張愛玲,付 晨,陳志宏,楊曉鵬,邱盛潔,董青林,嚴海東,蔣 潔,張新全,繆致銘,解關(guān)琦,黃琳凱(.四川農(nóng)業(yè)大學動物科技學院草業(yè)科學系,四川 成都 630; .全國畜牧總站,北京 005)
8份柳枝稷種質(zhì)資源苗期抗旱性綜合評價
張愛玲1,付 晨1,陳志宏2,楊曉鵬1,邱盛潔1,董青林1,嚴海東1,蔣 潔1,張新全1,繆致銘1,解關(guān)琦1,黃琳凱1
(1.四川農(nóng)業(yè)大學動物科技學院草業(yè)科學系,四川 成都 611130; 2.全國畜牧總站,北京 100125)
柳枝稷(Panicumvirgatum)是重要的能源草之一,其苗期的耐旱能力是其能否在干旱、半干旱地區(qū)良好生長的關(guān)鍵。因此,鑒定并篩選出苗期耐旱的柳枝稷品種具有重要意義。本研究通過溫室盆栽試驗,對超氧化物歧化酶、過氧化物酶、游離脯氨酸、可溶性蛋白、可溶性糖、葉片含水量、相對電導率及丙二醛共8個耐旱相關(guān)的生理指標進行測定,并根據(jù)隸屬函數(shù)法評價了選自美國基因庫的8份柳枝稷材料的抗旱性。結(jié)果表明,8份柳枝稷材料在苗期的抗旱性各不相同,并且其抗旱性由大到小的排列順序為Shawnee>Cave-in-Rock>Blackwell>BN-309-69>Trailblazer>Carthage>TEM-SLC>Grenville。本研究結(jié)果可以為柳枝稷抗旱性育種提供理論依據(jù),也可為其在邊際土地上的推廣應用提供科學的栽培管理依據(jù)。
柳枝稷;干旱脅迫;耐旱;生理指標;隸屬函數(shù)法
柳枝稷(Panicumvirgatum)是禾本科黍?qū)俣嗄晟w維素類C4能源植物[1],植株高大,根系發(fā)達,生產(chǎn)力高,適應性廣,抗逆能力強,可分為低地型和高地型兩種生態(tài)型[2]。并且柳枝稷能夠抵抗多種病蟲害,對環(huán)境友好,水分和養(yǎng)分利用率較高,易于收割貯存[3];適合推廣,是目前最理想的生物質(zhì)原料之一[4],已被美國能源部列為能源植物研究的模式植物[5-6]。
我國是世界上干旱程度最為嚴重的國家之一,干旱、半干旱地區(qū)面積約占國土面積的52%。干旱對植物生長發(fā)育及生產(chǎn)都有嚴重的影響,全世界每年因干旱造成的損失相當于其它非生物脅迫造成的損失之和[7]。干旱脅迫會在很大程度上限制植物的生長發(fā)育[8]。干旱下,植物體內(nèi)細胞會因遭受氧化脅迫而出現(xiàn)功能失常的狀況,從而使得機體表現(xiàn)出一系列綜合征[9]。例如,干旱會導致玉米(Zeamays)質(zhì)膜相對通透性上升,葉片含水量迅速降低,根活力系數(shù)明顯下降[10],同時光合作用受到抑制,地上生物量下降[11]。干旱脅迫下生長的煙草(Nicotianatabacum),其葉綠素含量、硝酸還原酶活性均會降低,并且嚴重干旱時,煙草的呼吸速率會減弱[12]。植物苗期對水分虧缺相當敏感[13],干旱可能造成幼苗死亡,對植物后期生長及生物量的形成等也均有一定影響[14]。因此,柳枝稷在苗期的適應能力是其能否適應干旱環(huán)境的關(guān)鍵。而目前,對柳枝稷抗旱性評價的研究較少。同時,隨著全球經(jīng)濟的發(fā)展,能源需求逐年增長,能源形勢日益嚴峻,加快我國生物質(zhì)能等新能源的研究迫在眉睫[2,15]。因此,廣泛收集柳枝稷種質(zhì)資源并進行抗旱性鑒定評價,篩選出抗旱性較強的柳枝稷材料,可以為選育耐旱性強的柳枝稷提供材料和依據(jù)。
隸屬函數(shù)法在植物抗旱性評價中是一種常用的綜合性評價法,可在多個指標測定的基礎上對植物的抗旱性進行相對全面、綜合的評價,避免使用單一指標評價的不準確性,其評價結(jié)果也較為科學可靠。本研究對8份引進的柳枝稷種質(zhì)資源進行干旱脅迫,對試驗數(shù)據(jù)進行綜合分析,旨在對柳枝稷苗期進行抗旱性的鑒定評價,篩選抗旱性較強的材料,可以為抗旱品種的選育提供理論依據(jù),也為其在邊際土地上的推廣與應用提供科學栽培管理依據(jù)。
1.1 研究地概況
本研究于2015年6月開展,試驗地位于四川農(nóng)業(yè)大學雅安校區(qū)教學科研園區(qū)草學實踐基地(30°08′ N,103°14′ E),海拔620 m,年均溫16.2 ℃,最熱月(7月)均溫25.3 ℃,最冷月(1月)均溫6.1 ℃,年極端最高溫37.7 ℃,≥10 ℃年積溫5 231 ℃·d,日照時數(shù)1 040 h,年降水量1 774 mm,年蒸發(fā)量1 011 mm,相對濕度為79%,無霜期304 d,屬北亞熱帶濕潤季風氣候區(qū)。溫室栽培管理條件為室溫25 ℃,光照強度12 000 lx,光照時長12 h·d-1。試驗土壤為石灰性紫色砂質(zhì)土。
1.2 供試材料
試驗選用的8份柳枝稷材料均來源于美國基因庫,相關(guān)信息如表1。
1.3 試驗設計
將8份材料以帶兩節(jié)的健壯根莖節(jié),按每盆1株進行無性繁殖盆栽于溫室中(花盆直徑18 cm,深度17cm),每份材料設置12盆,其中7盆為處理組,5盆為對照組,待其生長出4~5個片真葉時對處理組進行干旱處理,對照組不做干旱脅迫處理。在自然條件下進行干旱脅迫,脅迫前將每盆材料澆水至飽和,使每盆材料都保持土壤絕對含水量20%,分別于脅迫后0、5、10、15、20 d對每盆材料動態(tài)采集植株中間部位的葉,并且每次取材時測定土壤絕對含水量(處理組0、5、10、15、20 d的土壤含水量平均值分別為20%、19.5%、14.3%、8.7%、5.1%)和柳枝稷幼苗相關(guān)生理生化指標,鑒定評價柳枝稷種質(zhì)苗期抗旱性。
表1 供試柳枝稷種質(zhì)資源信息Table 1 Details of switchgrass accessions compared for drought resistance
1.4 指標測定及方法
試驗采用稱重法[16]測定葉片相對含水量;采用電導儀法[17]測定相對電導率;采用茚三酮比色法[18]測定游離脯氨酸含量;分別采用蒽酮乙酸乙酯比色法[19]和考馬斯亮藍G-250法[19]測定可溶性糖和可溶性蛋白質(zhì)含量;采用硫代巴比妥酸法[19]測定丙二醛含量;POD活性在Britton和Maehly的方法[20]上有所改進,采用愈創(chuàng)木酚法測定;SOD活性在Constantine和Stanley的方法[21]上有所改進,采用核黃素-NBT法測定。
1.5 數(shù)據(jù)統(tǒng)計及分析
本研究利用SPSS 17.0和SAS軟件進行數(shù)據(jù)分析[22-24],運用Excel軟件處理圖表。各測定指標平均值采用單因素方差分析法,Duncan法對同一材料各指標處理組和對照組進行差異顯著性分析,顯著水平為0.05。
1.5.1 隸屬函數(shù)值 參考張朝陽和許桂芳[25]及石永紅等[26]的方法,采用模糊數(shù)學隸屬函數(shù)法,利用各抗旱指標對各柳枝稷材料進行隸屬函數(shù)平均值的計算,對其苗期抗旱性進行評價。該平均值代表柳枝稷的抗旱性,數(shù)值越大表示抗旱性越強。隸屬函數(shù)的具體計算方法如下:
1.5.2 抗旱相對值 試驗根據(jù)所測得的各項指標數(shù)據(jù),分別計算干旱處理組和對照組各指標的平均值,再利用公式
抗旱相對值=處理測量值/對照測量值×100%
計算求得各項指標的抗旱相對值,進行相關(guān)分析[25-26],進而得出各性狀的相關(guān)系數(shù)矩陣。
2.1 干旱脅迫對柳枝稷主要滲透物質(zhì)和抗氧化系統(tǒng)的影響
在干旱脅迫下,8份柳枝稷材料的主要滲透物質(zhì)含量較對照組都顯著增加(P<0.05)(表2)。其中,Shawnee的游離脯氨酸含量增幅最大,為71.92%;Blackwell的可溶性糖含量增幅最大,為95.24%;BN-309-69的可溶性蛋白含量增幅最大,為63.59%;Carthage的這3項指標增幅均最小,分別為7.98%、66.67%和33.00%。干旱脅迫下,各柳枝稷材料的丙二醛含量也顯著增加(P<0.05),Grenville增幅最大,為75.00%,TEM-SLC增幅最小,為33.33%。同時,各材料的超氧化物歧化酶活性和過氧化物酶活性也都顯著增強(P<0.05),增幅最大的材料分別是Shawnee和Blackwell,增幅分別為84.88%和90.27%;增幅最小的材料分別是BZ-309-69和Trailblazer,增幅分別為16.80%和72.32%。
2.2 各指標隸屬函數(shù)值及抗旱性
根據(jù)所測得的8份柳枝稷材料的8個生理生化指標的隸屬函數(shù)值求取8個指標的隸屬函數(shù)平均值(表3),用以評價鑒定各柳枝稷材料的抗旱性,平均值越大,表明其抗旱性越強。
8份柳枝稷材料的隸屬函數(shù)平均值變化范圍較小,在0.469~0.499,其中Grenville的值最低,為0.469,Shawnee的值最高,為0.499。根據(jù)隸屬函數(shù)平均值,8份柳枝稷材料的抗旱性排序為Shawnee>Cave-in-Rock>Blackwell>BN-309-69>Trailblazer>Carthage>TEM-SLC>Grenville。
2.3 各指標抗旱相對值及相關(guān)性分析
在干旱處理后,各材料分別與對照組相比較,植株的各項生理生化指標均發(fā)生一系列的變化,計算得到各抗旱指標性狀的抗旱相對值(表4)。
對8份柳枝稷材料的各項指標抗旱相對值進行相關(guān)分析,得到相關(guān)系數(shù)矩陣(表5),結(jié)果顯示,8份柳枝稷材料的抗旱指標之間均存在不同程度的相關(guān)性。
植物的抗旱性是一個綜合生理生化過程,不同植物材料的抗旱性不同,各項抗旱指標的變化也不同[27-30]。在干旱脅迫下,植物葉片相對含水量能反映水分虧缺狀況,相對含水量越高表明植物抗旱性越強[31-32]。在本研究中,干旱脅迫下5份柳枝稷材料(Shawnee、Carthage、BN-309-69、Trailblazer、TEM-SLC)的葉片相對含水量均下降,這與白樺(Betula platyphylla)[33]、紫花苜蓿(Medicago sativa)[34]、紅花玉蘭(Magnolia wufengensis)[35]以及藜(Chenopodium album)[36]等的結(jié)果相同,但不同柳枝稷材料下降幅度不同,葉片相對含水量也不同。干旱脅迫下柳枝稷細胞膜的透性會增加,這與多年生黑麥草(Lolium perenne)[37]、沙棘(Hippophae rhamnoides)[38]在干旱脅迫下的結(jié)果一致。柳枝稷體內(nèi)電解質(zhì)滲透值也會隨之增大,從而導致相對電導率升高,而抗旱性強的植物細胞膜的透性變化較小[39-41]。本研究中,除BN-306-69和Trailblazer外的6份柳枝稷材料的葉片相對電導率在干旱脅迫下均升高,但不同材料升高幅度不同。這都說明不同柳枝稷材料之間抗旱性有差異。
表2 柳枝稷在干旱脅迫下主要滲透調(diào)節(jié)物質(zhì)和抗氧化酶活性的影響Table 2 Effect of drought treatment on osmoprotectants and antioxidases of Panicum virgatum
注:MS代表處理組,CK代表對照組。同一指標不同小寫字母表示同一材料不同處理間差異顯著(P<0.05)。所有指標均為5次取材測得數(shù)據(jù)的平均值。
Notes: MS and CK indicate drought treatment group and control group, respectively. Different lowercase letters for the same column indicate significant difference of the same parameter between two treatments at the 0.05 level. All indicators are the average of five observations.
表3 干旱脅迫下柳枝稷抗旱指標隸屬函數(shù)值Table 3 Subordinate function values of Panicum virgatum under drought treatment
表4 8份柳枝稷材料抗旱指標的抗旱相對值Table 4 Relative magnitude of drought resistance indicators in eight Panicum virgatum accessions
表5 各單項指標的相關(guān)系數(shù)矩陣Table 5 Correlation matrix of eight physiological parameters of Panicum virgatum
注:*表示顯著相關(guān)(P<0.05),**表示極顯著相關(guān)(P<0.01)。
Note: * indicates significant correlation (P<0.05), ** indicates extremely significant correlation (P<0.01).
本研究表明,柳枝稷體內(nèi)的可溶性糖含量、可溶性蛋白及游離脯氨酸含量在干旱脅迫條件下均顯著增加(P<0.05),這與在胡楊(Populuseuphratica)[42]、西紅柿(Lycopersiconesculentum)[43]、大豆(Glyxinmax)[44]和紫花苜蓿[45]上的研究結(jié)果一致,說明柳枝稷像大多數(shù)植物一樣,通過滲透調(diào)節(jié)這種生理響應來抵御干旱,而不同柳枝稷材料響應的程度不同,則說明不同柳枝稷材料抗旱性也不同。同時,柳枝稷體內(nèi)丙二醛含量在干旱脅迫下顯著增加(P<0.05),抗氧化保護系統(tǒng)相關(guān)酶類如POD、SOD的活性也顯著增強(P<0.05),說明柳枝稷具有較強抗旱能力,這與趙春橋等[46]對柳枝稷的研究結(jié)果一致。而不同柳枝稷材料間丙二醛含量、酶活性的變化不同,也反映了不同柳枝稷種質(zhì)資源抗旱性不同。
對植物進行抗旱性鑒定可為抗旱育種提供優(yōu)質(zhì)種質(zhì),但用單一指標進行抗旱性鑒定可能造成較大偏差[47],而采用隸屬函數(shù)分析法能在多項指標測定的基礎上對植物抗旱性進行綜合評價,提高植物抗旱性評價及鑒定的可靠性[48]。
本研究通過分析得到8份材料中Shawnee、Cave-in-Rock和Blackwell抗旱能力整體表現(xiàn)良好,抗旱性較強,可作為抗旱材料進行進一步的研究和育種。
References:
[1] 賀亮.生物質(zhì)轉(zhuǎn)型優(yōu)化能源技術(shù)的開發(fā)與利用.新能源,1996,18(1):8-14. He L.The development and utilization of biomass transformation to optimize energy technology.New Energy,1996,18(1):8-14.(in Chinese)
[2] John C,Paul F,Michael B.Miscanthus biomass production for energy in Europe and its potential contribution to decreasing fossil fuel carbon emissions.Global Change Biology,2004,10(4):509-518.
[3] Joseph H B.Molecular breeding of switchgrass for use as a biofuel crop.Current Opinion in Genetics & Development,2007,17(6):553-558.
[4] Velandia M,Lambert D M,Fox J,Walton J C,Sanford E K,Roberts R.Intent to continue growing switchgrass as a dedicated energy crop:A survey of Switchgrass producers in East Tennessee.European Journal of Social Sciences,2010,15(3):299-375.
[5] Iris L,Jonathan M O S,Eva L,Myrsini C.The development and current status of perennial rhizomatous grasses as energy crops in the US and Europe.Biomass and Bioenergy,2003,25(4):335-361.
[6] 范希峰,侯新村,左海濤,武菊英,段留生.三種草本能源植物在北京地區(qū)的產(chǎn)量和品質(zhì)特性.中國農(nóng)業(yè)科學,2010,43(16):3316-3322. Fan X F,Hou X C,Zuo H T,Wu J Y,Duan L S.Biomass yield and quality of three kinds of bioenergy grasses in Beijing of China.Scientia Agricultural Sinica,2010,43(16):3316-3322.(in Chinese)
[7] 胡化廣,劉建秀,何秋,鄭玉紅.草坪草種質(zhì)資源抗旱性及其改良研究進展.植物學通報,2005,22(6):648-657. Hu H G,Liu J X,He Q,Zheng Y H.Progress in drought resistance and improvement of the germplasm resource of turfgrass.Chinese Bulletin of Botany,2005,22(6):648-657.(in Chinese)
[8] 史剛榮.植物干旱脅迫下氣孔關(guān)閉的信號轉(zhuǎn)導.生物學通報,2003,38(11):25-26. Shi G R.Plant signal transduction of stomatal closure under drought stress.Bulletin of Biology,2003,38(11):25-26.(in Chinese)
[9] 趙麗英,鄧西平,山侖.活性氧清除系統(tǒng)對干旱脅迫的響應機制.西北植物學報,2005,25(2):413-418. Zhao L Y,Deng X P,Shan L.The response mechanism of active oxygen species removing system to drought stress.Acta Botanica Boreali-Occidentalia Sinica,2005,25(2):413-418.(in Chinese)
[10] 劉海龍,鄭桂珍,關(guān)軍鋒,李廣敏.干旱脅迫下玉米根系活力和膜透性的變化.華北農(nóng)學報,2002,17(2):20-22. Liu H L,Zheng G Z,Guan J F,Li G M.Changes of root activity and membrane permeability under drought stress in maize.Acta Agriculturae Boreali-Sinica,2002,17(2):20-22.(in Chinese)
[11] 齊健,宋鳳斌,劉勝群.苗期玉米根葉對干旱脅迫的生理響應.生態(tài)環(huán)境,2006,15(6):1264-1268. Qi J,Song F B,Liu S Q.Some physiological response of roots and leaves ofZeamaysseedling to drought-stress.Ecology and Environment.2006,15(6):1264-1268.(in Chinese)
[12] 韓錦峰,汪耀富,岳翠凌,張秀英.干旱脅迫下烤煙光合特性和氮代謝研究.華北農(nóng)學報,1994,9(2):39-45. Han J F,Wang Y F,Yue C L,Zhang X Y.A study on photosynthetic characteristics and nitrogen metabolism in fluecured tobacco under drought stress.Acta Agriculturae Boreali-Sinica,1994,9(2):39-45.(in Chinese)
[13] 胡紅,曹昀,王穎.水分脅迫對狗牙根種子萌發(fā)及幼苗生長的影響.草業(yè)科學,2013,30(1):63-68. Hu H,Cao Y,Wang Y.Impact of water stress on seed germination and seedling growth ofCynodondactylon.Pratacultural Science,2013,30(1):63-68.(in Chinese)
[14] 翟春梅.紫花苜??购敌栽u價及對水分脅迫適應機制的研究.長春:吉林農(nóng)業(yè)大學碩士學位論文,2008. Zhai C M.Study on drought resistance assessment and adaptive mechanism of alfalfa in drought stress.Master Thesis.Changchun:Jilin Agricultural University,2008.(in Chinese)
[15] 石元春.發(fā)展生物質(zhì)產(chǎn)業(yè).中國農(nóng)業(yè)科技導報,2006,8(1):1-5. Shi Y C.Developing the biomass industrials.Review of China Agricultural Science and Technology,2006,8(1):1-5.(in Chinese)
[16] 華東師范大學生物系植物生理教研組.植物生理學實驗指導.第3版.北京:高等教育出版社,2003:1-3. Plant Physiology Teaching and Research Group of Biology Department of East China Normal University.Plant Physiology Experiment Instructor.Beijing:Higher Education Press,2003:1-3.(in Chinese)
[17] Blum A,Adelina E.Cell membrane stability as a measure of drought and heat tolerance in wheat.Crop Science,1981,21(1):43-47.
[18] 郝再彬,蒼晶,徐仲.植物生理實驗.哈爾濱:哈爾濱工業(yè)大學出版社,2004:22-108. Hao Z B,Cang J,Xu Z.Plant Physiology Experiments.Harbin:Harbin Institute of Technology Press,2004:22-108.(in Chinese)
[19] 李合生.植物生理生化實驗原理和技術(shù).北京:高等教育出版社,2000:184-263. Li H S.Principle and Technology of Plant Physiology and Biochemistry Experiment.Beijing:Higher Education Press,2000:184-263.(in Chinese)
[20] Britton Chance,Maehly A C.Assay of catalases and peroxidases.Methods in Enzymology,1955,2:764-775.
[21] Constantine N G,Stanley K R.Superoxide dismutases Ⅰ.Occurrence in higher plants.Plant Physiology,1977,59(2):309-314.
[22] 馮燕,王彥榮,胡小文.水分脅迫對幼苗期霸王葉片生理特性的影響.草業(yè)科學,2011,28(4):577-581. Feng Y,Wang Y R,Hu X W.Effect of soil water stress on leaf trial ofZygophyllumxnthoxylumduring seedling stage.Pratacultural Science,2011,28(4):577-581.(in Chinese)
[23] 李雁博,張?zhí)N薇,哈依夏,杜金鴻,劉源,陳果,王佺珍.須芒草、虉草和柳枝稷對干旱和鹽脅迫的生理響應.草業(yè)科學,2014,31(5):905-914. Li Y B,Zhang Y W,Hayixia,Du J H,Liu Y,Chen G,Wang Q Z.Physiological responses of bluestem,reed canarygrass and switchgrass under drought and salinity stress.Pratacultural Science,2014,31(5):905-914.(in Chinese)
[24] 李壽田,韓建國,毛培勝.26個草地早熟禾品種苗期抗旱性綜合評價.草業(yè)科學,2012,29(7):1114-1119. Li S T,Han J G,Mao P S.Comprehensive evaluation of drought resistance for 26 cultivars of Kentucky bluegrass at seedling stage.Pratacultural Science,2012,29(7):1114-1119.(in Chinese)
[25] 張朝陽,許桂芳.利用隸屬函數(shù)法對4種地被植物的耐熱性綜合評價.草業(yè)科學,2009,26(2):57-60. Zhang Z Y,Xu G F.Comprehensive evaluation of heat tolerance of four ground covering plants by subordinate function values analysis.Pratacultural Science,2009,26(2):57-60.(in Chinese)
[26] 石永紅,萬里強,劉建寧,王運琦,郭銳,吳欣明,李向林.多年生黑麥草抗旱性主成分及隸屬函數(shù)分析.草地學報,2010,18(5):669-672. Shi Y H,Wan L Q,Liu J N,Wang Y Q,Guo R,Wu X M,Li X L.Analysis of the principal components and the subordinate function ofLoliumperennedrought resistance.Pratacultural Science,2010,18(5):669-672.(in Chinese)
[27] 杜建雄,師尚禮,劉金榮,侯向陽.干旱脅迫和復水對草地早熟禾3個品種生理特性的影響.草地學報,2010,18(1):73-77. Du J X,Shi S L,Liu J R,Hou X Y.Effects of drought stress and rewatering on physiological characteristics of three Kentucky bluegrass cultivars.Pratacultural Science,2010,18(1):73-77.(in Chinese)
[28] 肖暉,王珣,宋洋,王秀君,張俐俐,盧泳全,李柱剛.利用能源牧草柳枝稷生產(chǎn)燃料乙醇的研究進展.草業(yè)科學,2011,28(3):487-492. Xiao H,Wang X,Song Y,Wang X J,Zhang L L,Lu Y Q,Li Z G.Advances in biofuel ethanol from bioenergy crop switchgrass.Pratacultural Science,2011,28(3):487-492.(in Chinese)
[29] 趙金梅,周禾,王秀艷.水分脅迫下苜蓿品種抗旱生理生化指標變化及其相互關(guān)系.草地學報,2005,13(3):184-189. Zhao J M,Zhou H,Wang X Y.Effect of water stress on physiological and biochemical process of alfalfa varieties.Acta Agrestia Sinica,2005,13(3):184-189.(in Chinese)
[30] 徐蓮珍,蔡靖,姜在民,彭曉邦,蘇迅帆,張碩新.水分脅迫對3種苗木葉片滲透調(diào)節(jié)物質(zhì)與保護酶活性的影響.西北林學院學報,2008,23(2):12-16. Xu L Z,Cai J,Jiang Z M,Peng X B,Su X F,Zhang S X.Effects of water stress on osmotic adjustment and activity of protect enzymes in the leaves of three sorts of seedlings.Journal of Northwest Forestry University,2008,23(2):12-16.(in Chinese)
[31] Jiregna G,Andrey R,Legesse N.Response of seedlings of two eucalyptus and three deciduous tree species from Ethiopia to severe water stress.Forest Ecology and Management,2004,201(1):119-129.
[32] 張薈薈,甄世財,張一弓,楊剛,顧祥,沙吾列·沙比汗,王玉,熱娜·阿布都克力木.12份苜蓿種質(zhì)材料苗期抗旱性綜合評價.草業(yè)科學,2014,31(4):737-743. Zhang H H,Zhen S C,Zhang Y G,Yang G,Gu X,Shawulie·Shabihan,Wang Y,Rena·Abdukelimu.Comprehensive evaluation of drought resistance of twelve alfalfa accessions at seedling stage.Pratacultural Science,2014,31(4):737-743.(in Chinese)
[33] 孫國榮,張睿,姜麗芬,閻秀峰.干旱脅迫下白樺(Betulaplatyphylla)實生苗葉片的水分代謝與部分滲透調(diào)節(jié)物質(zhì)的變化.植物研究,2001,21(3):413-415. Sun G R,Zhang R,Jiang L F,Yan X F.Water metabolism and changes of several osmotica in leaves ofBetulaplatyphyllaseedlings under drought stress.Bulletin of Botanical Research,2001,21(3):413-415.(in Chinese)
[34] 周瑞蓮,張承烈,金巨和.水分脅迫下紫花苜蓿葉片含水量、質(zhì)膜透性SOD、CAT活性變化與抗旱性關(guān)系研究.中國草地,1991(2):20-24. Zhou R L,Zhang C L,Jin J H.Alfalfa drought resistence:Correlated with changes of relative water content,membrane,permeability and activities of superoxide dismutase and catalase in different water stress.Cinese Jurnal of Glassland,1991(2):20-24.(in Chinese)
[35] 桑子陽,馬履一,陳發(fā)菊.干旱脅迫對紅花玉蘭生長和生理特性的影響.西北植物學報,2011,31(1):109-115. Sang Z Y,Ma L Y,Chen F J.Growth and physiological characteristics ofMagnoliawufengensisseedlings under drought stress.Acta Botanica Boreali-Occidentalia Sinica,2011,31(1):109-115.(in Chinese)
[36] 孫存華,李揚,賀鴻雁,孫東旭,杜偉,鄭曦.藜對干旱脅迫的生理生化反應.生態(tài)學報,2005,25(10):2556-2561. Sun C H,Li Y,He H Y,Sun D X,Du W,Zheng X.Physiological and biochemical responses ofChenopodiumalbumto drought stresses.Acta Ecologica Sinica,2005,25(10):2556-2561.(in Chinese)
[37] 石永紅,萬里強,劉建寧,王運琦,吳欣民,李向林.干旱脅迫對6個坪用多年生黑麥草品種抗旱性的影響.草地學報,2009,17(1):52-57. Shi Y H,Wan L Q,Liu J N,Wang Y Q,Wu X M,Li X L.Effects of PEG stress on the drought resistance of six turfgrass varieties ofLoliumperenneL.Acta Agrestia Sinica,2009,17(1):52-57.(in Chinese)
[38] 韓蕊蓮,李麗霞,梁宗鎖.干旱脅迫下沙棘葉片細胞膜透性與滲透調(diào)節(jié)物質(zhì)研究.西北植物學報,2003,23(1):23-27. Han R L,Li L X,Liang Z S.Seabuckthorn relative membrane conductivity and osmotic adjustment under drought stress.Acta Botanica Boreali-Occidentalia Sinica,2003,23(1):23-27.(in Chinese)
[39] 楊鵬輝,李貴全,郭麗,吳慎杰.干旱脅迫對不同抗旱大豆品種質(zhì)膜透性的影響.山西農(nóng)業(yè)科學,2003,31(3):23-26. Yang P H,Li G Q,Guo L,Wu S J.Cell membrane stability of soybean variety in response to drought stress.Journal of Shanxi Agricultural Sciences,2003,31(3):23-26.(in Chinese)
[40] 張彥妮,李博,何淼.PEG干旱脅迫對大花飛燕草幼苗生理特性的影響.草業(yè)科學,2014,31(3):446-450. Zhang Y N,Li B,He M.Physiological characteristics ofDelphiniumgrandiflorumunder drought stress.Pratacultural Science,2014,31(3):446-450.(in Chinese)
[41] 葛體達,隋方功,張金政,呂銀燕,周廣勝.玉米根、葉質(zhì)膜透性和葉片水分對土壤干旱脅迫的反應.西北植物學報,2005,25(3):507-512. Ge T D,Sui F G,Zhang J Z,Lyu Y Y,Zhou G S.Response of leaf and root membrane permeability and leaf water to soil drought in maize.Acta Botanica Boreali-Occidentalia Sinica,2005,25(3):507-512.(in Chinese)
[42] 陳亞鵬,陳亞寧,李衛(wèi)紅,薛燕,張宏鋒.干旱脅迫下的胡楊脯氨酸累積特點分析.干旱區(qū)地理,2003,26(4):420-424. Chen Y P,Chen Y N,Li W H,Xue Y,Zhang H F.Analysis on the change of drought stress on proline ofPopuluseuphraticain the lower reaches of Tarim river.Arid Land Geography,2003,26(4):420-424.(in Chinese)
[43] Ricardo A,Maria del M A,Paolo V,Juan M R L.Plant responses to drought stress and exogenous ABA application are modulated differently by mycorrhization in tomato and an ABA-deficient mutant(Sitiens).Microbial Ecology,2008,56(4):704-719.
[44] 馬原松,王啟明,吳詩光,徐心誠.干旱脅迫下大豆苗期生理生化指標的研究.安徽農(nóng)業(yè)科學,2005,33(6):974-976. Ma Y S,Wang Q M,Wu S G,Xu X C.Research on the physiological-biochemical indexes of different soybean varieties during seedling period under the drought stress.Journal of Anhui Agricultural Science,2005,33(6):974-976.(in Chinese)
[45] 陳明濤,趙忠,權(quán)金娥.干旱對4種苗木根尖可溶性蛋白組分和含量的影響.西北植物學報,2010,30(6):1157-1165. Chen M T,Zhao Z,Quan J E.Variation of soluble protein components and contents in seedling root tips of four trees under drought stress.Acta Botanica Boreali-Occidentalia Sinica,2010,30(6):1157-1165.(in Chinese)
[46] 趙春橋,陳敏,侯新村,朱毅,武菊英,范希峰.干旱脅迫對柳枝稷生長與生理特性的影響.干旱區(qū)資源與環(huán)境,2015,29(3):126-130. Zhao C Q,Chen M,Hou X C,Zhu Y,Wu J Y,Fan X F.Effect of drought stress on the growth and physiological characteristics ofPanicumvirgatumL. Journal of Arid Land Resources and Environment,2015,29(3):126-130.(in Chinese)
[47] 王怡丹,郭曉宇,全炳武.水分脅迫下蒙古冰草、扁穗冰草和濱麥抗旱性研究.延邊大學農(nóng)學學報,2008,30(2):98-104. Wang Y D,Guo X Y,Quan B W.Studies on drought resistance ofAgropyronmongolioumKeng,Agropyroncristatum(L.)Gaertn andLeymusmollis.Journal of Agricultural Science Yanbian University,2008,30(2):98-104.(in Chinese)
[48] 龔明.作物抗旱性鑒定方法與指標及其綜合評價.云南農(nóng)業(yè)大學學報:自然科學版,1989,4(1):73-81. Gong M.Screening methods and indexes of drought resistance in crops and comprehensive evaluation.Journal of Yunnan Agricultural University:Natural Science Edition,1989,4(1):73-81.(in Chinese)
(責任編輯 武艷培)
Evaluation of drought resistance in seedlings of eight switchgrass accessions
Zhang Ai-ling1, Fu Chen1, Chen Zhi-hong2, Yang Xiao-peng1, Qiu Sheng-jie1, Dong Qing-lin1, Yan Hai-dong1, Jiang Jie1, Zhang Xin-quan1, Miao Zhi-ming1, Xie Guan-qi1, Huang Lin-kai1
(1.Department of Grassland, College of Aminal Science & Technology, Sichuan Agricultural University, Chengdu 611130, China;2.National Animal Husbandry Service, Ministry of Agriculture, Beijing 100125, China)
Switchgrass (Panicumvirgatum) is one of the important energy grasses, and the drought resistance of its seedling stage plays a key role in growth under arid and semi-arid conditions. Therefore, selecting switchgrass genotypes with good drought tolerance in the seedling stage is important. In greenhouse experiments, we tested eight physiological indicators related to drought resistance, including superoxide dismutase and peroxidase activity, free proline, soluble protein, soluble sugar and leaf water content, relative electrical conductivity, and malondialdehyde levels. In addition, we evaluated the drought resistance of eight switchgrass varieties chosen from American gene bank by subordinative function value analysis. The results showed that the eight accessions compared differed significantly in drought resistance at seeding stage. The drought resistance ranking was as follows: Shawnee>Cave-in-Rock>Blackwell>BN-309-69>Trailblazer>Carthage>TEM-SLC>Grenville. The results provided a theoretical basis for developing switchgrass breeding programmes aiming to improve drought resistance, and valuable information for planting switchgrass varieties in marginal lands.
switchgrass; drought stress; drought tolerance; physiological index; subordinate function analysis
Huang Lin-kai E-mail:huanglinkai@sicau.edu.cn
2016-12-07 接受日期:2017-02-24
國家自然基金(312201845);科技部“十二五”863計劃(2012AA101801-2);四川省國際合作項目(2017HH0071);四川農(nóng)業(yè)大學大學生創(chuàng)新計劃(201410626003)
張愛玲(1995-),女,四川眉山人,在讀本科生,主要從事草種質(zhì)資源抗旱性及育種研究。E-mail:834256827@qq.com
黃琳凱(1981-),男,四川金堂人,教授,博導,博士,主要從事草種質(zhì)資源創(chuàng)新及育種研究。E-mail:huanglinkai@sicau.edu.cn
10.11829/j.issn.1001-0629.2016-0601
S540.34;S32
A
1001-0629(2017)04-0706-08
張愛玲,付晨,陳志宏,楊曉鵬,邱盛潔,董青林,嚴海東,蔣潔,張新全,繆致銘,解關(guān)琦,黃琳凱.8份柳枝稷種質(zhì)資源苗期抗旱性綜合評價.草業(yè)科學,2017,34(4):706-713.
Zhang A L,Fu C,Chen Z H,Yang X P,Qiu S J,Dong Q L,Yan H D,Jiang J,Zhang X Q,Miao Z M,Xie G Q,Huang L K.Evaluation of drought resistance in seedlings of eight switchgrass accessions.Pratacultural Science,2017,34(4):706-713.