(jìn)行特異性結(jié)合,降解靶mRNA或者抑制靶mRNA的翻譯過程,從而調(diào)控基因表達(dá)。研究miRNA對(duì)性腺的正常發(fā)育及生殖活動(dòng)的調(diào)控功能具有重要的實(shí)踐意義,可為研究人類及其他哺乳動(dòng)物生殖系統(tǒng)疾病提供理論基礎(chǔ),可為畜牧生產(chǎn)中優(yōu)質(zhì)品種的選育提供新的思路和途徑。
鑒于性腺發(fā)育、生殖以及生殖疾病發(fā)生機(jī)制的復(fù)雜性,人們對(duì)于miRNA的研究尚處于初級(jí)階段,還存在著一些問題:1)試驗(yàn)材料的廣泛性,對(duì)哺乳動(dòng)物miRNA的研究不但要重點(diǎn)突出,如小鼠和人,而且要涉及廣泛,對(duì)其他哺乳動(dòng)物的研究還有待深入;2)最好采用體外試驗(yàn)與體內(nèi)試驗(yàn)相結(jié)合的研究方法,目前的研究結(jié)果多是體外試驗(yàn)結(jié)果,而對(duì)體內(nèi)功能研究較少;3)對(duì)于單一某種miRNA在哺乳動(dòng)物生命活動(dòng)中的作用及其機(jī)理也有待更深入的研究,包括具體的調(diào)節(jié)網(wǎng)絡(luò)和信號(hào)通路的情況等。
與哺乳動(dòng)物性腺發(fā)育相關(guān)的miRNA作為目前研究的熱點(diǎn),通過大規(guī)模測(cè)序已經(jīng)有了初步的發(fā)展,但是仍有大部分miRNA靶基因尚未確定。得益于分子生物學(xué)和生物信息學(xué)技術(shù)的進(jìn)步[65],如差異表達(dá)譜分析技術(shù)、miRISC免疫共沉淀技術(shù)、生物信息學(xué)等,開發(fā)具備高靈敏度、高通量特異性的miRNA靶基因篩選鑒定方法是目前亟待解決的課題,以更先進(jìn)的手段,重點(diǎn)研究miRNA在哺乳動(dòng)物性腺發(fā)育中的體內(nèi)功能,從分子、系統(tǒng)等不同角度闡明單一某種miRNA在哺乳動(dòng)物性腺發(fā)育及卵巢癌變過程中的具體調(diào)節(jié)機(jī)制和信號(hào)通路情況,勢(shì)必成為該領(lǐng)域主要發(fā)展方向。
References:
[1] David P B.MicroRNAs:Genomics,biogenesis,mechanism,and function.Cell,2004,116(2):281-297.
[2] Lee R C,F(xiàn)einbaum R L,Ambros V.TheC.eleganshetero-chronic genelin-4 encodes small RNAs with antisense complementarity tolin-4.Cell,1993,75(5):843-854.
[3] Reinhart B J,Slack F J,Basson M,Pasquinelli A E,Bettinger J C,Rougvie A E,Horvitz H R,Ruvkun G.The 21 nucleotidelin-7 RNA regulates developmental timing in Caenorhabditis elegans.Nature,2000,403:901-906.
[4] 周冬根,羅玉萍,李思光.MicroRNA的結(jié)構(gòu)、生物合成及功能.生物技術(shù)通報(bào),2005(5):20-26. Zhou D G,Luo Y P,Li S G.The structure,biogenesis and function of MicroRNA.Biotechnology Bulletin,2005(5):20-26.(in Chinese)
[5] Shalqi R,Lieber D,Oren M,Pilpel Y.Global and local architecture of the mammalian microRNA-transcription factor regulatory network.PLoS Computational Biology,2007,3(7):131.
[6] 蔡婷,劉志紅,王志新,趙濛,俎紅麗,李金泉.MiRNA在調(diào)控皮膚和毛囊發(fā)育中的作用.遺傳,2013,35(9):1087-1094. Cai T,Liu Z H,Wang Z X,Zhao M,Ju H L,Li J Q.miRNA in regulation of skin and hair follicle development.Hereditas,2013,35(9):1087-1094.(in Chinese)
[7] Rana T M.Illuminating the silence:Understanding the structure and function of small RNAs.Nature Reviews Molecular Cell Biology,2007,8(1):23-36.
[8] Filipowicz W,Bhattacharyya S N,Sonenberg N.Mechanisms of post-transcriptional regulation by microRNAs:Are the answers in sight?Nature Reviews Genetics,2008,9(2):102-114.
[9] Hutvagner G.Small RNA asymmetry in RNAi.FEBS Letters,2005,579(26):5850-5857.
[10] Doench J G,Petersen C P,Sharp P A.siRNAs can function as miRNAs.Genes and Development,2003,17(4):438-442.
[11] Zeng Y,Yi R,Cullen B R.Micro RNAs and small interfering RNAs can inhibit mRNA expression by similar mechanisms.Proceedings of the National Academy of Sciences,2003,100(17):9779-9784.
[12] Seggerson K,Tang L,Moss E G.Two genetic circuits repress theCaenorhabditiselegansheterochronic genelin-28 after translation initiation.Developmental Biology,2002,243(2):215-225.
[13] Liu J,Valencia-Sanchez M A,Hannon G J,Parker R.MicroRNA-dependent localization of targeted mRNAs to mammalian P-bodies.Nature Cell Biology,2005,7(7):719-723.
[14] Jason B,Julang L.MicroRNAs and ovarian function.Journal of Ovarian Research,2012,5(1):1-8.
[15] Yan N H,Lu Y H,Sun H,Qiu W,Tao D,Liu Y,Ma Y,Microarray profiling of microRNAs expressed in testis tissues of developing primates.Journal of Assisted Reproduction and Genetics,2009,26(4):179-186.
[16] Lian C J,Niu S L,Yang R J,Sun B X,Qin L H,Bai W L,Shen B L,Liu B Y,Zhang L Y,Zhao Z H.Expression profiles ofmiR-122 andmiR-221 in porcine various tissues and developing testes.Animal and Veterinary Advances,2011,10(25):3380-3384.
[17] Lian C J,Sun B X,Niu S L,Yang R J,Liu B Y,Lu C Y,Meng J L,Qiu Z Y,Zhang L Y,Zhao Z H.A comparative profile of the microRNA transcriptome in immature and mature porcine testes using Solexa deep sequencing.FEBS Journal,2012,279(6):964-975.
[18] Torley K J,da Silveira J C,Smith P,Anthony R V,Veeramachaneni D N,Winger Q A,Bouma G J.Expression of miRNAs in ovine fetal gonads:Potential role in gonadal differentiation.Reproductive Biology and Endocrinology,2011,9(2):1-11.
[19] Panneerdoss S,Chang Y F,Buddavarapu K C,Chen H I,Shetty G,Wang H,Chen Y,Kumar T R,Rao M K,Lobaccaro J A.Androgen-responsive microRNAs in mouse sertoli cells.PLoS One,2012,7(7):41146.
[20] Wu Q,Song R,Ortogero N,Zheng H,Evanoff R,Small C L,Griswold M D,Namekawa S H,Royo H,Turner J M,Yan W.The RNaseⅢ enzyme DROSHA is essential for microRNA production and spermatogenesis.The Journal of Biological Chemistry,2012,287(30):25173-25190.
[21] Hayashi K,de Chuva Sousa L S M,Kaneda M,Tang F,Hajkova P,Lao K,O’Carroll D,Das P P,Tarakhovsky A,Miska E A,Surani M A,Heard E.MicroRNA biogenesis is required for mouse primordial germ cell development and spermatogenesis.PLoS One,2008,3(3):e1738.
[22] Tong M H,Mitchell D A,McGowan S D,Evanoff R,Griswold M D.Two miRNAs Clusters,Mir-17-92(Mirc1)andMir-106b-25 (Mirc3),are involved in the regulation of spermatogonial differentiation in mice.Biology of Reproduction,2012,86(3):72-81.
[23] Liang X,Zhou D,Wei C,Luo H,Liu J,F(xiàn)u R,Cui S.MicroRNA-34c enhances murine male germ cell apoptosis through targetingATF1.PLoS One,2012,7(3):33861.
[24] Zhong X,Li N,Liang S,Huang Q,Coukos G,Zhang L.Identification of microRNAs regulating reprogramming factorLIN28 in embryonic stem cells and cancer cells.Journal of Biological Chemistry,2010,285(53):41961-41971.
[25] Lewis B P,Shih I H,Jones-Rhoades M W,Bartel D P,Burge C B.Prediction of mammalian microRNA targets.Cell,2003,115(7):787-798.
[26] Tong M H,Mitchell D,Evanoff R,Griswold M D.Expression of Mirlet7 family micro RNAs in response to retinoic acid-induced spermatogonial differentiation in mice.Biology of Reproduction,2011,85(1):189-197.
[27] Jung Y H,Gupta M K,Shin J Y,Uhm S J,Lee H T.Micro-RNA signature in testes-derived male germ-line stem cells.Molecular Human Reproduction,2010,16(11):804-810.
[28] Rosa A,Brivanlou A H.A regulatory circuitry comprised of miR-302 and the transcription factors OCT4 and NR2F2 regulates human embryonic stem cell differentiation.EMBO Journal,2011,30(2):237-248.
[29] Lichner Z,Pall E,Kerekes A,Pallinger E,Maraghechi P,Bosze Z,Gocza E.ThemiR-290-295 cluster promotes pluripotency maintenance by regulating cell cycle phase distribution in mouse embryonic stem cells.Differentiation,2011,81(1):11-24.
[30] Lewis B P,Burge C B,Bartel D P.Conserved seed pairing,often flanked by adenosines,indicates that thousands of human genes are microRNA targets.Cell,2005,120(1):15-20.
[31] Niu Z,Goodyear S M,Rao S,Wu X,Tobias J W,Avarbock M R,Brinster R L.MicroRNA-21 regulates the self-renewal of mouse spermatogonial stem cells.Proceedings of the National Academy of Sciences of the United States of America,2011,108(31):12740-12745.
[32] Bouhallier F,Allioli N,Lavial F,Chalmel F,Perrard M H,Durand P,Samarut J,Pain B,Rouault J P.Role of miR-34c microRNA in the late steps of spermatogenesis.RNA,2010,16(4):720-731.
[33] He Z,Jiang J,Kokkinaki M,Tang L,Zeng W,Gallicano I,Dobrinski I,Dym M.MiRNA-20 andmirna-106aregulate spermatogonial stem cell renewal at the post-transcriptional level via targetingSTAT3 andCcnd1.Stem Cells,2013,31(10):2205-2217.
[34] Yang Q E,Racicot K E,Kaucher A V,Oatley M J,Oatley J M.MicroRNAs221 and 222 regulate the undifferentiated state in mammalian male germ cells.Development,2013,140(2):280-290.
[35] Bao J,Li D,Wang L,Wu J,Hu Y,Wang Z,Chen Y,Cao X,Jiang C,Yan W,Xu C.MicroRNA-449 andmicro-RNA-34b/cfunction redundantly in murine testes by targeting E2F transcription factor-retinoblastoma protein (E2F-pRb) pathway. Journal of Biological Chemistry,2012,287(26):21686-21698.
[36] Marcon E,Babak T,Chua G,Hughes T,Moens P B.miRNA and piRNA localization in the male mammalian meiotic nucleus. Chromosome Research,2008,16(2):243-260.
[37] 冉茂良,陳斌,尹杰,楊岸奇,蔣明.睪丸發(fā)育和精子生成相關(guān)miRNA研究進(jìn)展.遺傳,2014,36(7):646-654. Ran M L,Chen B,Yin J,Yang A Q,Jiang M. Advances in miRNA research related to testis development and spermatogenesis.Hereditas,2014,36(7):646-654.(in Chinese)
[38] Rajender S,Meador C,Agarwal A. Small RNA in spermatogenesis and male infertility.Frontiers in Bioscience,2012(4):1266-1274.
[39] Tang F,Kaneda M,Carroll D O,Hajkova P,Barton S C,Sun Y A,Surani M A.Maternal microRNAs are essential for mouse zygotic development.Genes and Development,2007,21(6):644-648.
[40] Alford C,Toloubeydokhti T,Al-Katanani Y,Drury K C,Williams R,Chenini N.The expression of microRNA(miRNA)mir-23aand 23band their target gene,CYP19A1(aromatase) in follicular cells obtained from women undergoing ART.Fertility and Sterility,2007,88:166-167.
[41] Hossain M M,Ghanem N,Hoelker M,Rings F,Phatsara C,Tholen E,Tesfaye D.Identification and characterization of miRNAs expressed in the bovine ovary.BMC Genomics,2009,10(1):443.
[42] Ahn H W,Morin R D,Zhao H,Harris R A,Coarfa C,Chen Z J,Rajkovic A.MicroRNA transcriptome in the newborn mouse ovaries determined by massive parallel sequencing.Molecular Human Reproduction,2010,16(7):463-471.
[43] Lei L,Jin S Y,Gonzalez G,Behringer R R,Woodruff T K.The regulatory role of Dicer in folliculogenesis in mice.Molecular and Cellular Endocrinology,2010,315(1):63-73.
[44] Nagaraja A K,Andreu-Vieyra C,F(xiàn)ranco H L,Ma L,Chen R H,Han D Y,Zhu H F,Agno J E,Gunaratne R H,DeMayo F J,Matzuk M M.Deletion of Dicer in somatic cells of the female reproductive tract causes sterility.Molecular endocrinology,2008,22(10):2336-2352.
[45] Murchison E P,Stein P,Xuan Z,Pan H,Zhang M Q,Schultz R M,Hannon G J.Critical roles for Dicer in the female germline.Genes and development,2007,21(6):682-693.
[46] Yao G D,Yin M M,Lian J,Tian H,Liu L,Li X,Sun F.MicroRNA-224 is involved in transforming growth factor-β-mediated mouse granulosa cell proliferation and granulosa cell function by targeting smad4.Molecular endocrinology,2010,24(3):540-551.
[47] Martha Z C,Stephanie D F,Lane K C.MicroRNA 21Blocks apoptosis in mouse periovulatory granulosa cells.Biology of Reprodution,2010,83(2):286-295.
[48] Jamnongjit M,Hammes S R.Ovarian steroids-The good,the bad,and the signals that raise them.Cell Cycle,2006,5(11):1178-1183.
[50] Pan Q,Luo X,Toloubeydokhti T,Chegini N.The expression profile of micro-RNA in endometrium and endometriosis and the influence of ovarian steroids on their expression.Molecular Human Reproduction,2007,13(11):797-806.
[51] Yamagata K,F(xiàn)ujiyama S,Ito S,Ueda T,Murata T,Naitou M,Takeyama K,Minami Y,O’Malley B W,Kato S.Maturation of microRNA is hormonally regulated by a nuclear receptor.Molecular Cell,2009,36(2):340-347.
[52] Kuokkanen S,Chen B,Ojalvo L,Benard L,Santoro N,Pollard J W.Genomic profiling of microRNAs and messenger RNAs reveals hormonal regulation in microRNA expression in human endometrium.Biology of Reproduction,2010,82(4):791-801.
[53] Fiedler S D,Carletti M Z,Hong X,Christenson L K.Hormonal regulation of MicroRNA expression in periovulatory mouse mural granulosa cells.Biology of reproduction,2008,79(6):1030-1037.
[54] Yao N,Lu C L,Zhao J J,Xia H F,Sun D G,Shi X Q,Wang C,Li D,Cui Y,Ma X.A network of miRNAs expressed in the ovary are regulated by FSH.Frontiers in Bioscience,2009,14(3):3239-3245.
[55] Kim Y J,Ku S Y,Rosenwaks Z,Liu H C,Chi S W,Kang J S,Lee W J,Jung K C,Kim S H,Choi Y M,Kim J G,Moon S Y.MicroRNA expression profiles are altered by gonadotropins and vitamin C status during in vitro follicular growth.Reproductive Sciences,2010,17(12):1081-1089.
[56] Cannistra S A.Cancer of the ovary.New England Journal of Medicine,2004,351(24):2519-2529.
[57] 鄒靖.MiR-429 與卵巢上皮癌耐藥相關(guān)性的研究.南寧:廣西醫(yī)科大學(xué)博士學(xué)位論文,2015. Zhou Jing.MiR-429 associated with drug resistance of epithelial ovarian cancer.PhD Thesis.Nanning:Guangxi Medical University,2015.
[58] 李萬春,涂頻.MicroRNA與卵巢癌.醫(yī)學(xué)研究生學(xué)報(bào),2012,25(12):1337-1340. Li W C,Tu P.MicroRNA and ovarian cancer.Journal of Medical Postgraduates,2012,25(12):1337-1340.(in Chinese)
[59] Lorio M V,Visone R,Di Leva G,Donati V,Petrocca F,Casalini R,Taccioli C,Volinia S,Liu C G,Aider H,Calin G A.MicroRNA signatures in human ovarian cancer.Cancer Research,2007,67(18):8699-8707.
[60] Zhang L,Huang J,Yang N,Greshock J,Megraw M S,Giannakakis A,Liang S,Naylor T L,Barchetti A,Ward M R,Yao G,Medina A,O’Brien-Jenkins A,Katsaros D,Hatzigeorgiou A,Gimotty P A,Weber B L,Coukos G.microRNAs exhibit high frequency genomic alterations in human cancer.Proceedings of the National Academy of Sciences,2006,103(24):9136-9141.
[61] Yang H,Kong W,He L,Zhao J J,O’Donnell J D,Wang J,Wenham R M,Coppola D,Kruk P A,Nicosia S V,Cheng J Q.MicroRNA expression profiling in human ovarian cancer:miR-214 induces cell survival and cisplatin resistance by targeting PTEN.Cancer Research,2008,68(2):425-433.
[62] Tripurani S K,Lee K B,Wee G,Smith G W,Yao J B.MicroRNA-196a regulates bovine newborn ovary homeobox gene(NOBOX)expression during early embryogenesis.BMC Developmental Biology,2011,11(1):1-9.
[63] Pang R T K,Liu W M,Leung C O N,Ye T M,Kwan P C,Lee K F,Yeung W S.miR-135Aregulates preimplantation embryo development through down-regulation of E3 ubiquitin ligase seven in absentia homo-log 1A(SIAH1A) expression.PLoS One,2011,6(11):27878.
[64] Lingenfelter B M,Tripurani S K,Tejomurtula J,Smith G W,Yao J.Molecular cloning and expression of bovine nucleoplasmin 2(NPM2):a maternal effect gene regulated bymiR-181a.Reproductive Biology and Endocrinology,2011,9(1):1.
[65] Zisoulis D G,Lovci M T,Wilbert M L,Hutt K R,Liang T Y,Pasquinelli A E,Yeo G W.Comprehensive discovery of endogenous Argonaute binding sites inCaenorhabditiselegans.Nature Structural and Molecular Biology,2010,17(2):173-179.
(責(zé)任編輯 王芳)
miRNA function in mammal gonad development
Chen Fu-jia, Wang Chun-hong, Li Da-hong, Li En-zhong
(College of Biotechnology and food Engineering, Huanghuai University, Zhumadian 463000,China)
MicroRNA (miRNA), a class of endogenous noncoding RNAs, plays a role in regulation of the body’s physiological function by affecting target gene expression. miRNAs can regulate the development of gonads (testicles and ovaries), promote maturation and differentiation of sperm and oocytes, and affect the growth of oosperm. miRNAs can be used as an important index in diagnosis of ovarian cancer. This paper summarizes miRNAs’ biogenesis and its regulation in mammal gonadal development and the progress of ovarian cancer; research has mainly focused on these functions in vivo. The regulation mechanisms and signalling pathways of miRNAs in gonadal development of mammals and ovarian cancer is revealed through molecules, systems, and other aspects of biology through molecular biology and bioinformatics. We provide new thoughts and approaches for reproductive disease research and high-quality animal breeding.
miRNA; mammals; testicle; ovary; sperm; ovarian cancer; gonad development
Li En-zhong E-mail:66811648@qq.com
2016-07-15 接受日期:2016-10-24
河南省科技攻關(guān)項(xiàng)目“瓜蔞抗腫瘤多糖關(guān)鍵精制技術(shù)及藥物篩選模型研究”(152102210025)
諶馥佳(1985-),女,湖北黃陂人,講師,博士,研究方向?yàn)樯镏扑?。E-mail:shenfujiawlqs@163.com
李恩中(1974-),男,河南確山人,教授,博士,主要從事生物制藥的教學(xué)與科研工作。E-mail:66811648@qq.com
10.11829/j.issn.1001-0629.2016-0377
Q954.5
A
1001-0629(2017)04-0861-08
諶馥佳,王春弘,李大紅,李恩中.miRNA在哺乳動(dòng)物性腺發(fā)育中的功能.草業(yè)科學(xué),2017,34(4):861-868.
Chen F J,Wang C H,Li D H,Li E Z.miRNA function in mammal gonad development.Pratacultural Science,2017,34(4):861-868.