• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    STRONG DUALITY WITH STRICT EFFICIENCY IN VECTOR OPTIMIZATION INVOLVING NONCONVEX SET-VALUED MAPS

    2017-04-12 14:31:39YUGuolinZHANGYanLIUSanyang
    數(shù)學雜志 2017年2期
    關鍵詞:集值西安電子科技大學三陽

    YU Guo-lin,ZHANG Yan,LIU San-yang

    (1.Institute of Applied Mathematics,Beifang University of Nationalities,Yinchuan 750021,China)

    (2.Department of Mathematics,Xidian University,Xi’an 710071,China)

    余國林1,張 燕1,劉三陽2

    (1.北方民族大學應用數(shù)學研究所, 寧夏 銀川 750021)

    (2.西安電子科技大學數(shù)學系, 陜西 西安 710071)

    STRONG DUALITY WITH STRICT EFFICIENCY IN VECTOR OPTIMIZATION INVOLVING NONCONVEX SET-VALUED MAPS

    YU Guo-lin1,ZHANG Yan1,LIU San-yang2

    (1.Institute of Applied Mathematics,Beifang University of Nationalities,Yinchuan 750021,China)

    (2.Department of Mathematics,Xidian University,Xi’an 710071,China)

    This paper is diverted to the study of two strong dual problems of a primal nonconvex set-valued optimization in the sense of strict effi ciency.By using the principles of Lagrange duality and Mond-Weir duality,for each dual problem,a strong duality theorem with strict effi ciency is established.The conclusions can be formulated as follows:starting from a strictly effi cient solution of the primal problem,it can be constructed a strictly effi cient solution of the dual problem such that the corresponding objective values of both problems are equal.The results generalize the strong dual theorems in which the set-valued maps are assumed to be cone-convex.

    strict effi ciency;strong duality;set-valued optimization;ic-cone-convexlikeness

    1 Introduction

    One of the most important topics of set-valued optimization is related to proper efficiency,this is because that the range ofthe set of(weak)effi cient solutions is often too large. In order to contract the solution range,several kinds of proper effi ciency were presented.For example,Benson effi ciency[1],Henig effi ciency[2],Geoffrion effi ciency[3],Super effi ciency [4]and Strictly effi ciency[5]etc.Especially,super effi ciency,given by Borwein and Zhuang [4],was shown to have some desirable properties.However,the condition to guarantee its existence is rather strong.Later,weakening the existence condition,Professor Cheng and Fu [5]improved the concept ofsupper effi ciency and introduced the concept of strict effi ciency.

    Since duality assertions allow to study a minimization problem through a maximization problem and to know what one can expect in the bestcase.At the same time,duality resulted in many applications within optimization,and it provided many unifying conceptualinsights into economics and management science.So it is not surprising that duality is one of the important topics in set-valued optimization.There were many papers dedicated to dualitytheory ofset-valued optimization(see[6–11]).Among results obtained in this field,we want to mention the strong duality.In vector optimization,it is often said that strong duality holds between primaland dualproblems,if a weakly effi cient solution ofa primalproblem is a weakly effi cient solution ofdualproblem and such that the corresponding objective values of the primaland dualproblems are equal.If in this problem “weakly effi cient solution”is replaced by “properly effi cient solution”,then it is said that strong duality with proper effi ciency holds between the primaland dualproblems.However,strong duality with proper effi ciency was considered only for the case when proper effi ciency was understood in the sense of Geoffi ron[10]and Benson[11].

    On the other hand,it is wellknown that the concept of cone-convexity and its generalizations play an important role in establishing duality theorems for set-valued optimization problems.Up to now,there are many notions of generalized convexity for set-valued maps which are introduced and are proved to be usefulfor optimization theory and related topics. Among them,the notion of ic-cone-convexlikeness seemed to be more general one[12],and was successfully applied to strict effi ciency and Henig effi ciency in set-valued optimization [13–16].

    Based upon the above observation,the aim of this note is to establish the strong duality theorems with strict effi ciency for set-valued optimization problems under the ic-coneconvexlikenessassumptions.Thispaperisarranged as follows:In Section 2,some well-known definitions and results used in the sequelare recalled.In Section 3,two improved dualmodels are introduced,and strong duality theorems with strict effi ciency are established under the assumption of ic-cone-convexlikeness,respectively.

    2 Preliminaries

    In this paper,let X,Y and Z be real topological spaces.Let D ? Y and E ? Z be pointed convex cones,and denoted

    Defi nition 2.1Let M be a nonempty subset of Y, ˉy ∈ M is called a minimize (maximize)point of M,if

    The set of minimize(maximize)point of M is denoted by Min[M,D](Max[M,D]).

    For a set A ? Y,we write cone(A)={λ ·a: λ ≥ 0,a ∈ A}.The closure and interior of set A is denoted by cl(A)and int(A).A convex subset B of a cone D is a base of D if 0Y/∈ cl(B)and D=cone(B).

    Throughout this paper,it is always assumed that the pointed convex cone D ? Y has a base B.

    Defi nition 2.2[5,13]Let M be a nonempty subset of Y, ˉy ∈ M is called a strictly minimize point of M with respect to B,if there is a neighbourhood U of 0Ysuch that

    The set of strictly effi cient point of M with respect to B is denoted by Strmin[M,B].

    Remark 2.1[5,13](1)With respect to the defi nition of strictly minimize points, equality(2.1)is equivalent to

    Moreover,if necessary,the neighbourhood U of 0Ycan be chosen to be open,convex or balanced.

    (2)Strmin[M,B]? Min[M,D].

    (3)Similarly, ˉy ∈ M is called a strictly maximize point of M with respect to B,ifthere is a neighbourhood V of 0Ysuch that

    Remark 2.2In Defi nition 2.2,if equality(2.1)holds,then

    In fact,if not,there exist λ > 0,m ∈ M,d ∈ D{0Y},u ∈ U and b ∈ B,such that λ(m ? ˉy+d)=u ? b.Since B is the base of D,there exist μ > 0 and b1∈ B such that d= μ ·b1.Since B is convex set,we get that

    Therefore,we can get

    which contradicts equality(2.1).

    Defi nition 2.3[12]The set-valued map F:X → 2Yis called ic-D-convexlike if int(cone(im(F)+D))is convex and

    where im(F)is the image of F,and that is

    Assume that F:X → 2Yand G:X → 2Zare set-valued maps.This note considers the following set-valued optimization problem(SOP):

    The set of feasible solution of(SOP)is denoted by ?,that is

    Defi nition 2.4If ˉx ∈ S and ˉy ∈ F(ˉx) ∩ Strmin£F(S),B,then we say that(ˉx,ˉy)is a strictly effi cient solution of problem(SOP).

    Let L(X,Y)be the family of(single-valued)linear continuous maps from X into Y.Let

    Defi nition 2.5[13]Let F:X → 2Ybe a set-valued map, ˉx ∈ X and ˉy ∈ F(ˉx).A map T ∈ L(X,Y)is said to be a strict subgradient of F at(ˉx,ˉy)if

    The set of allstrict subgradients of F at(ˉx,ˉy)is denoted by ?strF(ˉx,ˉy).

    Assumption(A)[12]In problem(SOP),let ˉx ∈ S, ˉy ∈ F(ˉx)and ˉz ∈ G(ˉx) ∩ (?E). It is said that Assumption(A)is satisfied if there exists β ∈ [0,1)such that the set-valued map Hβ:=(F ? ˉx)× (G ? β ·ˉz):X → 2Y×Zis ic-D × E-convexlike.

    Defi nition 2.6[12]It is said that condition(CQ)holds if cl£cone(im G+E) =Z.

    Lemma 2.7[13]Let ˉx ∈ S, ˉy ∈ F(ˉx)and ˉz ∈ G(ˉx) ∩ (?E).Let Assumption(A)and condition(CQ)be satisfied.If(ˉx,ˉy)is a strictly effi cient solution of problem(SOP),then there exists ˉT ∈ L+(Z,Y)such that ˉT(ˉz)=0Yand

    3 Strong Duality

    3.1 Lagrange-Wolfe Strong Duality

    We firstrewrite the Lagrange dualproblem in the form similar to the Wolfe dualproblem [17],which is denoted by problem(LWD)as follows:

    Denote by Q1the set of allfeasible points of(LWD),i.e.,the set of points(ξ,u,v,T) ∈X × Y × Z × L(Z,Y)satisfying(3.1)–(3.3).Let S1be the set of all points u+T(v)such that there exists ξ∈ X with(ξ,u,v,T) ∈ Q1.

    Defi nition 3.1If(ξ,u,v,T) ∈ Q1,and u+T(v) ∈ Strmax£S,B,then we say that (ξ,u,v,T)is a strictly effi cient solution of problem(LWD).

    Theorem 3.2(Weak Duality)If x ∈ ? and(ξ,u,v,T) ∈ Q1,then

    ProofSince x ∈ ?,it holds that G(x) ∩ (?E)/= ?.So we can take a point.Hence

    On the other hand,(3.2)shows that there exists a neighbourhood U of 0Ysuch that

    It follows from Remark 2.2 that

    So we get(3.4),as desired.

    Remark 3.1In weak duality Theorem 3.2,it follows from(3.4)and Remark 2.1 that u+T(v) ∈ min£F(x),D.This leads to

    so(3.4)means that y/≤ u+T(v), ?y ∈ F(x),which is the sense of generalweak duality in literatures[6–8].

    Theorem 3.3(Strong Duality)Let ˉx ∈ X, ˉy ∈ F(ˉx)and ˉz ∈ G(ˉx) ∩ (?E).Let Assumption(A)and condition(CQ)be satisfied.If(ˉx,ˉy)is a strictly effi cient solution of problem(SOP),then there exists ˉT ∈ L+(Z,Y)such that ˉT(ˉz)=0,(ˉx,ˉy,ˉz, ˉT)is a strictly effi cient solution of(LWD),and the corresponding objective values of(SOP)and(LWD)are equal.

    ProofIt yields from Lemma 2.7 that there exists ˉT ∈ L+(Z,Y)such that ˉT(ˉz)=0 and (ˉx,ˉy,ˉz, ˉT) ∈ Q1.It remains to prove that ˉy= ˉy+ ˉT(ˉz) ∈ Strmax[S1,B].In fact,otherwise there exist the neighbourhood U0of 0Ysuch that

    Hence,there exist b0∈ (B ? U0), λ > 0 and ?u+T(?v) ∈ S1such that b0= λ(?u+T(?v) ? ˉy) or,equivalently,

    This indicates that

    a contradiction to the weak duality property(3.4)with x= ˉx.

    3.2 Mond-Weir Strong Duality

    This subsection is devoted to construct another duality problem on the basis ofthe idea of Mond-Weir[18],called the Mond-Weir duality problem(MWD),and establish a strong duality result between(SOP)and(MWD).The next problem is named the Mond-Weir dual problem of(SOP)and is denoted by(MWD):

    Denote by Q2the set ofallfeasible points of(MWD),i.e.,the set ofpoints(ξ,u,v,T) ∈X × Y × Z × L(Z,Y)satisfying(3.5)–(3.8).Let S2be the set ofallpoints u such that there exists(ξ,v,T) ∈ X × Z × L(Z,Y)with(ξ,u,v,T) ∈ Q2.

    Lemma 3.4It holds that Q2? Q1and S2? S1? D.

    ProofAccording to the definitions of Q1and Q2,it is obviously that Q2? Q1is satisfied.So it is to prove the second one only.Let u ∈ S2.Then there exists(ξ,v,T) ∈X × Z × L(Z,Y)such that(ξ,u,v,T) ∈ Q2? Q1is satisfied.We get that

    Thus,u ∈ S1? D.This completes proof.

    Theorem 3.5(Weak Duality)If x ∈ ? and(ξ,u,v,T) ∈ Q2,then there exists a neighbourhood U of 0Ysuch that

    ProofBy Lemma 3.4,we obtain that Q2? Q1.Again,we get from Theorem 3.2 that there exists a neighbourhood U of 0Ysuch that

    Hence it follows from Remark 2.2 that

    On the other hand,it yields from(3.8)that

    Combing above inquality with(3.10)yields(3.9),as required.

    In order to formulating the strong duality between(SOP)and(MWD),we need propose the following Lemma 3.6.

    Lemma 3.6If(ˉξ,ˉu,ˉv, ˉT)is a strictly effi cient solution of(LWD)and ˉT(ˉv)=0,then ( ˉξ,ˉu,ˉv, ˉT)is a strictly effi cient solution of(MWD)and the corresponding objective values of both problems are equal.

    ProofBecause(ˉξ,ˉu,ˉv, ˉT)is a strictly effi cient solution of(LWD),it follows from the definition of set S1that there exists a neighbourhood U of 0Ysuch that

    Therefore,we get from Remark 2.2 that

    On the other hand,according to Lemma 3.4,we have S2? S1? D.Then we derive from ˉT(ˉv)=0 that

    Together(3.11)with(3.12),it is clear thatwhich is the desired result.

    Theorem 3.7(Strong Duality)Let ˉx ∈ X, ˉy ∈ F(ˉx)and ˉz ∈ G(ˉx) ∩ (?E).Let Assumption(A)and condition(CQ)be satisfied.If(ˉx,ˉy)is a strictly effi cient solution of problem(SOP),then there exists ˉT ∈ L+(Z,Y)such that ˉT(ˉz)=0,(ˉx,ˉy,ˉz, ˉT)is a strictly effi cient of(MWD),and the corresponding objective values of(SOP)and(MWD)are equal.

    ProofIt follows from Lemma 2.7 that there exists ˉT ∈ L+(Z,Y)such that ˉT(ˉz)=0 and(ˉx,ˉy,ˉz, ˉT) ∈ Q2? Q1.Hence,we get from the strong duality Theorem 3.3 between (SOP)and(LWD)that(ˉx,ˉy,ˉz, ˉT)is a strictly effi cient solution of(LWD)and the corresponding objective values of(SOP)and(LWD)are equal.Therefore,it yields from Lemma 3.6 that(ˉx,ˉy,ˉz, ˉT)is also a strictly effi cient of(MWD)and the corresponding objective values of(LWD)and(MWD)are equal.This can obtain the desired results.

    [1]Benson H P.An improved defi nition of proper effi ciency for vector maximization with respect to cones[J].J.Math.Anal.Appl.,1979,71:232–241.

    [2]Henig M I.Proper effi ciency with respect to cones[J].J.Optim.The.Appl.,1982,36:387–407.

    [3]Geoff rion A M.Proper effi ciency and the theory of vector maximization[J].J.Math.Anal.Appl., 1968,22:618–630.

    [4]Borwein J M,Zhuang D M.Super effi ciency in convex vector optimization[J].Math.Meth.Oper. Res.,1991,35:175–184.

    [5]Cheng Y H,Fu W T.Strong effi ciency in a locally convex space[J].Math.Meth.Oper.Res.,1999, 50:373–384.

    [6]Bhatia Davinder.Lagrangian duality for preinvex set-valued functions[J].J.Math.Anal.Appl., 1997,214:599–612.

    [7]Song Wen.Duality for vector optimization of set-valued functions[J].J.Math.Anal.Appl.,1996, 201:212–225.

    [8]Azimov A Y.Duality for set-valued multiobjective optimization problems,part 1:mathematical programming[J].J.Optim.The.Appl.,2008,137:61–74.

    [9]Frank Heydea,Carola Schrage.Continuity concepts for set-valued functions and a fundamental duality formula for set-valued optimization[J].J.Math.Anal.Appl.,2013,397:772–784.

    [10]Sach P H,Lee G M,Kim D S.Strong duality for proper effi ciency in vector optimization[J].J. Optim.The.Appl.,2006,130:139–151.

    [11]Sach Pham Huu,Tuan Le Anh.Strong duality with proper effi ciency in multiobjective optimization involving nonconvex set-valued maps[J].Numer.Funct.Anal.Optim.,2009,30:371–392.

    [12]Sach P H.New generalized convexity notion for set-valued maps and application to vector optimization[J].J.Optim.The.Appl.,2005,125:157–179.

    [13]Li Taiyong,Xu Yihong.The stictly effi cient subgradient of set-valued opttimization[J].Bull.Austr. Math.Soc.,2007,75:361–371.

    [14]Yu Guolin,Liu Sanyang.Globally proper saddle point in ic-cone-convexlike set-valued optimization problems[J].Acta Math.Sinica,Eng.Ser.,2009,25:1921–1928.

    [15]Yu Guolin,Lu Yangyang,Moreau-Rockafellar theorems for globally proper effi cient subgradients of set-valued maps[J].J.Math.,2012,32(6):1069–1074.

    [16]Yu Guolin,Liu Sanyang.Strong effi cient solutions of nearly conesubconvexlike set-valued vector optimizaiton problems characterized by generalized saddle pointr[J].J.Math.,2008,28(1):61–66.

    [17]Wolfe P.A duality theorem for nonlinear programing[J].Quart.Appl.Math.,1969,19:239–244.

    [18]Weir T,Mond B.Pre-invex functions in multiple objective optimization[J].J.Math.Anal.Appl., 1988,136:29–38.

    非凸集值優(yōu)化問題嚴有效解的強對偶定理

    本文研究了非凸集值向量優(yōu)化的嚴有效解在兩種對偶模型的強對偶問題.利用Lagrange對偶和Mond-Weir對偶原理, 獲得了如下結(jié)果: 原集值優(yōu)化問題的嚴有效解, 在一些條件下是對偶問題的強有效解,并且原問題和對偶問題的目標函數(shù)值相等;推廣了集值優(yōu)化對偶理論在錐-凸假設下的相應結(jié)果.

    嚴有效性;強對偶;集值優(yōu)化;生成錐內(nèi)部凸-錐類凸性

    類 號:90C29;90C46

    O224

    余國林1,張 燕1,劉三陽2

    (1.北方民族大學應用數(shù)學研究所, 寧夏 銀川 750021)

    (2.西安電子科技大學數(shù)學系, 陜西 西安 710071)

    tion:90C29;90C46

    A < class="emphasis_bold">Article ID:0255-7797(2017)02-0223-08

    0255-7797(2017)02-0223-08

    ?Received date:2015-01-27 Accepted date:2015-09-24

    Foundation item:Supported by Natural Science Foundation of China(11361001);Natual Science Foundation of Ningxia(NZ14101).

    Biography:Yu Guolin(1974–),male,born at Yinchuan,Ningxia,professor,major in optimization theory and applications,nonlinear analysis.

    猜你喜歡
    集值西安電子科技大學三陽
    Assessing edge-coupled interdependent network disintegration via rank aggregation and elite enumeration
    具有初邊值條件的集值脈沖微分方程的平均法
    大土三陽書畫作品
    上半連續(xù)集值函數(shù)的區(qū)間迭代
    Redefinition of Tragedy in Modern Age: The Case of Death of a Salesman
    圖像面積有限的集值映射
    《傷寒論》三陽三陰病證的證素辨證研究
    OnRadicalFeminism
    EmploymentAgeDiscriminationonWomen
    ItIsBetterToGiveThanItIsToReceive
    岛国在线免费视频观看| 偷拍熟女少妇极品色| 丰满人妻熟妇乱又伦精品不卡| 国产精品影院久久| 欧美日韩福利视频一区二区| 国产三级中文精品| 国产色爽女视频免费观看| 久久6这里有精品| 好男人电影高清在线观看| 窝窝影院91人妻| 亚洲五月天丁香| 成人特级黄色片久久久久久久| 美女cb高潮喷水在线观看| 久久精品国产亚洲av天美| 国产爱豆传媒在线观看| 色视频www国产| 中国美女看黄片| 男人舔女人下体高潮全视频| 又紧又爽又黄一区二区| 久久99热6这里只有精品| 村上凉子中文字幕在线| 蜜桃久久精品国产亚洲av| 嫩草影院精品99| 1000部很黄的大片| 成年免费大片在线观看| 在线播放无遮挡| 亚洲五月婷婷丁香| 国产av在哪里看| 内地一区二区视频在线| 亚洲一区二区三区色噜噜| 亚洲国产色片| 人人妻人人澡欧美一区二区| 国产伦精品一区二区三区四那| 欧美日韩乱码在线| .国产精品久久| 啦啦啦韩国在线观看视频| 国模一区二区三区四区视频| 国内少妇人妻偷人精品xxx网站| 看免费av毛片| 欧美黑人巨大hd| 精品人妻视频免费看| 国产大屁股一区二区在线视频| 三级毛片av免费| 亚洲av电影在线进入| 午夜免费成人在线视频| 久久久久免费精品人妻一区二区| 精品无人区乱码1区二区| 女人十人毛片免费观看3o分钟| 久久99热这里只有精品18| 国产乱人伦免费视频| 国产视频内射| 丰满乱子伦码专区| 精品一区二区三区人妻视频| 成人精品一区二区免费| 美女高潮的动态| 色播亚洲综合网| 老司机深夜福利视频在线观看| 首页视频小说图片口味搜索| 97超视频在线观看视频| 欧美日韩瑟瑟在线播放| 亚洲最大成人手机在线| 久久精品影院6| 精品一区二区三区人妻视频| 免费观看精品视频网站| 热99re8久久精品国产| av专区在线播放| 一区二区三区免费毛片| 日本精品一区二区三区蜜桃| 成人毛片a级毛片在线播放| 美女被艹到高潮喷水动态| 午夜精品久久久久久毛片777| 此物有八面人人有两片| 91狼人影院| 中文字幕精品亚洲无线码一区| 俄罗斯特黄特色一大片| 午夜福利在线在线| 熟妇人妻久久中文字幕3abv| 成人性生交大片免费视频hd| 99久久精品热视频| 欧美最新免费一区二区三区 | 好看av亚洲va欧美ⅴa在| 欧美色欧美亚洲另类二区| 国产精品日韩av在线免费观看| 1000部很黄的大片| 观看免费一级毛片| 午夜老司机福利剧场| 在线观看美女被高潮喷水网站 | 国内久久婷婷六月综合欲色啪| 女人十人毛片免费观看3o分钟| 国产精品免费一区二区三区在线| 国内精品美女久久久久久| 99热这里只有是精品50| 国产成人av教育| 国产黄色小视频在线观看| 国产精品久久久久久精品电影| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲第一欧美日韩一区二区三区| 亚洲欧美清纯卡通| 久久久久久久久久黄片| 精品久久久久久久久亚洲 | 国内毛片毛片毛片毛片毛片| 国产真实伦视频高清在线观看 | 亚洲精品乱码久久久v下载方式| 69av精品久久久久久| 香蕉av资源在线| 无遮挡黄片免费观看| av福利片在线观看| 夜夜躁狠狠躁天天躁| 99久久精品国产亚洲精品| 精品久久久久久久末码| 国产不卡一卡二| 亚洲人成网站在线播放欧美日韩| 夜夜躁狠狠躁天天躁| 男人和女人高潮做爰伦理| 成人特级av手机在线观看| 色综合站精品国产| 亚洲狠狠婷婷综合久久图片| 免费看美女性在线毛片视频| 超碰av人人做人人爽久久| 欧美性猛交╳xxx乱大交人| 国产三级黄色录像| 久久久久久国产a免费观看| 精品久久国产蜜桃| 色综合站精品国产| 久久久色成人| 最近最新中文字幕大全电影3| 特级一级黄色大片| 国产精品久久久久久亚洲av鲁大| 夜夜看夜夜爽夜夜摸| 成人国产综合亚洲| 日日夜夜操网爽| 国产色爽女视频免费观看| 亚洲人成网站在线播| 特大巨黑吊av在线直播| 欧美高清性xxxxhd video| 精品久久久久久成人av| 亚洲精华国产精华精| 国内毛片毛片毛片毛片毛片| 免费看美女性在线毛片视频| 欧美成人一区二区免费高清观看| 国模一区二区三区四区视频| a在线观看视频网站| 国产精品,欧美在线| www日本黄色视频网| 又粗又爽又猛毛片免费看| 国产精品乱码一区二三区的特点| 人人妻人人看人人澡| 性色av乱码一区二区三区2| 亚洲人成网站在线播放欧美日韩| 最近最新中文字幕大全电影3| 99热这里只有是精品50| 中文字幕高清在线视频| 日本熟妇午夜| 亚洲va日本ⅴa欧美va伊人久久| av天堂中文字幕网| 免费看光身美女| 黄色一级大片看看| 亚洲在线观看片| 亚洲国产精品久久男人天堂| 久久午夜福利片| 一区福利在线观看| 激情在线观看视频在线高清| 成人欧美大片| 婷婷丁香在线五月| 日韩欧美精品免费久久 | 日韩大尺度精品在线看网址| 一级黄片播放器| 97热精品久久久久久| 亚洲av一区综合| 精品免费久久久久久久清纯| 一个人免费在线观看的高清视频| 欧美性猛交黑人性爽| 听说在线观看完整版免费高清| 综合色av麻豆| 日本 av在线| 午夜影院日韩av| 中文字幕av成人在线电影| 身体一侧抽搐| 黄色日韩在线| 欧美精品啪啪一区二区三区| 美女被艹到高潮喷水动态| 亚洲色图av天堂| 国产精品一区二区性色av| 日本熟妇午夜| 久久久久精品国产欧美久久久| 男人狂女人下面高潮的视频| 欧美一区二区亚洲| 国产精品免费一区二区三区在线| 国产精品亚洲一级av第二区| 黄色丝袜av网址大全| 国内久久婷婷六月综合欲色啪| 欧美色视频一区免费| 少妇的逼好多水| 亚洲 欧美 日韩 在线 免费| 人人妻人人看人人澡| 97热精品久久久久久| 成人特级av手机在线观看| 午夜福利免费观看在线| 少妇丰满av| 欧美不卡视频在线免费观看| 亚洲欧美激情综合另类| 午夜福利在线观看吧| 久久久久久久午夜电影| 伊人久久精品亚洲午夜| 亚洲国产精品久久男人天堂| 尤物成人国产欧美一区二区三区| 亚洲天堂国产精品一区在线| а√天堂www在线а√下载| av欧美777| 免费在线观看影片大全网站| 成人国产综合亚洲| 色5月婷婷丁香| 精品久久久久久久人妻蜜臀av| 亚洲成人久久爱视频| 麻豆国产av国片精品| 午夜老司机福利剧场| 久久6这里有精品| 国产人妻一区二区三区在| 亚洲久久久久久中文字幕| 啦啦啦观看免费观看视频高清| 免费无遮挡裸体视频| 国产精品电影一区二区三区| 内射极品少妇av片p| 欧美日韩黄片免| 丁香欧美五月| 欧美精品国产亚洲| 舔av片在线| 久久天躁狠狠躁夜夜2o2o| 亚洲av不卡在线观看| 亚洲无线观看免费| 国产精品久久久久久亚洲av鲁大| 欧美黑人欧美精品刺激| 给我免费播放毛片高清在线观看| 欧美最黄视频在线播放免费| 不卡一级毛片| 午夜影院日韩av| 国产主播在线观看一区二区| 午夜福利免费观看在线| 成人午夜高清在线视频| 一级作爱视频免费观看| 看免费av毛片| 亚洲 欧美 日韩 在线 免费| 日韩中字成人| a级毛片免费高清观看在线播放| 超碰av人人做人人爽久久| 色精品久久人妻99蜜桃| 欧美丝袜亚洲另类 | 成人性生交大片免费视频hd| 亚洲人成网站高清观看| 特级一级黄色大片| 中文字幕人成人乱码亚洲影| 美女xxoo啪啪120秒动态图 | 国产老妇女一区| 婷婷色综合大香蕉| 一个人免费在线观看的高清视频| 精品欧美国产一区二区三| 校园春色视频在线观看| 国产激情偷乱视频一区二区| 国产精品98久久久久久宅男小说| 亚洲 国产 在线| 99热只有精品国产| 亚洲黑人精品在线| 桃色一区二区三区在线观看| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 色综合婷婷激情| 欧美日本亚洲视频在线播放| 日韩欧美免费精品| 国产成人欧美在线观看| 日韩欧美在线乱码| 在线观看av片永久免费下载| 精品一区二区免费观看| 日本 欧美在线| 成人av在线播放网站| 别揉我奶头 嗯啊视频| 国产精品1区2区在线观看.| av国产免费在线观看| 中文字幕熟女人妻在线| 国产精华一区二区三区| 精品久久久久久成人av| 国产免费男女视频| 国内少妇人妻偷人精品xxx网站| av欧美777| 最近中文字幕高清免费大全6 | 亚洲熟妇中文字幕五十中出| 精品免费久久久久久久清纯| 51国产日韩欧美| 欧美最黄视频在线播放免费| 久久香蕉精品热| 精品人妻1区二区| 免费高清视频大片| 国产精品美女特级片免费视频播放器| 国产精品一区二区免费欧美| 精品不卡国产一区二区三区| 热99在线观看视频| 亚洲狠狠婷婷综合久久图片| 国内精品久久久久久久电影| 欧美潮喷喷水| 亚洲人成网站在线播放欧美日韩| 3wmmmm亚洲av在线观看| 深爱激情五月婷婷| 欧美成狂野欧美在线观看| 成人精品一区二区免费| 久久欧美精品欧美久久欧美| 90打野战视频偷拍视频| 国产麻豆成人av免费视频| 91狼人影院| 色在线成人网| 国产伦人伦偷精品视频| 最近在线观看免费完整版| 国产在线精品亚洲第一网站| 久久香蕉精品热| 亚洲av美国av| 国模一区二区三区四区视频| 国产精品久久电影中文字幕| 人妻久久中文字幕网| 不卡一级毛片| 搡女人真爽免费视频火全软件 | 免费人成视频x8x8入口观看| 久久草成人影院| 少妇熟女aⅴ在线视频| 亚洲精品成人久久久久久| 最近中文字幕高清免费大全6 | 综合色av麻豆| 别揉我奶头~嗯~啊~动态视频| 午夜福利成人在线免费观看| 国产午夜精品论理片| 五月伊人婷婷丁香| а√天堂www在线а√下载| 麻豆成人午夜福利视频| 看免费av毛片| 国产亚洲精品久久久久久毛片| 宅男免费午夜| 一区二区三区免费毛片| 日韩欧美在线二视频| 757午夜福利合集在线观看| 色在线成人网| 日本a在线网址| 天堂网av新在线| av在线蜜桃| 丰满人妻一区二区三区视频av| 我要搜黄色片| 国产精品亚洲av一区麻豆| netflix在线观看网站| 成人毛片a级毛片在线播放| 他把我摸到了高潮在线观看| 亚洲黑人精品在线| 一卡2卡三卡四卡精品乱码亚洲| 国产伦在线观看视频一区| 日韩欧美国产一区二区入口| 精品久久国产蜜桃| av女优亚洲男人天堂| 看免费av毛片| 精品一区二区三区视频在线观看免费| 国内揄拍国产精品人妻在线| 在线免费观看的www视频| 中国美女看黄片| 日韩欧美国产在线观看| 一区二区三区激情视频| 少妇丰满av| 欧美成人性av电影在线观看| xxxwww97欧美| 中文字幕久久专区| 一进一出抽搐gif免费好疼| 亚洲av日韩精品久久久久久密| 三级毛片av免费| 一本综合久久免费| eeuss影院久久| 欧美成人a在线观看| 老女人水多毛片| 午夜福利在线观看免费完整高清在 | 国产精品嫩草影院av在线观看 | 午夜福利视频1000在线观看| 九色国产91popny在线| av在线蜜桃| 亚洲狠狠婷婷综合久久图片| 国产精品伦人一区二区| 成人国产综合亚洲| 国产伦精品一区二区三区视频9| 欧美成人一区二区免费高清观看| 精品人妻一区二区三区麻豆 | 丰满的人妻完整版| 国产亚洲精品久久久com| 亚洲欧美日韩高清在线视频| 国产爱豆传媒在线观看| 国产亚洲欧美在线一区二区| 三级毛片av免费| 久久久久久久久久成人| 在线观看一区二区三区| 亚洲精品影视一区二区三区av| 日韩欧美国产在线观看| 午夜福利高清视频| 中文字幕熟女人妻在线| 如何舔出高潮| 黄色一级大片看看| 久久精品国产清高在天天线| 亚洲成av人片免费观看| 国产欧美日韩精品一区二区| av国产免费在线观看| 男女视频在线观看网站免费| 丰满人妻熟妇乱又伦精品不卡| 国产一级毛片七仙女欲春2| 久久久精品欧美日韩精品| 中出人妻视频一区二区| 国产精品国产高清国产av| 精品国产三级普通话版| 桃红色精品国产亚洲av| 看片在线看免费视频| 婷婷精品国产亚洲av在线| 51午夜福利影视在线观看| www.熟女人妻精品国产| 欧美区成人在线视频| 国产精品一区二区三区四区久久| 熟女人妻精品中文字幕| 国产亚洲精品av在线| 日韩欧美精品v在线| 色播亚洲综合网| 亚洲av成人精品一区久久| 精品人妻偷拍中文字幕| 99国产综合亚洲精品| 日本三级黄在线观看| 中文亚洲av片在线观看爽| 国产欧美日韩精品亚洲av| 亚洲成a人片在线一区二区| 欧美激情国产日韩精品一区| 亚洲美女视频黄频| 国产真实乱freesex| 搞女人的毛片| 久久久久久久久久黄片| 精品人妻熟女av久视频| 国产熟女xx| 草草在线视频免费看| 亚洲av免费高清在线观看| 欧美高清成人免费视频www| 亚洲精品日韩av片在线观看| 国模一区二区三区四区视频| 欧美潮喷喷水| 亚洲欧美日韩无卡精品| 搡老妇女老女人老熟妇| 欧美高清性xxxxhd video| 全区人妻精品视频| 琪琪午夜伦伦电影理论片6080| 国产主播在线观看一区二区| 亚洲内射少妇av| 99久久精品国产亚洲精品| 黄色日韩在线| 成年女人永久免费观看视频| 成年女人毛片免费观看观看9| 全区人妻精品视频| 琪琪午夜伦伦电影理论片6080| 日本一本二区三区精品| avwww免费| 久久午夜亚洲精品久久| 亚洲av中文字字幕乱码综合| 美女大奶头视频| 一区二区三区免费毛片| 丁香六月欧美| 五月伊人婷婷丁香| 午夜福利视频1000在线观看| 色综合婷婷激情| 午夜a级毛片| 国产欧美日韩一区二区精品| 欧美激情国产日韩精品一区| 亚洲av.av天堂| 无人区码免费观看不卡| 黄色日韩在线| 亚洲精品粉嫩美女一区| 免费看日本二区| 在线天堂最新版资源| 久久九九热精品免费| 国产精品一区二区免费欧美| 久久久久亚洲av毛片大全| 日本免费a在线| 午夜久久久久精精品| 日本五十路高清| 亚洲精品久久国产高清桃花| 91狼人影院| 亚洲av.av天堂| aaaaa片日本免费| 在线观看免费视频日本深夜| 麻豆国产97在线/欧美| 欧美3d第一页| 久久精品人妻少妇| 性色avwww在线观看| 欧美激情国产日韩精品一区| 亚州av有码| 久久草成人影院| 免费在线观看影片大全网站| 欧美zozozo另类| 人妻丰满熟妇av一区二区三区| 18禁黄网站禁片免费观看直播| 成年人黄色毛片网站| 国产免费男女视频| 99在线人妻在线中文字幕| 欧美另类亚洲清纯唯美| 又粗又爽又猛毛片免费看| 久久久久国内视频| 日韩国内少妇激情av| 国产三级黄色录像| www.熟女人妻精品国产| 亚洲自拍偷在线| 能在线免费观看的黄片| 国产精品亚洲一级av第二区| 久久久久久大精品| av在线老鸭窝| 亚洲成人中文字幕在线播放| 国产美女午夜福利| 国产老妇女一区| 欧美日韩乱码在线| 日韩大尺度精品在线看网址| 热99在线观看视频| 最新在线观看一区二区三区| 亚洲中文字幕日韩| 最近中文字幕高清免费大全6 | 桃红色精品国产亚洲av| 三级男女做爰猛烈吃奶摸视频| 性色av乱码一区二区三区2| 午夜免费男女啪啪视频观看 | 国产综合懂色| 久久这里只有精品中国| 美女高潮的动态| 在线观看av片永久免费下载| 久久久国产成人免费| 国产精品一区二区性色av| 最近中文字幕高清免费大全6 | 国产淫片久久久久久久久 | 国产精品,欧美在线| 久久精品国产亚洲av天美| 97人妻精品一区二区三区麻豆| bbb黄色大片| 日韩欧美 国产精品| 给我免费播放毛片高清在线观看| 欧美日韩综合久久久久久 | avwww免费| 精品午夜福利视频在线观看一区| 国产精品1区2区在线观看.| 欧美激情在线99| 亚洲无线观看免费| 亚洲av日韩精品久久久久久密| 精品久久久久久久久久久久久| 国产不卡一卡二| 久久久国产成人精品二区| 大型黄色视频在线免费观看| 两个人视频免费观看高清| 欧美日韩国产亚洲二区| 色哟哟·www| 国产色婷婷99| 搡女人真爽免费视频火全软件 | 日本撒尿小便嘘嘘汇集6| 精品国产亚洲在线| a在线观看视频网站| 亚洲av二区三区四区| 亚洲国产精品成人综合色| 欧美日韩国产亚洲二区| 久久久久久久午夜电影| 日韩大尺度精品在线看网址| 美女高潮喷水抽搐中文字幕| 最近最新中文字幕大全电影3| 一进一出好大好爽视频| 蜜桃久久精品国产亚洲av| 婷婷色综合大香蕉| 免费看日本二区| 搡老岳熟女国产| 免费看日本二区| 日韩欧美精品v在线| 久久99热6这里只有精品| 亚洲欧美日韩无卡精品| 欧美中文日本在线观看视频| 亚洲精品一区av在线观看| 国产日本99.免费观看| 午夜福利高清视频| 国产精华一区二区三区| 久久精品91蜜桃| 午夜福利视频1000在线观看| 在线天堂最新版资源| www.www免费av| 日本黄色视频三级网站网址| 97热精品久久久久久| 麻豆成人av在线观看| 女人十人毛片免费观看3o分钟| 内射极品少妇av片p| 国产精品自产拍在线观看55亚洲| 国产久久久一区二区三区| 久久精品夜夜夜夜夜久久蜜豆| 内地一区二区视频在线| 婷婷六月久久综合丁香| 人妻久久中文字幕网| 五月伊人婷婷丁香| 亚洲av电影不卡..在线观看| 久久亚洲精品不卡| 国产单亲对白刺激| 五月伊人婷婷丁香| 一卡2卡三卡四卡精品乱码亚洲| 亚洲国产精品sss在线观看| 性欧美人与动物交配| 亚洲成人中文字幕在线播放| 国产精品久久久久久久久免 | 亚洲熟妇熟女久久| 欧美潮喷喷水| 亚洲精品粉嫩美女一区| 少妇的逼水好多| a级毛片a级免费在线| 国产精品不卡视频一区二区 | 成人一区二区视频在线观看| 波多野结衣高清作品| 啦啦啦韩国在线观看视频| 国产一区二区在线av高清观看| 99热精品在线国产| 久久久久久大精品| 欧美精品啪啪一区二区三区| 最后的刺客免费高清国语| 成人av一区二区三区在线看| 性色avwww在线观看| 日韩人妻高清精品专区| 真人一进一出gif抽搐免费| 国产一级毛片七仙女欲春2|