孔忠新,程瑞如,張利偉,盧濟(jì)康,黃玉龍,虞 東,馬正強(qiáng)
(南京農(nóng)業(yè)大學(xué)農(nóng)學(xué)院應(yīng)用植物基因組學(xué)實(shí)驗(yàn)室,江蘇南京 210095)
小麥粒重主效QTL近等基因系的構(gòu)建和效應(yīng)評(píng)價(jià)
孔忠新,程瑞如,張利偉,盧濟(jì)康,黃玉龍,虞 東,馬正強(qiáng)
(南京農(nóng)業(yè)大學(xué)農(nóng)學(xué)院應(yīng)用植物基因組學(xué)實(shí)驗(yàn)室,江蘇南京 210095)
粒重是影響小麥產(chǎn)量的主要因素之一。 QGw.nau-5A是一個(gè)從我國(guó)小麥骨干親本南大2419中鑒定的粒重主效QTL。為評(píng)價(jià)該QTL不同等位基因?qū)αV氐男?yīng)及在育種中的應(yīng)用潛力,利用分子標(biāo)記輔助選擇技術(shù),分別將南大2419和早洋麥的 QGw.nau-5A區(qū)段導(dǎo)入望水白和川麥42,構(gòu)建了不同背景的近等基因系,并比較了不同背景下粒重QTL的效應(yīng)。結(jié)果表明, QGw.nau-5A能在不同背景下顯著提高小麥粒重,與輪回親本相比,近等基因系的百粒重顯著增加0.2~0.6 g。 QGw.nau-5A等位變異對(duì)粒重的貢獻(xiàn)存在差異,與川麥42的等位變異相比,南大2419和早洋麥的等位變異均能增加粒重,但后者效應(yīng)更大。
小麥;粒重; QGw.nau-5A;近等基因系;分子育種
小麥?zhǔn)俏覈?guó)最主要的糧食作物之一。在小麥育種中,高產(chǎn)一直是最主要的選育目標(biāo)。小麥產(chǎn)量最終是由穗數(shù)、單穗粒數(shù)以及粒重決定。在高產(chǎn)栽培條件下,由于穗數(shù)和單穗粒數(shù)受到限制,粒重是影響產(chǎn)量的最主要因素,增加粒重成為提高小麥產(chǎn)量潛力的關(guān)鍵。近年來(lái),不管是在中國(guó)還是其他國(guó)家,在新培育的品種中粒重都得到了顯著的增加[1-3]。小麥粒重屬于數(shù)量性狀,是產(chǎn)量構(gòu)成要素中受遺傳特性影響最大的性狀,廣義遺傳率高達(dá)59%~80%,同時(shí)粒重主要受加性效應(yīng)基因控制,因而對(duì)粒重可以進(jìn)行比較有效地遺傳選擇[4]。了解粒重的遺傳基礎(chǔ)可以幫助我們進(jìn)一步提高小麥產(chǎn)量。
目前,對(duì)小麥粒重的研究主要集中在QTL定位及精細(xì)定位階段。利用重組自交系、雙單倍體及回交群體等不同定位群體,在小麥21條染色體上已經(jīng)檢測(cè)到超過(guò)100個(gè)控制粒重的QTL,其中15個(gè)QTL在多個(gè)種質(zhì)中都能被檢測(cè)到[5-18]。5A染色體上的Xmag1281-Xbarc56區(qū)間存在一個(gè)控制粒重的QTL,Jia等[17]在我國(guó)小麥骨干親本南大2419中鑒定到該粒重主效QTL,該位點(diǎn)可以解釋的表型變異達(dá)到30.5%。多個(gè)研究也表明5A染色體上的粒重QTL存在于多種種質(zhì)中,效應(yīng)較強(qiáng),并且在多個(gè)環(huán)境下表現(xiàn)較穩(wěn)定[13-14]。此外,通過(guò)關(guān)聯(lián)分析在自然群體中也檢測(cè)到了5A染色體上的粒重QTL[19-20]。在產(chǎn)量三因素中,粒重遺傳力最高,所受環(huán)境影響相對(duì)于其他二者較小,但在實(shí)際生產(chǎn)中,即使是同一品種,在不同年份、不同環(huán)境條件下,千粒重也會(huì)出現(xiàn)較大差異。進(jìn)一步驗(yàn)證粒重QTL的效應(yīng)對(duì)育種實(shí)踐非常關(guān)鍵。截至目前,利用導(dǎo)入系和近等基因系已經(jīng)分別驗(yàn)證了粒重QTL QTgw.ipk-7D和 Qtgw-jic.6A的效應(yīng)[21-22]。由于遺傳背景高度一致并可最大限度降低遺傳背景的干擾,近等基因系已經(jīng)被廣泛應(yīng)用于不同QTL的驗(yàn)證和精細(xì)定位[23-25]。
在前期研究中,萬(wàn)洪深[26]利用中國(guó)小麥微核心種質(zhì)群體進(jìn)行了關(guān)聯(lián)分析,發(fā)現(xiàn)5A染色體上的Xgwm415與粒重顯著相關(guān)。在該位點(diǎn)鑒定了五種等位變異,其中,南大2419型和早洋麥型等位變異的粒重處于較高水平,但未對(duì)不同種質(zhì)中的等位變異的效應(yīng)進(jìn)行驗(yàn)證和比較分析。本研究借助于分子標(biāo)記輔助選擇技術(shù),培育望水白和川麥42背景的粒重QTL近等基因系,驗(yàn)證目標(biāo)QTL對(duì)粒重的遺傳效應(yīng),以期發(fā)掘優(yōu)異等位變異,為利用分子標(biāo)記輔助選擇培育高產(chǎn)小麥品種提供可利用的信息。
1.1 供試材料
本研究所使用的材料包括Huang等[27]以南大2419×望水白重組自交系中攜帶 QGw.nau-5A的株系SSD035為供體構(gòu)建的具有望水白背景的近等基因系;供體親本南大2419和早洋麥;以及輪回親本望水白和川麥42。
1.2 近等基因系的構(gòu)建
針對(duì) QGw.nau-5A,選取位于目標(biāo)區(qū)段內(nèi)的標(biāo)記對(duì)4個(gè)親本進(jìn)行多態(tài)性篩選,選擇在親本間具有清晰多態(tài)的2對(duì)標(biāo)記進(jìn)行前景選擇,同時(shí)從小麥21條染色體上分別隨機(jī)選擇7對(duì)標(biāo)記對(duì)4個(gè)親本進(jìn)行多態(tài)性篩選,選擇在親本間具有清晰多態(tài)的SSR標(biāo)記進(jìn)行背景選擇,并計(jì)算背景回復(fù)率。利用分子標(biāo)記輔助選擇將目標(biāo)片段導(dǎo)入到受體親本中,篩選目標(biāo)區(qū)段雜合且背景回復(fù)率高的單株自交,在獲得純合近等基因系株系后,對(duì)各株系混合取樣,提取DNA,利用目標(biāo)區(qū)間標(biāo)記和背景選擇標(biāo)記進(jìn)一步檢測(cè)背景回復(fù)率。背景回復(fù)率(RGC)=(1-n/m)× 100%(n:在中選回交單株與輪回親本間檢測(cè)到多態(tài)的標(biāo)記數(shù)目;m:在供體親本與輪回親本間檢測(cè)到多態(tài)的背景選擇標(biāo)記總數(shù))。
1.3 試驗(yàn)設(shè)計(jì)和農(nóng)藝性狀調(diào)查
共設(shè)置5個(gè)田間試驗(yàn),2015年在南京農(nóng)業(yè)大學(xué)江浦試驗(yàn)基地、江蘇淮安和安徽鳳陽(yáng)進(jìn)行,2016年在南京農(nóng)業(yè)大學(xué)江浦試驗(yàn)基地和江蘇淮安進(jìn)行。每個(gè)試驗(yàn)設(shè)置2個(gè)重復(fù),每個(gè)重復(fù)內(nèi)材料按完全隨機(jī)排列種植。每個(gè)材料種植2行,每行播種25粒種子,行長(zhǎng)1.5 m,寬25 cm。
在籽粒灌漿后期,每小區(qū)選擇中間10株進(jìn)行穗數(shù)(spike number,SN)、穗粒數(shù)(grain number,GN)、株高(plant height,PH)、穗長(zhǎng)(spike length,SPL)、小穗數(shù)(spikelet number,SPN)和旗葉寬(flag leaf width,FLW)等農(nóng)藝性狀的調(diào)查,然后取平均值。株高測(cè)量從地上部至穗頂端,不包括芒;穗長(zhǎng)為穗軸基部至頂端小穗的長(zhǎng)度,不包括芒;小穗數(shù)包括不育小穗和可育小穗;旗葉寬選取旗葉最寬處測(cè)量。待籽粒成熟后,將從各小區(qū)收獲的籽?;旌蠒窀?,隨機(jī)取樣3次,每次數(shù)100粒,稱重,將平均數(shù)作為該株系的百粒重(hundred grain weight,HGW)。
1.4 標(biāo)記分析
采用改良的SDS法提取基因組DNA[28],用1%的瓊脂糖凝膠電泳測(cè)定DNA濃度。PCR反應(yīng)體系為12.5 μL,包括1 mmol·L-11×PCR buffer、0.1 mmol·L-1dNTPs、0.9~1.5 mmol·L-1MgCl2、0.2 μmol·L-1引物和0.5 UTaqDNA聚合酶。PCR擴(kuò)增程序:94 ℃預(yù)變性5 min;94 ℃變性30 s,適溫退火30 s,72 ℃延伸45 s,共35個(gè)循環(huán);72 ℃延伸5 min。擴(kuò)增產(chǎn)物在8%的非變性聚丙烯酰胺凝膠上電泳,銀染,在凝膠成像儀上觀察、照相。
1.5 數(shù)據(jù)分析
使用軟件Excel以及SPSS v17.0進(jìn)行數(shù)據(jù)分析。
2.1 QGw.nau-5A近等基因系的構(gòu)建
根據(jù)Jia等[17]對(duì)小麥骨干親本南大2419產(chǎn)量構(gòu)成因子的QTL定位結(jié)果,以及萬(wàn)洪深[26]利用我國(guó)小麥微核心種質(zhì)進(jìn)行關(guān)聯(lián)分析的結(jié)果,參考實(shí)驗(yàn)室前期構(gòu)建的南大2419×望水白圖譜[29],選擇了 QGw.nau-5A區(qū)間內(nèi)與粒重最相關(guān)的分子標(biāo)記GWM415以及旁側(cè)標(biāo)記BARC56和BARC180對(duì)南大2419、望水白、川麥42和早洋麥進(jìn)行多態(tài)性篩選。結(jié)果(表1、圖1)發(fā)現(xiàn),在目標(biāo)區(qū)間,望水白與川麥42的單倍型一致;早洋麥和南大2419的單倍型與望水白和川麥42不同。據(jù)此,配制了南大2419×川麥42和早洋麥×川麥42組合,用于選育 QGw.nau-5A的近等基因系。
表1 4個(gè)親本材料在目標(biāo)QTL區(qū)間內(nèi)標(biāo)記位點(diǎn)上的多態(tài)性
Table 1 Marker polymorphisms detected in the target QTL intervals among four parents
標(biāo)記Marker南大2419Nanda2419望水白Wangshuibai川麥42Chuanmai42早洋麥EarlyPremiumBARC560110GWM4150110BARC1800112
在每個(gè)標(biāo)記位點(diǎn)上,南大2419的帶型讀為0,望水白的帶型讀為1,與二者不同的帶型讀為2。
For each locus,0 represents Nanda 2419 genotype,1 represents Wangshuibai,2 represent the genotypes different from Nanda 2419 and Wangshuibai.
M:分子量標(biāo)準(zhǔn) pUC19/MspI;1:望水白;2:南大2419;3:川麥42;4:早洋麥;箭頭指多態(tài)帶位置。
M:Molecular size standard pUC19/MspI; 1:Wangshuibai; 2:Nanda 2419; 3:Chuanmai 42; 4:Early Premium; Arrows indicate the polymorphic bands.
圖1 標(biāo)記BARC56(A)、BARC180(B)和GWM415(C)在親本中的多態(tài)性帶型
Fig.1 Polymorphic patterns detected with markers BARC56(A),BARC180(B) and GWM415(C) in the parents
表2 近等基因系的背景回復(fù)率
Table 2 Recipient genome composition(RGC) for the NILs
雜交組合Cross回交世代Backcrossgeneration標(biāo)記數(shù)Numberofmarkers背景回復(fù)率RGC/%SSD035×望水白 SSD035×WangshuibaiBC3F258100.0南大2419×川麥42 Nanda2419×Chuanmai42BC3F27890.4早洋麥×川麥42 EarlyPremium×Chuanmai42BC3F27892.2
在利用川麥42不斷回交的過(guò)程中,采用 QGw.nau-5A區(qū)段的雙側(cè)分子標(biāo)記BARC56和BARC180進(jìn)行輔助篩選,同時(shí)用分布于全基因組的78對(duì)分子標(biāo)記對(duì)材料進(jìn)行背景選擇,最終獲得了相應(yīng)QTL的近等基因系。各近等基因系的背景回復(fù)情況如表2所示,以早洋麥和南大2419為供體,川麥42背景的近等基因系背景回復(fù)率分別為90.4%和92.2%;望水白背景的近等基因系背景回復(fù)率達(dá)到100.0%。
2.2 QGw.nau-5A近等基因系的粒重效應(yīng)評(píng)價(jià)
為了檢測(cè)目標(biāo)QTL對(duì)粒重的效應(yīng),在多個(gè)試驗(yàn)環(huán)境中對(duì) QGw.nau-5A近等基因系進(jìn)行評(píng)價(jià)。2015-2016兩個(gè)年份中,與輪回親本望水白相比,望水白背景的近等基因系百粒重顯著增加,平均增加0.2~0.4 g,增幅為4.32%~9.11%(表3)。川麥42背景的近等基因系粒重與輪回親本之間差異都達(dá)到了極顯著水平,南大2419為供體的近等基因系百粒重平均增加4.24%,早洋麥為供體的近等基因系百粒重平均增加8.73%(表3)。這些結(jié)果表明,利用分子標(biāo)記輔助選擇將5A粒重優(yōu)異等位變異導(dǎo)入到不同背景中,均可以顯著提高受體品種的粒重。
2.3 QGw.nau-5A近等基因系的農(nóng)藝性狀評(píng)價(jià)
對(duì) QGw.nau-5A近等基因系及輪回親本的農(nóng)藝性狀進(jìn)行調(diào)查分析發(fā)現(xiàn),望水白背景的近等基因系在穗數(shù)、穗粒數(shù)、株高、穗長(zhǎng)和小穗數(shù)5個(gè)性狀上與望水白沒(méi)有顯著差異,但近等基因系旗葉寬顯著高于輪回親本;川麥42背景的近等基因系與輪回親本相比,穗粒數(shù)顯著降低,導(dǎo)入南大2419目標(biāo)區(qū)段還導(dǎo)致了株高增加和穗長(zhǎng)降低,導(dǎo)入早洋麥目標(biāo)區(qū)段只引起穗長(zhǎng)的降低(表4)。進(jìn)一步分析了粒重與株高、穗粒數(shù)、穗數(shù)、小穗數(shù)、旗葉寬和穗長(zhǎng)等農(nóng)藝性狀間的相關(guān)性,結(jié)果(表5)發(fā)現(xiàn),粒重與旗葉寬和穗粒數(shù)呈極顯著正相關(guān),但粒重與旗葉寬的相關(guān)系數(shù)較大;粒重與株高和穗數(shù)呈極顯著負(fù)相關(guān),與穗長(zhǎng)呈顯著負(fù)相關(guān),與小穗數(shù)沒(méi)有顯著相關(guān)性。
表3 近等基因系和輪回親本的百粒重
Table 3 Hundred grain weight of the QTL NILs and their recurrent parents
近等基因系與輪回親本NILsandtheirrecurrentparents2015鳳陽(yáng)Fengyang江浦Jiangpu淮安Huai’an2016江浦Jiangpu淮安Huai’an望水白Wangshuibai4.61±0.023.47±0.014.17±0.023.74±0.034.64±0.04A5.03±0.03??3.70±0.02??4.35±0.02??4.02±0.04??5.02±0.01??川麥42Chuanmai424.79±0.045.02±0.045.42±0.055.29±0.015.35±0.02B5.20±0.05??5.19±0.03??5.88±0.04??5.88±0.03??5.99±0.05??C4.89±0.02??5.16±0.03??5.64±0.05??5.76±0.02??5.53±0.08??
*和**分別表示在0.05和0.01水平上差異顯著;A:以南大2419為供體的望水白背景近等基因系;B和C分別為以早洋麥和南大2419為供體的川麥42背景近等基因系。下同。
* and ** indicate significant differences between the NILs and the recurrent parents at 0.05 and 0.01 levels,respectively; A:Wangshuibai background NIL carrying QGw.nau-5A allele from Nanda 2419;B and C:Chuanmai 42 background NILs carrying QGw.nau-5A allele from Early Premium and Nanda 2419,respectively.The same as in the following tables.
表4 近等基因系和輪回親本農(nóng)藝性狀比較
Table 4 Agronomic trait of the QTL NILs compared with the recurrent parents
近等基因系與輪回親本NILsandtheirrecurrentparents年份Year地點(diǎn)Location株高PH穗粒數(shù)GN穗數(shù)SN小穗數(shù)SPN旗葉寬FLW穗長(zhǎng)SPL望水白2015南京Nanjing145.4±0.6-12.5±0.620.2±0.31.6±0.0212.9±0.1Wangshuibai鳳陽(yáng)Fengyang129.2±1.6-13.8±0.820.0±0.41.5±0.0212.7±0.2淮安Huai’an132.5±1.3-13.7±1.020.0±0.41.5±0.0213.5±0.22016南京Nanjing148.3±0.849.1±1.014.9±0.522.1±0.21.6±0.0313.2±0.2淮安Huai’an138.1±1.350.4±0.614.3±0.521.7±0.2-13.5±0.1A2015南京Nanjing143.4±0.7-12.2±0.620.9±0.41.8±0.03??12.7±0.1鳳陽(yáng)Fengyang131.6±1.1-13.7±0.620.0±0.41.8±0.02??12.5±0.2淮安Huai’an131.4±1.1-13.8±1.220.0±0.41.7±0.03??13.0±0.22016南京Nanjing149.2±1.152.6±3.414.9±0.321.9±1.31.7±0.02??13.6±0.8淮安Huai’an141.0±1.146.7±0.9??14.6±0.622.0±0.2-13.2±0.1川麥422015南京Nanjing84.9±0.969.1±1.011.4±0.422.9±0.22.6±0.0312.6±0.1Chuanmai42鳳陽(yáng)Fengyang80.9±1.466.3±1.09.9±0.517.4±0.52.2±0.0410.9±0.2淮安Huai’an84.0±0.671.7±0.810.6±0.421.4±0.22.6±0.0313.0±0.22016南京Nanjing92.1±0.463.7±0.912.2±0.622.7±0.32.4±0.0113.3±0.2淮安Huai’an96.6±0.969.9±1.411.1±0.521.3±0.2-13.4±0.1B2015南京Nanjing84.6±0.666.5±0.7??12.9±0.522.2±0.22.7±0.0312.9±0.2鳳陽(yáng)Fengyang83.2±1.463.2±1.2?10.5±0.618.1±0.22.3±0.05?10.8±0.1淮安Huai’an82.2±0.667.2±0.8??11.3±0.422.4±0.32.6±0.0311.8±0.1??2016南京Nanjing94.1±0.8?60.6±1.2?12.1±0.620.4±0.2??2.5±0.0212.9±0.2?淮安Huai’an91.1±1.464.8±1.1??9.3±0.4?20.7±0.2??-12.3±0.1??C2015南京Nanjing93.2±0.5??66.3±1.2?11.2±0.622.4±0.12.7±0.0411.6±0.1??鳳陽(yáng)Fengyang85.8±0.7??64.5±1.110.1±0.418.0±0.62.2±0.0711.1±0.1淮安Huai’an111.8±0.8??67.2±0.8??8.9±0.4??21.4±0.22.6±0.0411.8±0.1??2016南京Nanjing122.8±1.1??56.0±1.4??10.1±0.4??22.1±0.42.5±0.0211.9±0.3??淮安Huai’an99.3±1.3??66.1±1.1?11.1±0.521.6±0.2-12.5±0.2??
表5 粒重與其他農(nóng)藝性狀之間的相關(guān)性
Table 5 Correlations of grain weight with other agronomic traits
性狀 Trait穗粒數(shù)GN穗數(shù)SN株高PH小穗數(shù)SPN旗葉寬FLW穗長(zhǎng)SPL百粒重HGW0.59??-0.65??-0.77??0.160.82??-0.46?
南大2419的 QGw.nau-5A區(qū)段導(dǎo)入望水白和川麥42兩個(gè)背景中,都能顯著增加粒重,效應(yīng)穩(wěn)定。在望水白背景中, QGw.nau-5A對(duì)粒重的最大增幅為9.11%;在川麥42背景中,粒重的最大增幅為8.88%,進(jìn)一步驗(yàn)證了來(lái)自南大2419的粒重QTL的效應(yīng)[17,27]。這些結(jié)果表明,南大2419的 QGw.nau-5A不受背景影響,在不同的背景中均能表現(xiàn)出增重效應(yīng),在育種改良中具有應(yīng)用價(jià)值。同時(shí),來(lái)自早洋麥的 QGw.nau-5A區(qū)段被導(dǎo)入川麥42背景后,也顯著增加了近等基因系的百粒重,本試驗(yàn)驗(yàn)證了前期QTL定位的結(jié)果[8-9,13-14,17,19-20],證明 QGw.nau-5A對(duì)粒重具有真實(shí)效應(yīng)。
對(duì)川麥42背景的近等基因系,來(lái)自早洋麥的 QGw.nau-5A區(qū)段被導(dǎo)入后,近等基因系百粒重顯著增加,平均增幅為8.73%;來(lái)自南大2419的 QGw.nau-5A區(qū)段導(dǎo)入后,近等基因系百粒重也顯著增加,平均增幅為4.24%。在相同的川麥42背景下,粒重的變化主要?dú)w因于導(dǎo)入?yún)^(qū)間的差異, QGw.nau-5A等位變異對(duì)粒重的貢獻(xiàn)存在差異。與川麥42的等位變異相比,早洋麥和南大2419的等位變異均能增加粒重,但前者效應(yīng)更大。Guo等[30]利用小麥微核心種質(zhì)分析了 Ppd-D1基因5種單倍型的表型效應(yīng),發(fā)現(xiàn)I型單倍型促進(jìn)開(kāi)花的效應(yīng)最大;以及Su等[31]對(duì) TaGW2等位基因效應(yīng)的研究,只有大小為167 bp的單倍型Hap-6A-A才能增加粒重。這也表明不同等位變異往往引起不同的表型效應(yīng),增加粒重的優(yōu)異等位基因?qū)τ诜肿訕?biāo)記輔助選擇育種和提高小麥產(chǎn)量是非常重要的。
本研究中,除粒重外,還對(duì)近等基因系和輪回親本的其他6個(gè)農(nóng)藝性狀進(jìn)行了調(diào)查。與輪回親本相比, QGw.nau-5A近等基因系的農(nóng)藝性狀表現(xiàn)出一定差異,來(lái)源于南大2419的 QGw.nau-5A導(dǎo)入望水白后還引起了旗葉寬的變化;導(dǎo)入川麥42后引起株高的增加和穗長(zhǎng)的降低;來(lái)源于早洋麥的 QGw.nau-5A導(dǎo)入川麥42后只引起穗長(zhǎng)的降低。相關(guān)性分析表明,粒重與旗葉寬呈極顯著正相關(guān),而與株高、穗數(shù)和穗長(zhǎng)間都存在顯著負(fù)相關(guān)。但望水白株高和穗長(zhǎng)都較大,川麥42旗葉寬度較大,這些背景特點(diǎn)可能影響近等基因系中這些農(nóng)藝性狀的表現(xiàn)。粒重和旗葉寬、株高、穗粒數(shù)和穗長(zhǎng)等農(nóng)藝性狀是否受緊密連鎖的基因控制或存在一因多效,還需要進(jìn)一步的試驗(yàn)予以證明。有研究表明,在小麥和水稻中旗葉寬與粒重之間存在正相關(guān)[17,32-33]。 QGw.nau-5A來(lái)自南大2419,該QTL位于5A染色體的著絲粒處,是一個(gè)QTL熱點(diǎn)區(qū)。本課題組利用南大2419 × 望水白重組自交系群體,在該區(qū)域定位到抗赤霉病、穗長(zhǎng)、穗密度、旗葉寬、葉綠素含量、百粒重和有效穗數(shù)的QTL[17,34-35],Xue等[24]在該區(qū)間內(nèi)精細(xì)定位了旗葉寬QTL TaFLW1。Huang等[9]在該區(qū)域定位到株高和產(chǎn)量的QTL。本研究中, QGw.nau-5A位于著絲粒區(qū)域,所覆蓋的區(qū)間相對(duì)較大,可能存在一定的遺傳累贅,這些連鎖遺傳的基因在不同的背景下導(dǎo)致了其他性狀上的差異。隨著小麥基因組序列的陸續(xù)公布,分子標(biāo)記數(shù)量的增加為分子標(biāo)記輔助選擇提供了便利。進(jìn)一步的回交或與其他品種雜交,并擴(kuò)大篩選群體,將分子標(biāo)記輔助選擇與表型篩選相結(jié)合來(lái)打破這種連鎖,可以篩選到更小導(dǎo)入?yún)^(qū)段的近等基因系,為小麥高產(chǎn)育種提供重要的材料。
[1] CALDERINI D F,DRECCER M F,SLAFER G A.Genetic improvement in wheat yield and associated traits.A re-examination of previous results and the latest trends [J].PlantBreeding, 1995,114(2):108.
[2] ZHOU Y,ZHU H Z,CAI S B,etal.Genetic improvement of grain yield and associated traits in the southern China winter wheat region:1949 to 2000 [J].Euphytica,2007,157(3):465.
[3] UNDERDAHL J L,MERGOUM M,RANSOM J K,etal.Agronomic traits improvement and associations in hard red spring wheat cultivars released in North Dakota from 1968 to 2006 [J].CropScience,2008,48(1):158.
[4] MCCARTNEY C A,SOMERS D J,HUMPHREYS D G,etal.Mapping quantitative trait loci controlling agronomic traits in the spring wheat cross RL4452 × 'AC Domain' [J].Genome,2005,48(5):870.
[5] 吳秋紅,陳嬌嬌,陳永興,等.燕大1817/北農(nóng)6號(hào)重組自交系群體穗部性狀的QTL定位[J].作物學(xué)報(bào),2015,41(3):349.
WU Q H,CHEN J J,CHEN Y X,etal.Mapping quantitative trait loci related to spike traits using a RILs population of Yanda 1817 × Beinong 6 in wheat(TriticumaestivumL.)[J].ActaAgronomicaSinica,2015,41(3):349.
[6] 程嘯天,蕭 峰,豐宇凱,等.野生二粒小麥粒重QTLs位點(diǎn)分析[J].麥類作物學(xué)報(bào),2014,34(3):298.
CHENG X T,XIAO F,FENG Y K,etal.Analysis on QTLs controlling grain weight inTriticumdicocoides[J].JournalofTriticeaeCrops,2014,34(3):298.
[7] 李文福,劉 賓,彭 濤,等.利用DH和IF2兩個(gè)群體進(jìn)行小麥粒重、粒型和硬度的QTL分析[J].中國(guó)農(nóng)業(yè)科學(xué),2012,45(17):3453.
LI W F,LIU B,PENG T,etal.Detection of QTL for kernel weight,grain size,and grain hardness in wheat using DH and immortalized F2population [J].ScientiaAgriculturaSinica,2012,45(17):3453.
[8] GROOS C,ROBERT N,BERVAS E,etal.Genetic analysis of grain protein-content,grain yield and thousand-kernel weight in bread wheat [J].TheoreticalandAppliedGenetics,2003,106(6):1032.
[9] HUANG X Q,CLOUTIER S,LYCAR L,etal.Molecular detection of QTLs for agronomic and quality traits in a doubled haploid population derived from two Canadian wheats(TriticumaestivumL.) [J].TheoreticalandAppliedGenetics,2006,113(4):762.
[10] QUARRIE S A,STEED A,CALESTANI C,etal.A high-density genetic map of hexaploid wheat(TriticumaestivumL.) from the cross Chinese Spring × SQ1 and its use to compare QTLs for grain yield across a range of environments [J].TheoreticalandAppliedGenetics,2005,110(5):865.
[11] KUMAR N,KULWAL P L,GAUR A,etal.QTL analysis for grain weight in common wheat [J].Euphytica,2006,151(2):135.
[12] KUMAR N,KULWAL P L,BALYAN H S,etal.QTL mapping for yield and yield contributing traits in two mapping populations of bread wheat [J].MolecularBreeding,2007,19:163.
[13] CUTHBERT J L,SOMERS D J,BRULErlé-Babel A L,etal.Molecular mapping of quantitative trait loci for yield and yield components in spring wheat(TriticumaestivumL.) [J].TheoreticalandAppliedGenetics,2008,117(4):595.
[14] SUN X Y,WU K,ZHAO Y,etal.QTL analysis of kernel shape and weight using recombinant inbred lines in wheat [J].Euphytica,2009,165(3):615.
[15] SUN X C,MARZA F,MA H X,etal.Mapping quantitative trait loci for quality factors in an inter class cross of US and Chinese wheat [J].TheoreticalandAppliedGenetics,2010,120(5):1041.
[16] RUSTGI S,SHAFQAT M N,KUMAR N,etal.Genetic dissection of yield and its component traits using high-density composite map of wheat chromosome 3A:Bridging gaps between QTLs and underlying genes [J].PloSOne,2013,8(7):e70526.
[17] JIA H Y,WAN H S,YANG S H,etal.Genetic dissection of yield-related traits in a recombinant inbred line population created using a key breeding parent in China's wheat breeding [J].TheoreticalandAppliedGenetics,2013,126(8):2123.
[18] XIE Q,MAYES S,SPARKES D L.Spelt as a genetic resource for yield component improvement in bread wheat [J].CropScience,2015,55:2761.
[19] BRESEGHELLO F,SORRELLS M E.Association mapping of kernel size and milling quality in wheat cultivars(TriticumaestivumL.) [J].Genetics,2006,172(172):1165.
[20] WANG L F,GE H M,HAO C Y,etal.Identifying loci influencing 1,000-kernel weight in wheat by microsatellite screening for evidence of selection during breeding [J].PloSOne,2012,7(2):e29432.
[21] R?DER M S,HUANG X Q,B?RNER A.Fine mapping of the region on wheat chromosome 7D controlling grain weight [J].Functional&IntergrativeGenomics,2008,8(1):79.
[22] SIMMONDS J,SCOTT P,LEVERINGTON-WAITE M,etal.Identification and independent validation of a stable yield and thousand grain weight QTL on chromosome 6A of hexaploid wheat(TriticumaestivumL.) [J].BMCPlantBiology,2014,14(1):191.
[23] 于春花,別同德,王 成,等.小麥Wx基因近等基因系的創(chuàng)制及其對(duì)直鏈淀粉含量、面條感官品質(zhì)的影響[J].作物學(xué)報(bào),2012,38(3):454.
YU C H,BIE T D,WANG C,etal.Development of near-isogenic lines with different wheatWxgenes and their effects on amylose content and noodle quality [J].ActaAgronomicaSinica,2012,38(3):454.
[24] XUE S L,XU F,LI G Q,etal.Fine mapping TaFLW1,a major QTL controlling flag leaf width in bread wheat(TriticumaestivumL.) [J].TheoreticalandAppliedGenetics,2013,126(8):1941.
[25] WU X Y,CHENG R R,XUE S L,etal.Precise mapping of a quantitative trait locus interval for spike length and grain weight in bread wheat(TriticumaestivumL.) [J].MolecularBreeding,2014,33(1):129.
[26] 萬(wàn)洪深.小麥骨干親本南大2419產(chǎn)量相關(guān)基因組區(qū)段的定位及其等位變異的效應(yīng)[D].南京:南京農(nóng)業(yè)大學(xué),2013:80.
WAN H S.Yield-related genomic regions of founder wheat parent Nanda 2419 and the effects of their allelic variations [D].Nanjing:Nanjing Agriculture University,2013:80.
[27] HUANG Y L,KONG Z X,WU X Y,etal.Characterization of three wheat grain weight QTLs that differentially affect kernel dimensions [J].TheoreticalandAppliedGenetics,2015,128(12):2439.
[28] MA Z Q,SORRELLS M E.Genetic analysis of fertility restoration in wheat using restriction fragment length polymorphisms [J].CropScience,1995,35(4):1138.
[29] XUE S L,ZHANG Z Z,LIN F,etal.A high-density intervarietal map of the wheat genome enriched with markers derived from expressed sequence tags [J].TheoreticalandAppliedGenetics,2008,117(2):181.
[30] GUO Z A,SONG Y X,ZHOU R H,etal.Discovery,evaluation and distribution of haplotypes of the wheat Ppd-D1 gene [J].NewPhytologist,2010,185(3):841.
[31] SU Z,HAO C,WANG L,etal.Identification and development of a functional marker of TaGW2 associated with grain weight in bread wheat(TriticumaestivumL.) [J].TheoreticalandAppliedGenetics,2011,122(1):211.
[32] CUI K H,PENG S B,XING Y Z,etal.Molecular dissection of the genetic relationships of source,sink and transport tissue with yield traits in rice [J].TheoreticalandAppliedGenetics,2003,106(4):649.
[33] WANG P,ZHOU G L,YU H H,etal.Fine mapping a major QTL for flag leaf size and yield-related traits in rice [J].TheoreticalandAppliedGenetics,2011,123(8):1319.
[34] LIN F,XUE S L,ZHANG Z Z,etal.Mapping QTL associated with resistance toFusariumhead blight in the Nanda 2419 x Wangshuibai population.II:Type I resistance [J].TheoreticalandAppliedGenetics,2006,112:528.
[35] MA Z Q,ZHAO D M,ZHANG C Q,etal.Molecular genetic analysis of five spike-related traits in wheat using RIL and immortalized F2populations [J].MolecularGeneticsandGenomics,2007,277(1):31.
Development and Evaluation of the Near-Isogenic Lines for a Major Grain Weight QTL in Wheat
KONG Zhongxin,CHENG Ruiru,ZHANG Liwei,LU Jikang,HUANG Yulong,YU Dong,MA Zhengqiang
(The Applied Plant Genomics Laboratory,College of Agriculture,Nanjing Agricultural University,Nanjing,Jiangsu 210095,China)
Grain weight,a quantitative trait controlled by multiple genes,is a major yield component in wheat. Understanding the genetic control of this trait could help to improve breeding efficiency for grain weight. QGw.nau-5A,a major quantitative trait locus(QTL) associated with grain weight,was previously identified in a recombinant inbred line mapping population derived from the cross between the Chinese elite cultivar Nanda 2419 and landrace Wangshuibai. To further evaluate the effects of different allelic variations in germplasm collection and in turn their breeding potential,in this study a number of near-isogenic lines(NILs) of QGw.nau-5A were developed through marker-assisted selection,with the Nanda 2419 and Early Premium(an American cultivar used widely as a founder parent in breeding) as donor parents,and Wangshuibai and cultivar Chuanmai 42 as the recurrent parents during backcrossing. The results showed that QGw.nau-5A indeed worked in different genetic backgrounds and different alleles contributed differently to grain weight. That is,the NILs carrying the alleles from Nanda 2419 and Early Premium constantly produced significantly larger grains(0.2-0.6 g per hundred grain) than the respective recurrent parents did:in the background of landrace Wangshuibai,the grain weight was increased by 9.11% while in the Chuanmai 42 background,introduction of Nanda 2419 and Early Premium alleles increased grain weight by 4.24% and 8.73%,respectively. The Nanda 2419 and Early Premium alleles therefore performed better than those of Chuanmai 42 and Wangshuibai.And the Early Premium allele performed better than that of Nanda 2419.
Wheat; Grain weight; QGw.nau-5A; Near-isogenic line; Marker-assisted selection
時(shí)間:2017-03-07
2016-11-23
2017-02-04
國(guó)家重點(diǎn)基礎(chǔ)研究發(fā)展計(jì)劃(973計(jì)劃)子課題項(xiàng)目(2011CB100104);國(guó)家自然科學(xué)基金項(xiàng)目(31301308,31430064);江蘇省自然科學(xué)基金項(xiàng)目(BK20130679)
E-mail:zhxkong@njau.edu.cn
S512.1;S330
A
1009-1041(2017)03-0312-07
網(wǎng)絡(luò)出版地址:http://kns.cnki.net/kcms/detail/61.1359.S.20170307.1637.010.html