杜 川, 付會(huì)凱
(新鄉(xiāng)學(xué)院 機(jī)電工程學(xué)院, 河南 新鄉(xiāng) 453003)
基于勵(lì)磁調(diào)壓特性的交流同步電機(jī)強(qiáng)勵(lì)控制*
杜 川, 付會(huì)凱
(新鄉(xiāng)學(xué)院 機(jī)電工程學(xué)院, 河南 新鄉(xiāng) 453003)
為了探索勵(lì)磁調(diào)壓特性對(duì)交流同步電機(jī)強(qiáng)勵(lì)的控制關(guān)系,通過(guò)勵(lì)磁EEAC理論從勵(lì)磁調(diào)壓角度對(duì)交流同步電機(jī)的強(qiáng)勵(lì)控制進(jìn)行分析,應(yīng)用Matlab系統(tǒng)建立自并勵(lì)單機(jī)仿真模型,并仿真分析了暫態(tài)過(guò)程中機(jī)端電壓對(duì)交流同步電機(jī)強(qiáng)勵(lì)的調(diào)控關(guān)系.結(jié)果表明,機(jī)端電壓決定著電功功率,電磁功率決定著系統(tǒng)暫態(tài)穩(wěn)定的裕度.在忽略損耗的條件下,電功功率等價(jià)于電磁功率,因而機(jī)端電壓決定著勵(lì)磁系統(tǒng)暫態(tài)穩(wěn)定的裕度.
勵(lì)磁系統(tǒng);調(diào)壓特性;同步電機(jī);強(qiáng)勵(lì)控制;電磁功率;機(jī)端電壓;仿真模擬;裕度
勵(lì)磁系統(tǒng)是交流同步電機(jī)的重要組成部分,是發(fā)電機(jī)和電力系統(tǒng)運(yùn)行經(jīng)濟(jì)性和穩(wěn)定性的主要評(píng)價(jià)指標(biāo)之一[1-3].勵(lì)磁系統(tǒng)由功率單元和控制單元兩部分組成,功率單元主要為發(fā)電機(jī)提供直流電流形成磁場(chǎng);控制單元主要調(diào)節(jié)系統(tǒng)電流,以確保發(fā)電機(jī)正常狀態(tài)穩(wěn)定運(yùn)行及事故發(fā)生時(shí)的調(diào)節(jié)恢復(fù)能力.勵(lì)磁系統(tǒng)基本結(jié)構(gòu)如圖1所示.
依據(jù)系統(tǒng)電源的不同,勵(lì)磁系統(tǒng)的勵(lì)磁方式可分為直流勵(lì)磁、交流勵(lì)磁、靜態(tài)勵(lì)磁3種[4-7].靜態(tài)勵(lì)磁根據(jù)電源的構(gòu)成不同又可分為自并勵(lì)勵(lì)磁系統(tǒng)和自復(fù)勵(lì)勵(lì)磁系統(tǒng),由于自并勵(lì)方式具有響應(yīng)速度快、機(jī)端電壓穩(wěn)定、振蕩抑制能力強(qiáng)、短路電流衰減小、運(yùn)行可靠性高等優(yōu)點(diǎn)[8-11],因而被廣泛應(yīng)用于大型發(fā)電機(jī)中.強(qiáng)勵(lì)是保證發(fā)電機(jī)
圖1 發(fā)電機(jī)勵(lì)磁控制系統(tǒng)結(jié)構(gòu)Fig.1 Structure of excitation control system of generator
系統(tǒng)穩(wěn)定的重要措施,目前國(guó)內(nèi)外很多學(xué)者研究了強(qiáng)勵(lì)電流對(duì)勵(lì)磁系統(tǒng)的影響,強(qiáng)勵(lì)電流響應(yīng)時(shí)間越短,發(fā)電機(jī)系統(tǒng)的穩(wěn)定性越高,然而轉(zhuǎn)子回路的時(shí)間常數(shù)制約強(qiáng)勵(lì)電流的響應(yīng)時(shí)間,進(jìn)而影響著發(fā)電機(jī)系統(tǒng)的穩(wěn)定性[12].勵(lì)磁強(qiáng)勵(lì)動(dòng)作的正確性對(duì)電力系統(tǒng)的穩(wěn)定性具有重要作用,由于其調(diào)控比較復(fù)雜,在使用過(guò)程中仍存在著許多問(wèn)題亟待解決,對(duì)于交流同步電機(jī)強(qiáng)勵(lì)控制的分析還存在許多局限性.本文依據(jù)擴(kuò)展等面積準(zhǔn)則(EEAC)及功率守恒原理推導(dǎo)出機(jī)端電壓與強(qiáng)勵(lì)控制的關(guān)聯(lián)關(guān)系,同時(shí)以單機(jī)無(wú)窮大電網(wǎng)系統(tǒng)中勵(lì)磁電壓的階躍擾動(dòng)信號(hào)來(lái)仿真強(qiáng)勵(lì)過(guò)程,在Matlab軟件Simulink平臺(tái)的SPB中建立常規(guī)PID勵(lì)磁控制系統(tǒng)仿真模型,分析了暫態(tài)過(guò)程中機(jī)端電壓對(duì)強(qiáng)勵(lì)的控制,為勵(lì)磁調(diào)壓特性對(duì)強(qiáng)勵(lì)過(guò)程的調(diào)控提供理論依據(jù).
勵(lì)磁系統(tǒng)強(qiáng)勵(lì)控制是電力系統(tǒng)通過(guò)調(diào)節(jié)輸出的無(wú)功功率來(lái)調(diào)控發(fā)電機(jī)的機(jī)端電壓及并網(wǎng)電壓,以維持電力系統(tǒng)的穩(wěn)定性,避免系統(tǒng)電壓大幅度跌落,以及促進(jìn)電力系統(tǒng)遭受短路時(shí)電壓的恢復(fù).在發(fā)電機(jī)系統(tǒng)運(yùn)行過(guò)程中,負(fù)荷電流的變化是引起機(jī)端電壓變化的主要因素,通常用電機(jī)的調(diào)壓靜差率來(lái)表示,即當(dāng)發(fā)電機(jī)系統(tǒng)中自動(dòng)勵(lì)磁調(diào)節(jié)器的調(diào)差單元退出時(shí),電壓的給定值保持不變,系統(tǒng)負(fù)載從額定功率減小到零時(shí)機(jī)端電壓的變化率,以此來(lái)評(píng)價(jià)勵(lì)磁系統(tǒng)維持機(jī)端電壓穩(wěn)定的能力.一般來(lái)說(shuō),發(fā)電機(jī)在系統(tǒng)運(yùn)行過(guò)程中引起機(jī)端電壓變化的主要因素為負(fù)荷電流的變化,即負(fù)荷電流的變化會(huì)引起電磁功率的變化.當(dāng)電磁功率從零變化到額定功率的過(guò)程中,環(huán)境溫度、頻率、電源電壓波動(dòng)的變化會(huì)引起機(jī)端電壓的變化,進(jìn)而實(shí)現(xiàn)對(duì)勵(lì)磁強(qiáng)勵(lì)的控制.
1.1 強(qiáng)勵(lì)控制與電磁功率的關(guān)系
依據(jù)擴(kuò)展等面積準(zhǔn)則,發(fā)電機(jī)在并網(wǎng)運(yùn)行時(shí)遭受大的擾動(dòng)后,系統(tǒng)中所有發(fā)電機(jī)將被分為臨界s群和余下a群,整個(gè)系統(tǒng)可被等值為一個(gè)時(shí)變的單機(jī)無(wú)窮大系統(tǒng),系統(tǒng)中的廣義慣性時(shí)間常數(shù)與轉(zhuǎn)子角的乘積等于系統(tǒng)機(jī)械功率與電磁功率之差,即
Mδ=Pm-Pe
(1)
(2)
δ=δs-δa
(3)
(4)
(5)
式中:M為廣義的慣性時(shí)間常數(shù);δ為轉(zhuǎn)子角;Pm為機(jī)械功率;Pe為電磁功率.
根據(jù)功率守恒原理,在忽略網(wǎng)損功率的條件下,s群的電磁功率Pes等于s群和a群之間所有有功功率之和,即
Pes=PLs+Pas+Pdc
(6)
式中:PLs為s群有功功率;Pas為s、a群之間交流有功功率;Pdc為s、a群之間直流有功功率.
a群的電磁功率Pea等于a群內(nèi)部的有功功率與s、a群之間交流及直流線路的有功功率之差,即
Pea=PLa-Pas-Pdc
(7)
對(duì)于獨(dú)立的電力系統(tǒng)來(lái)說(shuō),系統(tǒng)的穩(wěn)定性與系統(tǒng)暫態(tài)穩(wěn)定裕度η(t)密切相關(guān),穩(wěn)定裕度可表示為
(8)
由式(1)~(8)推算可知,在采取強(qiáng)勵(lì)控制后,等值系統(tǒng)電磁功率的提升量ΔPe和系統(tǒng)穩(wěn)定裕度的提升量Δη的表達(dá)式分別為
(9)
(10)
由式(9)、(10)可以看出,當(dāng)勵(lì)磁系統(tǒng)強(qiáng)勵(lì)的控制作用ΔPe>0時(shí),勵(lì)磁系統(tǒng)的正擺穩(wěn)定性得到改善,反擺穩(wěn)定性則被惡化;當(dāng)勵(lì)磁系統(tǒng)強(qiáng)勵(lì)的控制作用ΔPe<0時(shí),則反之.由此可知,勵(lì)磁強(qiáng)勵(lì)是勵(lì)磁系統(tǒng)通過(guò)改變電力系統(tǒng)的電磁功率ΔPe,進(jìn)而來(lái)調(diào)控電力系統(tǒng)運(yùn)行的穩(wěn)定性.
1.2 電磁功率與機(jī)端電壓的關(guān)系
根據(jù)機(jī)械功率守恒原理可知,發(fā)電機(jī)軸上輸入的機(jī)械功率P1等于機(jī)械損耗PΩ、定子鐵耗PFe以及轉(zhuǎn)變?yōu)樾D(zhuǎn)磁場(chǎng)和電磁感應(yīng)作用的電磁功率Pe之和,即
P1=PΩ+PFe+Pe
(11)
電磁功率Pe等于電樞銅耗PCua與輸出功率P2之和,即
(12)
式中:m為電機(jī)數(shù)量;Ra為電樞電阻;φ為相位角.從而可知Pe=mI2Ra+mUIcosφ=mI(IRa+Ucosφ).發(fā)電機(jī)各向量關(guān)系如圖2所示,依據(jù)圖2進(jìn)行分解可得IRa+Ucosφ=E0cosψ0,即Pe=mE0Icosψ0.
圖2 發(fā)電機(jī)向量關(guān)系Fig.2 Vector relationship for generator
以隱極機(jī)為例,忽略電阻損耗,此時(shí)電磁功率等于輸出功率,即Pe=P2=mE0Icosψ0,則其向量關(guān)系圖如圖3所示.斜三角形中向量Icosψ0=(Usinδ)/Xs,從而得出
(13)
式中,Xs為電機(jī)電抗.當(dāng)激磁電動(dòng)勢(shì)E0和輸出轉(zhuǎn)子角δ恒定時(shí),機(jī)端電壓U對(duì)電磁功率Pe起著決定作用,Pe隨著U的變化而變化.
圖3 發(fā)電機(jī)簡(jiǎn)化向量關(guān)系Fig.3 Simplified vector relationship for generator
由式(10)、(13)可知
(14)
由此可知機(jī)端電壓U對(duì)磁勵(lì)系統(tǒng)的強(qiáng)勵(lì)進(jìn)行了調(diào)控.
應(yīng)用計(jì)算機(jī)仿真軟件對(duì)電力系統(tǒng)建立仿真模型,可有效預(yù)測(cè)電力系統(tǒng)的安全性、可靠性和精準(zhǔn)性,也可為電力系統(tǒng)的安全穩(wěn)定運(yùn)行提供可靠保障.為了保證所研究的問(wèn)題具有普遍性特征,應(yīng)用軟件對(duì)典型的單機(jī)無(wú)窮大母線電力系統(tǒng)進(jìn)行仿真,同時(shí)設(shè)定供給的機(jī)械功率恒定不變,且忽略電動(dòng)機(jī)功率損耗.本文應(yīng)用Matlab軟件Simulink平臺(tái)建立的常規(guī)PID勵(lì)磁控制系統(tǒng)仿真模型如圖4所示,即在Matlab環(huán)境下的自并勵(lì)勵(lì)磁單機(jī)無(wú)窮大母線仿真模型.
圖4 自并勵(lì)勵(lì)磁控制系統(tǒng)仿真模型Fig.4 Simulation model for self-excited excitation system
仿真模型的參數(shù)設(shè)定:電機(jī)容量P=250 MVA,額定電壓U=13.5 kV,頻率f=50 Hz,縱軸電抗之和Xd=1.853 Ω,橫軸電抗之和Xq=0.717 Ω,漏電抗Xl=0.16 Ω,短路時(shí)電流瞬時(shí)變化時(shí)間td1=1.05 s,超瞬時(shí)變化時(shí)間為td2=0.055 s,諧波補(bǔ)償時(shí)間tb=0 s、tc=0 s,積分控制器的比例系數(shù)Ka=100、積分系數(shù)Ta=0.008.在建立的仿真模型中,當(dāng)t=10 s時(shí),給勵(lì)磁系統(tǒng)勵(lì)磁控制器的機(jī)端電壓輸入端加上10%的階躍擾動(dòng)信號(hào)進(jìn)行模擬仿真,圖5~7分別為發(fā)電機(jī)電磁功率、轉(zhuǎn)速和勵(lì)磁電壓在擾動(dòng)條件下的仿真曲線,橫坐標(biāo)為時(shí)間,縱坐標(biāo)分別是對(duì)應(yīng)的標(biāo)幺值.在t=10 s設(shè)置單機(jī)無(wú)窮大系統(tǒng)發(fā)生三相短路,且在10.2 s時(shí)將短路故障切除,圖8、9分別是發(fā)電機(jī)電磁功率和轉(zhuǎn)速的仿真曲線.從以上仿真圖可以看出,該系統(tǒng)具有較好的動(dòng)態(tài)調(diào)節(jié)性能和較強(qiáng)的抗干擾能力.
圖5 機(jī)端電壓階躍擾動(dòng)電磁功率仿真曲線Fig.5 Simulation curve for electric power under step disturbance of terminal voltage
圖6 機(jī)端電壓階躍擾動(dòng)轉(zhuǎn)速仿真曲線Fig.6 Simulation curve for rotational speed under step disturbance of terminal voltage
圖7 機(jī)端電壓階躍擾動(dòng)勵(lì)磁電壓仿真曲線Fig.7 Simulation curve for excitation voltage under step disturbance of terminal voltage
圖8 三相短路階躍擾動(dòng)電磁功率仿真曲線Fig.8 Simulation curve for electric power under step disturbance of three phase short circuit
圖9 三相短路階躍擾動(dòng)轉(zhuǎn)速仿真曲線Fig.9 Simulation curve for rotational speed under step disturbance of three phase short circuit
[1]杜治,馬蕊,梁易樂(lè),等.一種發(fā)電機(jī)勵(lì)磁系統(tǒng)模型參數(shù)可辨識(shí)性分析方法 [J].電力系統(tǒng)保護(hù)與控制,2014,42(22):38-44.
(DU Zhi,MA Rui,LIANG Yi-le,et al.Analysis method on parameter identifiability for excitation system model of generator [J].Power System Protection and Control,2014,42(22):38-44.)
[2]李兆偉,周旭,劉昱辰,等.自備電廠發(fā)電機(jī)勵(lì)磁系統(tǒng)穩(wěn)定性分析及控制研究 [J].電力系統(tǒng)保護(hù)與控制,2014,42(10):8-14.
(LI Zhao-wei,ZHOU Xu,LIU Yu-chen,et al.Analysis and control for captive generator excitation system stability [J].Power System Protection and Control,2014,42(10):8-14.)
[3]毛承雄,何金平,王丹,等.全控器件勵(lì)磁系統(tǒng)的多變量反饋線性化控制 [J].中國(guó)電機(jī)工程學(xué)報(bào),2013,33(22):53-60.
(MAO Cheng-xiong,HE Jin-ping,WANG Dan,et al.Multivariable feedback linearization scheme for new excitation systems based on full controlled devices [J].Proceedings of the CSEE,2013,33(22):53-60.)
[4]張振,徐科軍,楊雙龍,等.具有快速響應(yīng)的電磁流量計(jì)高低壓勵(lì)磁系統(tǒng) [J].電子測(cè)量與儀器學(xué)報(bào),2013,27(6):562-571.
(ZHANG Zhen,XU Ke-jun,YANG Shuang-long,et al.High and low voltage excitation system with high speed response for electromagnetic flow-meter [J].Journal of Electronic Measurement and Instrument,2013,27(6):562-571.)
[5]Masmoudi D A.Design of a brushless excitation system utilizing pot cores [J].Journal of Computations and Mathematics in Electrical,2015,34(6):1740-1757.
[6]張虹,徐濱,高健,等.基于最小方差基準(zhǔn)的勵(lì)磁系統(tǒng)性能評(píng)估 [J].電力系統(tǒng)保護(hù)與控制,2014,42(8):54-58.
(ZHANG Hong,XU Bin,GAO Jian,et al.Perfor-mance assessment of excitation system based on minimum variance benchmark [J].Power System Protec-tion and Control,2014,42(8):54-58.)
[7]Taniguchi T,Kondou T.373 elucidation of operating mechanism of dynamic absorber for parametric excitation system:stability analysis based on complex model analysis [J].International Journal of Molecular Sciences,2015,16(5):11785-11803.
[8]謝丹.靜止自并勵(lì)勵(lì)磁系統(tǒng)的設(shè)計(jì)方案的探討 [J].電力建設(shè),2003,24(12):32-34.
(XIE Dan.Inquisition into design scheme of exciting system with static self parallel excitation [J].Electric Power Construction,2003,24(12):32-34.)
[9]陳利芳,陳天祿.淺談自并勵(lì)勵(lì)磁系統(tǒng)在大容量機(jī)組中的應(yīng)用 [J].繼電器,2007,35(1):81-84.
(CHEN Li-fang,CHEN Tian-lu.Application of self-excitation mode in large capacity generator unit [J].Relay,2007,35(1):81-84.)
[10]張栩,彭志煒,邱國(guó)躍,等.自并勵(lì)靜態(tài)勵(lì)磁系統(tǒng)自動(dòng)電壓調(diào)節(jié)器參數(shù)對(duì)暫態(tài)穩(wěn)定性的影響仿真 [J].大電機(jī)技術(shù),2013(4):56-60.
(ZHANG Xu,PENG Zhi-wei,QIU Guo-yue,et al.Influence of AVR parameters of static excitation system on transient stability [J].Large Electric Machine and Hydraulic Turbine,2013(4):56-60.)
[11]劉振武,魏建忠,高仕斌.自并勵(lì)發(fā)電機(jī)后備保護(hù)改進(jìn)方案 [J].電力系統(tǒng)及其自動(dòng)化學(xué)報(bào),2013,25(2):53-57.
(LIU Zhen-wu,WEI Jian-zhong,GAO Shi-bin.Improved scheme of backup protection for generators with self-shunt excitation [J].Proceedings of the CSU-EPSA,2013,25(2):53-57.)
[12]許強(qiáng).基于恒勵(lì)磁電流的同步電動(dòng)機(jī)強(qiáng)勵(lì)方法 [J].河北工業(yè)科技,2012,29(6):499-501.
(XU Qiang.A reinforced excitation method based on the constant excitation current of synchronous motor [J].Hebei Journal of Industrial Science and Techno-logy,2012,29(6):499-501.)
(責(zé)任編輯:景 勇 英文審校:尹淑英)
Forced excitation control of AC synchronous motor based on excitation regulation characteristics
DU Chuan,FU Hui-kai
(School of Mechanical and Electrical Engineering,Xinxiang College,Xinxiang 453003,China)
In order to explore the relationship of excitation voltage regulation characteristics to the forced excitation control of AC synchronous motor,the forced excitation of AC synchronous motor was analyzed from the point of excitation voltage regulation through the excitation EEAC theory.The simulation model for the self-excited single motor was established with Matlab system.In addition,the regulation relationship of terminal voltage to the forced excitation of AC synchronous motor in the transient process was simulated and analyzed.The results show that the terminal voltage determines the electric power,and the electromagnetic power determines the margin of system transient stability.Under the condition of ignoring the loss,the electric power is equivalent to the electromagnetic power,and thus the terminal voltage determines the margin of excitation system transient stability.
excitation system;voltage regulation characteristic;synchronous machine;forced excitation control;electromagnetic power;terminal voltage;analogue simulation;margin
2016-06-27.
河南省高等學(xué)校重點(diǎn)科研資助項(xiàng)目(168470003).
杜 川(1982-),男,河南新鄉(xiāng)人,講師,碩士,主要從事電氣控制、電力傳動(dòng)等方面的研究.
22 17∶40在中國(guó)知網(wǎng)優(yōu)先數(shù)字出版.
http:∥www.cnki.net/kcms/detail/21.1189.T.20161222.1740.022.html
10.7688/j.issn.1000-1646.2017.02.02
TM 315
A
1000-1646(2017)02-0127-05