• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Spatial and temporal variations of the surface soil moisture in the source region of the Yellow River from 2003 to 2010 based on AMSR-E

    2017-04-18 07:09:03WANGRuiZHUQingkeMAHaoWANGYu
    中國水土保持科學(xué) 2017年1期
    關(guān)鍵詞:若爾蓋源區(qū)土壤水分

    WANG Rui,ZHU Qingke?,MA Hao,WANG Yu

    (1.Forestry Ecological Engineering Research Center,School of Soil and Water Conservation,Beijing Forestry University,100083,Beijing,China; 2.State Forestry Administration,Northwest Institute of Forest Inventory and Planning and Design,710048,Xi'an,China)

    Spatial and temporal variations of the surface soil moisture in the source region of the Yellow River from 2003 to 2010 based on AMSR-E

    WANG Rui1,ZHU Qingke1?,MA Hao2,WANG Yu1

    (1.Forestry Ecological Engineering Research Center,School of Soil and Water Conservation,Beijing Forestry University,100083,Beijing,China; 2.State Forestry Administration,Northwest Institute of Forest Inventory and Planning and Design,710048,Xi'an,China)

    [Background]Hydrological processes in the source region of the Yellow River(SRYR)are increasingly attracting local concern,particularly when coupled with a changing climate.Nonetheless, large-scale spatial and temporal variations in soil moisture have received minimal research attention compared to other hydrological variables in the area.[Methods]Based on a two-channel retrieval method with a Qpmodel through monthly regression analysis and Advanced Microwave Scanning Radiometer-EOS(AMSR-E)soil moisture data,we investigate the spatial and temporal variations of the surface soil moisture and its influencing factors in the SRYR and through five natural zonings in the SRYR during 2003-2010.[Results]Through successive corrections with the dual-channel retrieval algorithm with the Qpmodel and the monthly regression analysis,the AMSR-E soil moisture shows strong agreement with in situ data in the SRYR.The average annual surface soil moisture in the SRYR is 0.140-0.380 cm3/cm3.There is a decreasing trend in the moisture content in the entire SRYR over the study period (2003-2010).Generally,a decreasing trend occures in the areas with higher initial soil moisture values from 2003 to 2010,while increasing trend in the areas with lower initial soil moisture concentrations over the same period.The soil moisture is highly positively correlated with precipitation(r=0.80,P<0.01)and the NDVI(r=0.79,P<0.01)over the entire year.The soil moisture is also negatively correlated with air temperature in months with high temperatures(from April to September)and positively correlated with air temperature in months with low temperatures(from January to March and from October to December).[Conclusions]This paper illustrates that the surface soil moisture of the SRYR has the tendency of drying,and precipitation and vegetation account for the decrease of soil moisture.Results of this paper provide an effective way for AMSR-E official soil moisture products application,would help to understand the hydrological process and its response to climate change,and have a scientific significance for ecological environment construction in Plateau.

    AMSR-E;surface soil moisture;the source region of the Yellow River

    0 Introduction

    Surface soil moisture exists within the interface of the atmosphere,pedosphere,and biosphere.It plays a major role in the distribution of sensible heat and latent heat in solar net radiation,as well as in the runoff and infiltration process during precipitation.It provides important moisture source to cloud for precipitation by evaporation[1].It also plays the determined role in dynamic variation of deep soil moisture[2].Therefore,it is a critical initial parameter for simulating land surface processes such as climate and ecology.

    Because the soil moisture is strongly variable in space and time,traditionalin situstation monitoring methods are ineffective in assessing soil moisture on regional spatial or wide temporal scales;while microwave remote sensing provides an effective alternative for long-term real-time dynamic monitoring of soil moisture[3-4].As the first passive microwave sensor to provide a global soil moisture product,the AMSR-E has been being widely used.For example,Draper et al.[5]stated that soil moisture datasets by AMSR-E accurately reported the soil moisture in Australia.Zahid and Rasul[6]used AMSR-E data to analyze the spatial and temporal variation of soil moisture during crop planting season of Pakistan from 2003 to 2010.Chen et al.[7]verified the reliability of the AMSR-E soil moisture product in the Xilinhot grassland plots in China.Xi et al.[8]compared the accuracies of the three AMSR-E soil moisture products(JAXA,NASA,and VUA)in the Qinghai-Tibet Plateau(QTP),and reported that NASA and VUA presented higher retrieval accuracy. However,the official dynamic range of soil moisture was small,and therefore,which could not reflect any inter-annual trends.

    Several studies have sought to improve the AMSR-E original retrieval algorithm by introducing theQpsurface radiation model[9],and to validate this improved algorithm and the retrieval accuracy usingin situmeasured data[10-11].In addition,regression analysis relatingin situdata to the remote sensing products reduces the error in soil moisture estimation with the AMSRE[11,12].For instance,Feng et al.[13]used monthly regression analysis and the results on the soil moisture variations over the Poyang Lake basin in China were improved.

    In order to determine the most effective method, we intend to compare and validate the various AMSR-E soil moisture products in this study,including those retrieved by the dual-channel retrieval algorithm with theQpmodel(SMD),those using the linear regressioncorrected method(SML),and the AMSR-E official soil moisture(SMO).We will then apply these results to the analysis of the spatial and temporal variation in soil moisture over the SRYR in China.The SRYR,located in the Qinghai-Tibet Plateau(QTP),is also the world's most important high-altitude biodiversity nature reserve[14].In recent decades,particularly as a result of climate change and human activity in the area,the SRYR has experienced environmental deterioration,including the loss of runoff flow in the main river,theshrinking of associated lakes,soil erosion,continued degradation of area wetlands,deterioration of adjacent grassland ecosystems,and increasing desertification. These problems have had a serious impact on the local ecology,economics such as livestock production,and sustainability of water resources within the Yellow River basin[15-17].

    Soil moisture is crucial to many ecological processes in alpine grasslands,including the ecological carrying capacity,grassland resilience,and grassland recovery and reconstruction from degradation[18].Soil moisture can cause variations in atmospheric heat content,which would impact the shift in seasons in the SRYR[19].Generally,few studies have examined the long-term or large-scale soil moisture dynamics as they relate to climate change.This research uses the AMSR-E soil moisture products,along within situdata,to examine the spatial and temporal variations of soil moisture in the SRYR,to assess the contributing factors to these variations,and to understand the response of soil moisture to climate change as well as regional ecological and hydrological processes.Finally,this research assesses water resources management and ecological restoration options for the study area.

    1 Materials and methods

    1.1 Study area

    The SRYR is a catchment with an area of approximately 145 300 km2above the Longyangxia Reservoir in the mainstream of the Yellow River,and its geographic range is between 32°10'and 36°59'N in latitude and between 95°54'and 103°24'E in longitude(Fig. 1).The climate in SRYR is a typical continental plateau,with an average annual air temperature of-3 to -4.1℃and an annual average precipitation of 300-700 mm.The landform of the Yellow River is mainly three basic types of the mountains with an average altitude of>4 000 m,hill terraces and plain,with undulating plateau planation surface as the main form.The underlying surface primarily consists of seasonal permafrost,alpine meadows,alpine swamps,alpine lakes, and wetlands[20].Based on the division of the Qinghai-Tibetan Plateau natural zone[21],the main regions of the SRYR are as followings:the wide valley basin of the YRSR(I),Zoige hummocky plateau(II),Golog Yushu plateau gully(III),Huangnan mountains(IV),and the eastern margin of the Qaidam mountains (V).

    Fig.1 DEM of the SRYR,displaying meteorological and in situ soil moisture sites.The purple bold lines represent the boundary of natural zonation

    1.2 AMSR-E data of soil moisture

    The AMSR-E L3 daily surface moisture data during June 2002 to October 2010 from the National Snow and Ice Data Center(NSIDC)was applied for this study,AMSR-E was on the Aqua satellite launched by NASA in 2002.It had 6 observation channels of 6.9, 10.7,18.7,23.8,36.5,and 89.0 GHz,each with dual vertical and horizontal polarized radiation measurements,totally 12 channels.The data were available twice daily from an ascending track(overpasses at 13∶30 local time)and a descending track(overpasses at 1∶30 local time)with EASE-Grid as projection method and a spatial resolution of 25 km.Because the AMSRE data in each day cannot cover a full day in the middle and low latitudes,we spliced the data from two adjacent days into one using the stitching algorithm.

    1.3 Measured soil moisture,meteorological data and NDVI

    The soil moisture data from the Maqu Soil Moisture Monitoring Network(MSMMN)located in the SRYR was utilized to calibrate and validate the AMSRE soil moisture product downloaded from the International Soil Moisture Network.The soil moisture was measured at different depths(5 cm,10 cm,30 cm,50 cm,and 80 cm below the surface)at 15-min intervals by the EC-TM ECH2O probe(Decagon Devices,Inc., USA).The EC-TM ECH2O is a capacitance sensor that measures the dielectric permittivity of the soil surrounding the probe's pins,and the root mean square error (RMSE)was 0.02-0.06 m3/m3[22].Since microwave can only reach a few centimeters deep in the ground,the soil moisture at the surface of the 5 cm observed in this paper will be used for analysis and verification.The MSMMN is located at Zoige hummocky plateau of the Southeast SRYR,near to the first big bend of the Yellow River,Maqu County of Gansu province;the underlying surface is alpine meadow.The MSMMN consisted of 20 sites(as shown in Fig.1 and Tab.1).The data from 8 sites of CST-01,CST-04, NST-02,NST-04,NST-07,NST-10,NST-12,and NST-13 were used for the calibration of AMSR-E soil moisture product,while the data from other 12 sites for the verification.In order to obtain the actual surface soil moisture during the passage of the satellite,the average measured soil moisture adjacent to the satellite transit time was chosen to represent the surface soil moisture of AMSR-E transit time.

    Mean monthly air temperature and precipitation data were obtained between 2002 and 2011 from 11 National Meteorological Information Center(http:∥data.cma.cn)stations located across the SRYR(as shown in Fig.1).Using ARCGIS10.2,we conducted a Kriging interpolation of the air temperature and precipitation point data,and then generated raster image datasets with the same spatial resolution and soil moisture by pre-processing such as projecting,clipping, and re-sampling.

    MOD13A3 is monthly vegetation index developed by the land group of NASA MODIS via a common algorithm,and can be downloaded from Geospatial Data Cloud(http:∥globalchange.nsdc.cn),and the data were pre-processed by radiation,geometrical and atmosphere calibration.The data for this study was the maximum monthly NDVI through the Maximum Value Composite(MVC)method with spatial resolution of 1 km.The re-sampled data calibrated by projection matched the data of soil moisture.

    1.4 Dual-channel retrieval algorithm withQpmodel

    In the retrieval of surface soil moisture from passive remote sensing data,how to remove the influence of the surface roughness is an important issue.Shi et al[9]solved this problem through the development of theQpmodel.TheQpmodel is a surface radiation model aimed at AMSR-E sensor parameters based on the Advanced Integral Model(AIEM),applied to high frequency and wide surface roughness.It can be expressed as:

    whereepis the rough surface emissivity(equivalent toevandehin formula 2 shown below),tqis the polarized fresnel transmittance,tpis the fresnel transmittance, andQpis the roughness parameter.The subscriptprepresents polarization(vertical or horizontal polarization).

    In this study,theSMDdataset is processed by a dual-channel retrieval algorithm withQpmodel devel-oped by Shi et al.[9].This algorithm is based on a single-channel retrieval algorithm developed by Jackson et al.[23],and calculates the land surface temperature on the basis of a 36.5-GHz vertical polarized brightness temperature[24].The algorithm eliminates the influence of vegetation on the microwave signal by determining the vegetation's optical thickness using the empirical relationship between the vegetation water content and the NDVI.The dual-channel retrieval algorithm withQpmodel is then introduced into the model in order to eliminate the influence of land surface roughness.The resulting soil moisture data is then taken as the inverse of the 10.65-GHz brightness temperature.The algorithm[11]can be expressed as follows:

    Tab.1 Overview of sites in the regional observation net for analyzing the soil moisture in Maqu

    where theSMDis the retrieved soil moisture data andevandehare the vertical and horizontal polarized rough surface emissivity,respectively,calculated as the ratio between the brightness temperature and land surface temperature.

    1.5 Monthly regression analysis

    Because the AMSR-E soil moisture retrieval algorithm is strongly influenced by seasonal changes in vegetation cover,applying a monthly regression analysis to the AMSR-E soil moisture product increased the accuracy of the soil moisture measurements.In the monthly regression analysis,thein situdata was used to calibrate the AMSR-E soil moisture[13].The regression can be expressed as:

    whereSMLis the calibrated final product,andSMAMSREis the original AMSR-E soil moisture product,whileaandbare the regression coefficients.

    1.6 Data analysis

    The trend of the soil moisture during 2003-2010 served as the changing rate representing drier or wetter conditions,annually.We used the trend line method to analyze the change in soil moisture in different areas and months during 2003-2010,with the slope of thetrend line calculated as:

    wherenis the number of years(for this study,n=8, year 2003-2010),xjis the soil moisture value injth year,andθis the slope of the trend line(θ>0 indicates that the change in the soil moisture innyears is increased).

    In this study,the validation accuracy of three soil moisture products has been proposed based on observed data.The coefficient of determination(R2),betweenin situdata and the soil moisture product,and the RMSE were computed as criteria for goodness of fit.

    The RMSE is defined as:

    whereSMinsituandSMvare the observed and validated values forith pair,andnis the total number of paired values.Smaller RMSE values corresponded to smaller differences between the validated values and the observed values.

    2 Results

    2.1 Calibration and verification of AMSR-E soil moisture data

    First,according to the dual-channel retrieval algorithm withQpmodel,we calibrated the AMSR-E soil moisture usingin situsoil moisture from eight sites in the MSMMN,and then validated them with data from the other 12 sites.Tab.2 shows that the accuracy ofSMDis higher thanSMO,and the RMSE is reduced from 0.041 to 0.036.At the same time,using the NST-14 site in 2009 as an example(see Fig.2),the range ofSMOis small(0.070-0.180 cm3/cm3),andSMDwas significantly higher than thein situsoil moisture in general situation,especially so in the months with little moisture.SMDis generally lower than thein situdata,and in periods with less precipitation and vegetation,SMDis similar to thein situdata.However,in periods with more precipitation and vegetation,SMDis much lower than thein situdata.Tab.2 shows that the AMSR-E soil moisture retrieval algorithm is not strongly influenced by precipitation,but rather seasonal changes in vegetation cover[3].Applying monthly regression analysis to the AMSR-E soil moisture product could mitigate the effect of the change in vegetation cover for increasing the accuracy of the soil moisture measurements.

    Next,we calculated the monthly calibration coefficient using equation(2)based onSMDbydual-channel retrieval algorithm withQpmodel as well asin situdata from eight sites,and obtained the soil moisture product(SML)using the linear regression-corrected method.Then,the accuracy ofSMLwas validated by data from the 12 sites.Tab.2 shows that the accuracy of theSMLis higher thanSMDandSMO.The range and trend curve ofSMLmost closely approximate those ofin situdata(see Fig.2).Consequently,we calibrated the AMSR-E soil moisture through the dual-channel retrieval algorithm withQpmodel and monthly regression analysis,and analyzed the spatial and temporal variations in soil moisture over the SRYR from 2003 to 2010.

    Tab.2 Validation accuracy of three soil moisture productscm3/cm3

    2.2 Spatial and temporal variations in soil moisture

    Average annual land surface soil moisture is 0.140-0.380 cm3/cm3as shown in Fig.3,the overall spatial distribution presented as high in the southeastern part and low in the northwestern part of the study area,i.e.,gradually rising from northwestern to southeastern part.It is similar to the soil moisture calculated for the Qinghai-Tibet Plateau[11],but smallerthan the range of 0.2-0.5 cm3/cm3in the SRYR from August to October 2009 by the Advanced Synthesis Aperture Radar(ASAR)[25].The average soil moisture in the Zoige hummocky plateau of the Southeast SRYR is 0.332 cm3/cm3,and this is the highest in the SRYR,and the area near the first bend of the Yellow River is of the highest soil moisture,and it is a key water conservation area in the SRYR.Correspondingly,Chen et al.[26]found that the soil moisture in the Zoige wetland was approximately 0.3 cm3/cm3from their soil moisture simulation experiment.The average annual soil moisture in the Golog Yushu plateau gully of the South SRYR is 0.275 cm3/cm3with the trend of high in the southeast and low in the northwest of the area.The soil moistures in the Huangnan mountains of the North SRYR,and the wide valley basin of the Northwest YRSR are low at averagely 0.215 cm3/cm3and 0.241 cm3/cm3,respectively.The soil moisture in the eastern margin of the Qaidam Mountains in the most northern part of SRYR is the lowest at 0.213 cm3/cm3.

    The soil moisture tends to decrease from 2003 to 2010 in the SRYR at a rate of 0.012 cm3/cm3yearly (see Fig.4).There is also a slight trend of drying in the northern Tibetan over a period of nearly ten years[27].Furthermore,the soil moisture in different natural zonation is inconsistent.In the Zoige hummocky plateau,Golog Yushu plateau gully and Huangnan mountains,the soil moisture gradually decreases at a rate of 0.067 cm3/cm3,0.011 cm3/cm3,and 0.012 cm3/cm3,respectively.In the wide valley basin of the YRSRandtheeasternmarginoftheQaidam mountains,the soil moisture increases at a rate of 0.026 cm3/cm3and 0.019 cm3/cm3,respectively.

    Fig.5 shows the spatial variations in the soil moisture averaged across the study period(2003-2010). Regarding to varied seasons and areas,the soil moisture in the spring(March,April,and May)decreases in most areas,especially in the Zoige hummocky plateau and in the Huangnan mountains;while the spring soil moisture in the wide valley basin of the YRSR and in the Golog Yushu plateau gully shows an increasing trend.In the summer(June,July,and August),the soil moisture increases in the eastern margin of the Qaidam Mountains and in the western Eling Lake in the wide valley basin of the YRSR,and decreases in the southern area of both Golog Yushu plateau gully and Huangnan mountains.In the autumn(September,October,and November),there are significant fluctuations in the soil moisture in the southern Zoige hummocky plateau and Golog Yushu plateau gully.In the winter(January,February,and December),the SRYR experiences freezing soils,as the mean air temperature drops below zero at times,resulting in minimal fluctuations in the soil moisture.On an individual monthly basis,the averaged soil moisture gradually increases in June,July,and September(when the moisture shows a significant increase of 0.036 cm3/cm3.In all other months,the averaged soil moisture decreases, with the greatest rate occurring in May(0.009 cm3/ cm3and November 0.008 cm3/cm3.

    2.3 Analysis of factors influencing soil moisture

    Tab.3 shows a significant positive correlation between precipitation,NDVI,and soil moisture in the SRYR,while air temperature is not correlated with the annual averaged soil moisture.Using monthly data, there is lower correlation between the precipitation and soil moisture in the January and December than the other months,likely due to hindered infiltration when the ground is frozen.From April to September inclusive,air temperature and soil moisture show a negative correlation,particularly in May and June when the soil moisture is most strongly subjected to evaporative influences from high ambient temperatures.From January to March and from October to December,air temperature and soil moisture are positively correlated,likely because in the freeze-thaw cycles when increased air temperatures facilitate the thaw of accumulated snow and frozen water,therefore increasing the soil moisture.The NDVI is also significantly correlated with the soil moisture,and it is consistent with previous studies[10,28].Vegetation affects the soil moisture by intercepting rainfall as well as regulating evaporation and infiltration.The correlations in May to July are generally lower than the other months,likely as the effect of air temperature on the soil moisture during this period increases,while the effect of vegetation alleviates.

    Fig.2 Comparisons of three types of soil moisture products and the measured soil moisture at the NST-14 site in 2009

    Fig.3 Average annual soil moisture during 2003-2010 in the SRYR

    Fig.4 Annual variance ratio of the soil moisture from 2003 to 2010 in the SRYR

    3 Conclusions and discussions

    With the validation ofin situdata,the accuracy of the soil moisture data by the dual-channel retrieval algorithm and monthly regression analysis is better than that by official AMSR-E product,i.e.,by which the soil moisture is accurately measured.However,due to the low spatial resolution of the passive microwave sensor,it cannot be applied in the retrieval of soil moisture in the middle and low-scales.In the subsequent measurement,the downscaling method that combines the high resolution data should be employed to acquire the soil moisture with more accurate and spatially higher.

    Tab.3 Correlation coefficients between the soil moisture and environmental factors including precipitation,air temperature,and NDVI

    In this study,we analyzed the temporal and spatial characterization of the soil moisture over the SRYR using the retrieval AMSR-E soil moisture products.

    Fig.5 Monthly variance ratio of the soil moisture from 2003 to 2010 in the SRYR(Unit:cm3/(cm3·a))

    Temporally,soil moisture is the highest in July and August and the lowest in January and December.Soil moisture generally tends to decrease in the spring, while increase again in the summer,have fluctuation in the autumn,and have little change in the winter.Spatially,the soil moisture is high in the southeastern section of the study area,and low in northwestern section; of which is the highest in the Zoige hummocky plateau, and lowest in the eastern margin of the Qaidam mountains.On the changing trend,the average soil moisture tends to decrease over the study period(2003 -2010)at a rate of 0.012 cm3/(cm3·a),with the highest rate of decrease(0.067 cm3/(cm3·a))in the Zoige hummocky plateau.The soil moisture in the wide valley basin of the YRSR and in the eastern margin of the Qaidam mountains increases slightly,i.e.,the soil moisture decreases the most in the areas with initially high soil moisture,while increases in the areas that originally had low soil moisture.

    Among all considered influencing factors,precipitation results in the greatest impact on soil moisture. Air temperature is negatively correlated with soil moisture during periods of high temperature,and positively during periods of low temperature.Actually,the climate in the SRYR shows a significant trend towards warmer and wetter during the study period[16,29],while the soil moisture in the SRYR generally decreases,indicating that the increase of precipitation is not enough to offset the evaporative loss from warming trends and the amount ofsoilwateravailableforvegetative growth.Previous study[30]stated that when the air temperature increased by 2℃and precipitation increasedby less than 15%,evapotranspiration prevailed and the drought-related stress on the ecosystem increased; which could be eliminated only precipitation increased b 15%at the same time.Warming trend must,therefore,be offset by large increases in precipitation in order to ensure sufficient soil moisture and stabilize vegetative growth.In the next 90 years,air temperature in the QTP expectedly increases by 2.5℃[31],while the increase of precipitation will not exceed 5%over the next 30-50 years[32].In another words,the increasing precipitation would not enough to compensate the negative effect of increasing air temperature,which would thereby intensify the drought trend in the SRYR. The NDVI and soil moisture is positively correlated.Vegetation degradation further contributes to lowering soil moisture,especially significantly in the surface soil layers,and the highest reduction to the surface soil moisture was 38.6%[28].In the source region of 3 Rivers(Yangtze River,the Yellow River,and Lancang River)in the QTP,the ecological degradation of meadows also showed a strong impact on soil water conservation[33],and thus,restoration and reconstruction of degraded ecosystems should play a positive effect on suppressing drought trend in the SRYR.Other than precipitation,air temperature,and NDVI,environmental factors such as topography,soil physical properties,and human activities cause certain impacts on soil moisture,and therefore they should be taken into the further research in the SRYR.

    4 References

    [1] FAMIGLIETTI J S,RUDNICKI J W,RODELL M.Variability in surface moisture content along a hillslope transect:Rattlesnake Hill,Texas[J].Journal of Hydrology, 1998,210(1/2/3/4):259.

    [2] KOSTER R D,SUAREZ M J,HIGGINS R W,et al. Observational evidence that soil moisture variations affect precipitation[J].Geophysical Research Letters,2003, 30(5):45.

    [3] NJOKU E G,JACKSON T J,LAKSHMI V,et al.2003. Soil moisture retrieval from AMSR-E[J].IEEE Transactions on Geoscience&Remote Sensing,41(2):215.

    [4] LU H,KOIKE T,OHTA T,et al.Development of a soil moisture retrieval algorithm for spaceborne passive microwave radiometers and its application to AMSR-E and SSM/I[C]∥IEEE International Geoscience and Remote Sensing Symposium,2007:1177.

    [5] DRAPER C S,WALKER J P,STEINLE P J,et al. 2009.An evaluation of AMSR-E derived soil moisture over Australia[J].Remote Sensing of Environment,113(4): 703.

    [6] ZAHID M,RASUL G.Spatial trends of AMSR-E soil moisture across agro-climatic zones of pakistan 2003-2010[J].Pakistan Journal of Meteorology,2013,9 (18):23.

    [7] CHEN J,YANGang Z D,WU S L.Validation of AMSRE soil moisture products in the Xilinhot grassland plots [J].Meteorological Monthly,2011,37(3):334.

    [8] XI J J,WEN J,TIAN H,et al.Applicability evaluation of AMSR-E remote sensing soil moisture products in Qinghai-Tibet plateau[J].Chinese Society of Agricultural Engineering,2014,30(13):194.

    [9] SHI J,JIANG L,ZHANG L,et al.Physically based estimation of bare-surface soil moisture with the passive radiometers[J].IEEE Transactions on Geoscience&Remote Sensing,2006,44(11):3145.

    [10] WANG A,SHI J,GONG H,et al.A quantitative model of soil moisture and instantaneous variation of land surface temperature[C]∥Geoscience and Remote Sensing Symposium.IEEE,2012:698.

    [11] LIU Q,DU J Y,SHI J C,et al.Analysis of spatial distribution and multi-year trend of the remotely sensed soil moisture on the Tibetan Plateau[J].Science China, 2013,56(12):2173.

    [12] BROCCA L,HASENAUER S,LACAVA T,et al.2011 soil moisture estimation through ASCAT and AMSR-E sensors:an intercomparison and validation study across Europe[J].Remote Sensing of Environment,115 (12):3390.

    [13] FENG H H,LIU Y B.Spatial and temporal variation of soil moisture and its controlling factors over the Poyang lake basin from 2003 to 2009[J].Resources&Environment in the Yangtze Basin,2015,24(2):241.

    [14] FENG J,TAO W,XIE C.Eco-Environmental Degradation in the Source Region of the Yellow River,Northeast Qinghai-Xizang Plateau[J].Environmental Monitoring &Assessment,2006,122(122):125.

    [15] WANG G,LIU G,LI C.Effects of changes in alpine grassland vegetationcoveronhillslopehydrological processes in a permafrost watershed[J].Journal of Hydrology,2012,444-445(12):22.

    [16] LAN C,ZHANG Y,GAO Y,et al.The impacts of climate change and land cover/use transition on the hydrol-ogy in the upper Yellow River Basin,China[J].Journal of Hydrology,2013,502(2):37.

    [17] MENG F,SU F,YANG D,et al.Impacts of recent climate change on the hydrology in the source region of the Yellow River basin[J].Journal of Hydrology Regional Studies,2016,6:66.

    [18] GE Y,LU C,XIE G,et al.Grassland ecosystem services and their economic evaluation in Qinghai-Tibetan Plateau based on RS and GIS[C]∥Geoscience and Remote Sensing Symposium,2005.IGARSS'05.Proceedings.IEEE International,2005:2961.

    [19] YANG M,YAO T,GOU X,et al.The soil moisture distribution,thawing-freezing processes and their effects on the seasonal transition on the Qinghai-Xizang(Tibetan)Plateau[J].Journal of Asian Earth Sciences, 2003,21(21):457.

    [20] WEN J,XIN L,SHI X,et al.Numerical simulations of fractional vegetation coverage influences on the convective environment over the source region of the Yellow River[J].Meteorology&Atmospheric Physics,2013, 120(1/2):1.

    [21] ZHENG D,ZHANG R Z,YANG Q Y.On the natural zonation in the Qinghai-Xizang Plateau[J].Acta Geographica Sinica,1979,34(1):1.

    [22] DENTE L,VEKERDY Z,WEN J,et al.Maqu network for validation of satellite-derived soil moisture products [J].International Journal of Applied Earth Observation &Geoinformation,2012,17(1):55.

    [23] JACKSON T J,VINE D M L,HSU A Y,et al.Soil moisture mapping at regional scales using microwave radiometry:the Southern Great Plains Hydrology Experiment[J].Geoscience&Remote Sensing IEEE Transactions on,1999,37(5):2136.

    [24] HOLMES T R H,DE JEU R A M,OWE M,et al. Land surface temperature from Ka band(37 GHz)passive microwave observations[J].Journal of Geophysical Research Atmospheres,2009,114(4):83.

    [25] HE Y,WEN J,ZHANG T T,et al.A study on estimating soil moisture using microwave remote sensing combined with optical over the source region of the Yellow River[J].Remote Sensing Technology and Application,2013,28(2):300.

    [26] CHEN B L,LUO S Q,LU S H,et al.Simulation and improvement of soil temperature and moisture at Zoige station in source region of the Yellow River during freezing and thawing[J].Plateau Meteorology,2014,33 (2):337.

    [27] FU X,SONG C Q,ZHONG X K.On spatial and temporal variation of land surface moisture in Northern Tibetan[J].Advance in Water Science,2012,23(4): 464.

    [28] ZENG C,ZHANG F,WANG Q,et al.Impact of alpine meadow degradation on soil hydraulic properties over the Qinghai-Tibetan Plateau[J].Journal of Hydrology, 2013,478(2):148.

    [29] TIAN H L,LAN Y C,WEN J,et al.Evidence for a recent warming and wetting in the source area of the Yellow River(SAYR)and its hydrological impacts[J]. Journal of Geographical Sciences,2015,25(6):643.

    [30] LI Y N,WANG Q J,ZHAO X Q,et al.The influence of climatic warming on the climatic potential productivity of alpine meadow[J].Acta Agrestia Sinica,2000,8 (1):23.

    [31] YU L,FENG C Y.Recent progress in climate change over tibetan plateau[J].Plateau&Mountain Meteorology Research,2012,32(3):84.

    [32] LIU X D,CHENG Z G,ZHANG R.The A1B scenario projection for climate change over the tibetan plateau in the next 30-50 Years[J].Plateau Meteorology,2009, 28(3):475.

    [33] WANG Y B,WANG G X,WU Q B,et al.The impact of vegetation degeneration on hydrology features of alpine soil[J].Journal of Glaciology&Geocryology,2010,32 (5):989.

    基于AMSR-E的黃河源區(qū)表層土壤水分時(shí)空變化

    王蕊1,朱清科1,馬浩2,王瑜1
    (1.北京林業(yè)大學(xué)水土保持學(xué)院,100083,北京;2.國家林業(yè)局西北林業(yè)調(diào)查規(guī)劃設(shè)計(jì)院,710048,西安)

    黃河源區(qū)生態(tài)環(huán)境和水文過程對(duì)氣候變化的響應(yīng)是該區(qū)域研究的熱點(diǎn)問題,但相對(duì)于其他環(huán)境和水文要素____而言,大尺度長序列的土壤水分時(shí)空分布特征研究不足。本文基于AMSR-E被動(dòng)微波遙感數(shù)據(jù)和地面實(shí)測數(shù)據(jù),首先采用引入Qp模型的雙通道反演算法校正AMSR-E土壤水分?jǐn)?shù)據(jù),獲得的土壤水分產(chǎn)品(SMD)精度高于官方提供的土壤水分產(chǎn)品(SMO),但其波動(dòng)范圍與實(shí)測數(shù)據(jù)有差異。之后采用逐月回歸分析法對(duì)SMD進(jìn)行二次校正,其土壤水分產(chǎn)品(SML)具有更高的精度且變化趨勢與實(shí)測數(shù)據(jù)一致。基于SML土壤水分產(chǎn)品,對(duì)黃河源區(qū)及其5個(gè)自然分區(qū)表層土壤水分的時(shí)空變化特征及其影響因素進(jìn)行分析。黃河源區(qū)年平均表層土壤水分為0.140~0.380 cm3/cm3,在2003—2010年間呈下降趨勢,在東南部土壤水分較高的若爾蓋丘狀高原區(qū)、黃南山地區(qū)和果洛玉樹高原寬谷區(qū)土壤水分呈下降趨勢,其中若爾蓋丘狀高原區(qū)的下降速率最快,而在西北部土壤水分較低的黃河源寬谷湖盆區(qū)和柴達(dá)木東緣山區(qū)呈增加趨勢;春季土壤水分呈下降趨勢,夏季呈增加趨勢,秋季的波動(dòng)較大,冬季的變化的不大,其中9月土壤水分增加率和5月減少率最大。土壤水分受降水和植被指數(shù)的影響最大,氣溫表現(xiàn)為在年高溫月份與土壤水分呈負(fù)相關(guān),在年低溫月份呈正相關(guān)。研究結(jié)果為AMSR-E土壤水分?jǐn)?shù)據(jù)的研究與應(yīng)用提供了依據(jù),有助于深化對(duì)區(qū)域尺度土壤水分格局及其對(duì)氣候變化響應(yīng)的研究,對(duì)高原生態(tài)環(huán)境建設(shè)有重大意義。

    AMSR-E;表層土壤水分;黃河源區(qū)

    S152.7;TP79

    :A

    :2096-2673(2017)01-0022-11

    2016- 10- 31

    2017- 02- 07

    10.16843/j.sswc.2017.01.004

    Funded:National Science and Technology Support Plan(2015BAD07B02)

    WANG Rui(1985-),female,doctoral student.Main research interests:soil erosion and remote sensing.E-mail:wangrui227@126.com.

    ?Corresponding author:ZHU Qingke(1956-),male,professor.Main research interests:Soil and water conservation,forestry ecological engineering.E-mail:zhuqingke@sohu.com.

    猜你喜歡
    若爾蓋源區(qū)土壤水分
    冬小麥蒸散源區(qū)代表性分析
    近30年來若爾蓋高寒濕地變化及其對(duì)區(qū)域氣候變化的響應(yīng)
    渭河源區(qū)徑流量變化特征及趨勢分析
    綠龜
    在若爾蓋草原(外一首〕
    中國詩歌(2016年7期)2016-12-05 20:43:22
    西藏高原土壤水分遙感監(jiān)測方法研究
    基于SPI指數(shù)的若爾蓋及其臨近地區(qū)降水變化特征分析
    不同覆蓋措施對(duì)棗園土壤水分和溫度的影響
    植被覆蓋區(qū)土壤水分反演研究——以北京市為例
    土壤水分的遙感監(jiān)測方法概述
    韩国av在线不卡| 国产在线精品亚洲第一网站| 亚洲熟妇熟女久久| 三级国产精品欧美在线观看| 国产高清三级在线| 亚洲aⅴ乱码一区二区在线播放| 在线观看一区二区三区| 小蜜桃在线观看免费完整版高清| 亚洲四区av| 久久人人爽人人爽人人片va| 久久久午夜欧美精品| 免费无遮挡裸体视频| 国产 一区 欧美 日韩| 一边摸一边抽搐一进一小说| 免费不卡的大黄色大毛片视频在线观看 | 三级男女做爰猛烈吃奶摸视频| 免费看av在线观看网站| 一个人观看的视频www高清免费观看| 久久婷婷人人爽人人干人人爱| 高清午夜精品一区二区三区 | 一本一本综合久久| 国产欧美日韩精品亚洲av| av天堂在线播放| 一本一本综合久久| 亚洲成人精品中文字幕电影| 成人精品一区二区免费| 久久精品国产亚洲网站| 国产精品爽爽va在线观看网站| 免费看a级黄色片| 久久久久国产网址| 国产精品伦人一区二区| 毛片女人毛片| 色哟哟·www| 亚洲精品日韩av片在线观看| 欧美最新免费一区二区三区| 日本一本二区三区精品| 国产成人aa在线观看| 国产成人a∨麻豆精品| 国产精品日韩av在线免费观看| 欧美又色又爽又黄视频| 午夜免费男女啪啪视频观看 | 国产一区二区在线av高清观看| 日韩,欧美,国产一区二区三区 | 高清午夜精品一区二区三区 | 成人特级av手机在线观看| 久久天躁狠狠躁夜夜2o2o| 亚洲激情五月婷婷啪啪| 国产精品野战在线观看| 黄色一级大片看看| 日韩欧美 国产精品| 草草在线视频免费看| 女生性感内裤真人,穿戴方法视频| 欧美日韩乱码在线| 亚洲国产色片| 一本精品99久久精品77| 日本成人三级电影网站| av免费在线看不卡| videossex国产| 久久久国产成人精品二区| 国产伦精品一区二区三区四那| 国产熟女欧美一区二区| 亚洲欧美成人综合另类久久久 | 日韩高清综合在线| 老师上课跳d突然被开到最大视频| 内射极品少妇av片p| 大型黄色视频在线免费观看| 免费高清视频大片| 亚洲精品影视一区二区三区av| 亚洲高清免费不卡视频| 一卡2卡三卡四卡精品乱码亚洲| 精品午夜福利视频在线观看一区| 性色avwww在线观看| 99热这里只有是精品在线观看| 国产精品永久免费网站| 三级男女做爰猛烈吃奶摸视频| 精华霜和精华液先用哪个| 欧美性猛交╳xxx乱大交人| 亚洲欧美日韩高清专用| 天堂网av新在线| 欧美三级亚洲精品| 国产精品国产三级国产av玫瑰| 性插视频无遮挡在线免费观看| 一卡2卡三卡四卡精品乱码亚洲| 日韩,欧美,国产一区二区三区 | 中文亚洲av片在线观看爽| avwww免费| 深爱激情五月婷婷| 午夜爱爱视频在线播放| 色尼玛亚洲综合影院| 99热这里只有是精品50| 在线免费十八禁| av在线天堂中文字幕| av中文乱码字幕在线| 亚洲三级黄色毛片| 国产探花极品一区二区| 亚洲成人中文字幕在线播放| 91久久精品国产一区二区成人| 亚洲av电影不卡..在线观看| 少妇高潮的动态图| 久久婷婷人人爽人人干人人爱| 99国产精品一区二区蜜桃av| 欧洲精品卡2卡3卡4卡5卡区| av天堂中文字幕网| 一进一出好大好爽视频| 最近手机中文字幕大全| 天堂影院成人在线观看| 亚洲电影在线观看av| 免费av毛片视频| 久久天躁狠狠躁夜夜2o2o| 97热精品久久久久久| 丰满乱子伦码专区| 亚洲精品日韩在线中文字幕 | 国产在视频线在精品| 搡老熟女国产l中国老女人| 婷婷精品国产亚洲av在线| 久久久久久国产a免费观看| 日韩亚洲欧美综合| 中文字幕久久专区| 日韩av不卡免费在线播放| 精品久久国产蜜桃| 欧美丝袜亚洲另类| 久久久久久久久久成人| 日韩欧美精品v在线| 日韩欧美免费精品| 一卡2卡三卡四卡精品乱码亚洲| 99久久九九国产精品国产免费| 精品国产三级普通话版| 18禁裸乳无遮挡免费网站照片| 精品久久久久久久久久久久久| 插逼视频在线观看| 免费高清视频大片| 国产日本99.免费观看| 亚洲欧美成人精品一区二区| 黄片wwwwww| 日日摸夜夜添夜夜爱| 欧美极品一区二区三区四区| 亚洲专区国产一区二区| 亚洲自偷自拍三级| 久久精品夜色国产| 人妻制服诱惑在线中文字幕| 国产伦精品一区二区三区视频9| 六月丁香七月| 亚洲在线观看片| 日本免费一区二区三区高清不卡| 欧美性猛交╳xxx乱大交人| 国产精品伦人一区二区| 婷婷亚洲欧美| 国产高清视频在线观看网站| 午夜激情福利司机影院| 特级一级黄色大片| 一区福利在线观看| 国产亚洲av嫩草精品影院| 国产成人a区在线观看| 精品一区二区三区人妻视频| 国产精品爽爽va在线观看网站| 97超级碰碰碰精品色视频在线观看| 国产午夜精品论理片| 网址你懂的国产日韩在线| 校园春色视频在线观看| 亚洲国产欧美人成| 深夜精品福利| 自拍偷自拍亚洲精品老妇| 不卡一级毛片| 国产探花极品一区二区| 高清毛片免费看| 免费观看的影片在线观看| 亚洲av熟女| 亚洲av第一区精品v没综合| 国产精品日韩av在线免费观看| 天堂动漫精品| 国产成年人精品一区二区| 国产伦精品一区二区三区视频9| 午夜福利在线在线| 亚洲成人精品中文字幕电影| 欧美激情在线99| 亚洲不卡免费看| 身体一侧抽搐| 国国产精品蜜臀av免费| 日本撒尿小便嘘嘘汇集6| 一个人看视频在线观看www免费| 一a级毛片在线观看| 在线观看午夜福利视频| 免费观看精品视频网站| 97人妻精品一区二区三区麻豆| 校园人妻丝袜中文字幕| 老女人水多毛片| 又粗又爽又猛毛片免费看| 免费看美女性在线毛片视频| 日本在线视频免费播放| 久久久久久九九精品二区国产| 亚洲最大成人av| 午夜影院日韩av| 日韩欧美免费精品| 日本在线视频免费播放| 国产av在哪里看| 日韩av在线大香蕉| 成年av动漫网址| 欧美三级亚洲精品| 日日干狠狠操夜夜爽| 观看免费一级毛片| 亚洲欧美日韩无卡精品| 男人和女人高潮做爰伦理| 可以在线观看毛片的网站| 精品人妻视频免费看| videossex国产| 99久久精品一区二区三区| 一区福利在线观看| aaaaa片日本免费| h日本视频在线播放| 麻豆国产97在线/欧美| 蜜桃亚洲精品一区二区三区| 精品一区二区三区人妻视频| 夜夜爽天天搞| 国产精品人妻久久久久久| 精华霜和精华液先用哪个| 精品欧美国产一区二区三| 久久久久免费精品人妻一区二区| 亚洲国产欧洲综合997久久,| 国产精品久久电影中文字幕| 自拍偷自拍亚洲精品老妇| 久久久久九九精品影院| 国产精品99久久久久久久久| 国产成年人精品一区二区| 亚洲精品456在线播放app| 99视频精品全部免费 在线| 国产一区二区在线av高清观看| 特大巨黑吊av在线直播| 久久热精品热| 免费观看的影片在线观看| 欧美人与善性xxx| 亚洲熟妇中文字幕五十中出| 日本三级黄在线观看| 中文字幕av成人在线电影| 亚洲高清免费不卡视频| 搞女人的毛片| 波多野结衣高清作品| 精品人妻熟女av久视频| 级片在线观看| 国产成人影院久久av| 啦啦啦啦在线视频资源| 91狼人影院| 亚洲真实伦在线观看| 噜噜噜噜噜久久久久久91| 乱系列少妇在线播放| 精品一区二区三区av网在线观看| 老熟妇乱子伦视频在线观看| www日本黄色视频网| 国产黄色小视频在线观看| 成人鲁丝片一二三区免费| 欧美人与善性xxx| 亚洲精品成人久久久久久| av视频在线观看入口| 亚洲人成网站在线播| 看十八女毛片水多多多| 男女做爰动态图高潮gif福利片| 国产精品久久久久久av不卡| 在线播放国产精品三级| 国产成人精品久久久久久| 天堂动漫精品| 国产精品美女特级片免费视频播放器| 麻豆一二三区av精品| 99国产极品粉嫩在线观看| 男女之事视频高清在线观看| 老司机福利观看| 一个人看的www免费观看视频| 国产一区二区亚洲精品在线观看| 久久精品国产亚洲av天美| 国产精品久久久久久亚洲av鲁大| 久久国内精品自在自线图片| 看十八女毛片水多多多| 我要搜黄色片| 成人精品一区二区免费| 国产亚洲91精品色在线| 男女那种视频在线观看| 久久亚洲精品不卡| 一级av片app| 成人毛片a级毛片在线播放| 性插视频无遮挡在线免费观看| 日韩成人伦理影院| 长腿黑丝高跟| av在线老鸭窝| 色综合亚洲欧美另类图片| 男人狂女人下面高潮的视频| 久久热精品热| 人妻少妇偷人精品九色| 午夜福利在线观看免费完整高清在 | 成人高潮视频无遮挡免费网站| 床上黄色一级片| 国产又黄又爽又无遮挡在线| 亚洲欧美成人综合另类久久久 | 国产美女午夜福利| 寂寞人妻少妇视频99o| 91久久精品国产一区二区成人| 尾随美女入室| 91久久精品国产一区二区三区| 国产高清三级在线| 少妇被粗大猛烈的视频| 特大巨黑吊av在线直播| www日本黄色视频网| aaaaa片日本免费| 欧美一区二区精品小视频在线| 日韩欧美精品免费久久| h日本视频在线播放| 男女之事视频高清在线观看| 国产免费男女视频| 久久久久久大精品| 99久久精品一区二区三区| 日本精品一区二区三区蜜桃| 精品一区二区三区av网在线观看| 亚洲精品色激情综合| 欧美高清性xxxxhd video| 97人妻精品一区二区三区麻豆| 免费在线观看成人毛片| 22中文网久久字幕| 国产麻豆成人av免费视频| 亚洲电影在线观看av| videossex国产| 亚洲av五月六月丁香网| 成人午夜高清在线视频| 日本熟妇午夜| 日韩成人av中文字幕在线观看 | 91久久精品国产一区二区成人| 国产精品99久久久久久久久| 一个人免费在线观看电影| 91在线观看av| 噜噜噜噜噜久久久久久91| av专区在线播放| 黑人高潮一二区| 亚洲精品乱码久久久v下载方式| 国产真实伦视频高清在线观看| 在线看三级毛片| 国产高潮美女av| 精品欧美国产一区二区三| 夜夜看夜夜爽夜夜摸| 嫩草影院入口| 女同久久另类99精品国产91| 欧美xxxx黑人xx丫x性爽| 日韩精品中文字幕看吧| 一个人观看的视频www高清免费观看| 欧美人与善性xxx| 中国国产av一级| 日韩一区二区视频免费看| 国产国拍精品亚洲av在线观看| 国产aⅴ精品一区二区三区波| 成人国产麻豆网| 一卡2卡三卡四卡精品乱码亚洲| 亚洲精品日韩av片在线观看| 成年女人毛片免费观看观看9| 日产精品乱码卡一卡2卡三| 精品人妻熟女av久视频| 亚洲精品日韩在线中文字幕 | 人人妻人人澡欧美一区二区| 国产69精品久久久久777片| 久久精品人妻少妇| 欧美色视频一区免费| 全区人妻精品视频| 日韩亚洲欧美综合| 日本免费一区二区三区高清不卡| 中文字幕精品亚洲无线码一区| 一区二区三区高清视频在线| 国产人妻一区二区三区在| 国产一级毛片七仙女欲春2| 俺也久久电影网| 在线观看66精品国产| 少妇猛男粗大的猛烈进出视频 | 五月伊人婷婷丁香| 蜜桃久久精品国产亚洲av| 热99在线观看视频| 在线播放国产精品三级| 亚洲精品色激情综合| 久久久久久久亚洲中文字幕| 亚洲18禁久久av| 又黄又爽又刺激的免费视频.| 亚州av有码| 国产成人a区在线观看| 国产精品一区二区三区四区久久| av专区在线播放| 97在线视频观看| 人人妻人人看人人澡| 我要看日韩黄色一级片| 国产成人一区二区在线| 嫩草影院新地址| 国产免费男女视频| 免费搜索国产男女视频| av福利片在线观看| 国内精品宾馆在线| 日韩av不卡免费在线播放| 国产人妻一区二区三区在| 小说图片视频综合网站| 乱人视频在线观看| 直男gayav资源| av在线蜜桃| 欧美性感艳星| 又爽又黄a免费视频| av国产免费在线观看| 91精品国产九色| 一a级毛片在线观看| 欧洲精品卡2卡3卡4卡5卡区| 国产精品国产三级国产av玫瑰| 成人美女网站在线观看视频| 国产成人福利小说| 日日摸夜夜添夜夜添av毛片| 亚洲欧美日韩卡通动漫| 人人妻人人澡人人爽人人夜夜 | 久久久久久久久久成人| 色播亚洲综合网| 精品福利观看| 国产亚洲精品久久久com| 亚洲电影在线观看av| 麻豆国产av国片精品| 日韩一本色道免费dvd| 少妇人妻精品综合一区二区 | 久久久久久久久大av| 国产高清三级在线| 国产精品日韩av在线免费观看| 日韩在线高清观看一区二区三区| 综合色丁香网| av福利片在线观看| 99在线视频只有这里精品首页| 国产高潮美女av| 精品无人区乱码1区二区| 国产午夜精品久久久久久一区二区三区 | av在线亚洲专区| 少妇裸体淫交视频免费看高清| 亚洲国产精品合色在线| 俺也久久电影网| 我的老师免费观看完整版| 三级毛片av免费| 人人妻人人澡欧美一区二区| 精品99又大又爽又粗少妇毛片| 久久这里只有精品中国| 十八禁国产超污无遮挡网站| 欧美性猛交黑人性爽| 国产精品不卡视频一区二区| 日本a在线网址| 伦理电影大哥的女人| 俺也久久电影网| 国产高清视频在线播放一区| 99热全是精品| 97人妻精品一区二区三区麻豆| 欧美高清性xxxxhd video| 久久中文看片网| 日韩大尺度精品在线看网址| 淫秽高清视频在线观看| 黄色一级大片看看| 给我免费播放毛片高清在线观看| 久久欧美精品欧美久久欧美| 亚洲精品国产成人久久av| 丰满乱子伦码专区| 九九爱精品视频在线观看| 97碰自拍视频| 一本久久中文字幕| 国语自产精品视频在线第100页| 噜噜噜噜噜久久久久久91| 日本一本二区三区精品| 精华霜和精华液先用哪个| 少妇熟女欧美另类| 亚洲国产高清在线一区二区三| 亚洲五月天丁香| 看免费成人av毛片| 成人漫画全彩无遮挡| 免费观看精品视频网站| 亚洲av免费在线观看| 亚洲国产精品国产精品| 久久精品影院6| 午夜免费男女啪啪视频观看 | 午夜日韩欧美国产| av在线播放精品| 在线a可以看的网站| 午夜精品在线福利| 午夜福利在线在线| 日本在线视频免费播放| 国产一区二区在线av高清观看| 欧美人与善性xxx| 欧美xxxx黑人xx丫x性爽| 99久久久亚洲精品蜜臀av| 在线看三级毛片| 成人国产麻豆网| 啦啦啦观看免费观看视频高清| av在线天堂中文字幕| 国产黄片美女视频| 午夜爱爱视频在线播放| 欧美日韩精品成人综合77777| av黄色大香蕉| 成年女人永久免费观看视频| 久久精品国产亚洲av涩爱 | 久久久久精品国产欧美久久久| 99热只有精品国产| 免费av观看视频| 国产精品久久久久久av不卡| ponron亚洲| 女人被狂操c到高潮| 亚洲av.av天堂| 麻豆一二三区av精品| 亚洲av熟女| 寂寞人妻少妇视频99o| 夜夜夜夜夜久久久久| 亚洲欧美成人综合另类久久久 | 国产大屁股一区二区在线视频| 床上黄色一级片| 国产成人freesex在线 | 日产精品乱码卡一卡2卡三| 欧洲精品卡2卡3卡4卡5卡区| 男女边吃奶边做爰视频| 精品福利观看| 一进一出抽搐动态| 婷婷色综合大香蕉| 精品一区二区三区av网在线观看| 亚洲av一区综合| 亚洲中文字幕日韩| 麻豆av噜噜一区二区三区| 99久久精品热视频| a级一级毛片免费在线观看| 99国产精品一区二区蜜桃av| 国产高潮美女av| 久久草成人影院| 日韩欧美三级三区| 特级一级黄色大片| 禁无遮挡网站| 国内精品美女久久久久久| 亚洲四区av| 嫩草影视91久久| 午夜福利成人在线免费观看| 菩萨蛮人人尽说江南好唐韦庄 | 嫩草影院精品99| 亚洲专区国产一区二区| 好男人在线观看高清免费视频| 自拍偷自拍亚洲精品老妇| 午夜久久久久精精品| 我要看日韩黄色一级片| 国产熟女欧美一区二区| 亚洲一区高清亚洲精品| 亚洲一级一片aⅴ在线观看| 久久久久免费精品人妻一区二区| 亚洲va在线va天堂va国产| 男人舔奶头视频| 内地一区二区视频在线| 成人特级av手机在线观看| 人人妻人人澡人人爽人人夜夜 | 小说图片视频综合网站| 国产精品美女特级片免费视频播放器| 亚洲欧美成人综合另类久久久 | 精品久久久久久久久久免费视频| 日本免费a在线| 你懂的网址亚洲精品在线观看 | 日韩 亚洲 欧美在线| 热99在线观看视频| 在线国产一区二区在线| 插阴视频在线观看视频| 亚洲真实伦在线观看| 观看免费一级毛片| 男女之事视频高清在线观看| 免费在线观看影片大全网站| 亚洲久久久久久中文字幕| 一级毛片电影观看 | 久久久a久久爽久久v久久| 欧美一区二区亚洲| 久久精品91蜜桃| 99久国产av精品| 精品久久久久久久久av| 白带黄色成豆腐渣| 一级黄片播放器| 亚洲精品日韩av片在线观看| 亚洲美女搞黄在线观看 | avwww免费| 国产日本99.免费观看| 久久久午夜欧美精品| 免费在线观看成人毛片| 免费看a级黄色片| 蜜桃亚洲精品一区二区三区| 一区福利在线观看| 亚洲天堂国产精品一区在线| 天堂动漫精品| 免费av观看视频| av在线播放精品| 在线观看66精品国产| 一本一本综合久久| 此物有八面人人有两片| 成年女人毛片免费观看观看9| 国产伦精品一区二区三区视频9| 男女那种视频在线观看| 国产一区二区亚洲精品在线观看| 成人永久免费在线观看视频| av卡一久久| 精品一区二区三区人妻视频| 精品无人区乱码1区二区| 精品久久久久久久久亚洲| 国内久久婷婷六月综合欲色啪| 国产精品免费一区二区三区在线| 国产av麻豆久久久久久久| 我要搜黄色片| 亚洲经典国产精华液单| 非洲黑人性xxxx精品又粗又长| 美女黄网站色视频| 亚洲性久久影院| 简卡轻食公司| 高清日韩中文字幕在线| 国产精品乱码一区二三区的特点| 别揉我奶头~嗯~啊~动态视频| 亚洲欧美成人综合另类久久久 | 精品久久久噜噜| 男女视频在线观看网站免费| 自拍偷自拍亚洲精品老妇| 免费观看精品视频网站| 午夜福利在线观看吧| 亚洲国产精品sss在线观看| 国产精品野战在线观看| 一本久久中文字幕| 国产不卡一卡二| 看黄色毛片网站| 最近手机中文字幕大全| 少妇丰满av| 色5月婷婷丁香| 麻豆国产av国片精品| 免费av毛片视频|