吳 昊 伊煥發(fā) 楊永廣
(吉林大學第一醫(yī)院轉(zhuǎn)化醫(yī)學研究院,吉林大學免疫研究所,長春130061)
·專家述評·
MDSC在自身免疫疾病中的作用①
吳 昊 伊煥發(fā)②楊永廣②
(吉林大學第一醫(yī)院轉(zhuǎn)化醫(yī)學研究院,吉林大學免疫研究所,長春130061)
髓系抑制細胞(Myeloid-derived suppressor cells,MDSC)是具有抑制功能的髓系來源的細胞群。在自身免疫疾病中,MDSC顯著增多,并在體外有抑制功能,然而在體內(nèi)研究中,MDSC的研究存在爭議。最新研究發(fā)現(xiàn)具有抑制功能的MDSC的顯著增多并不能有效緩解自身免疫疾病,而且在某些情況下甚至促進疾病的進展。因此,MDSC在自身免疫疾病的作用有待進一步研究。本文根據(jù)已有文獻,綜述了MDSC在不同的自身免疫疾病中的改變及機制。
髓系抑制細胞;自身免疫疾??;Th17分化
吳昊(1979年-),吉林大學第一醫(yī)院腎病科主治醫(yī)師。師從楊永廣教授,2016年畢業(yè)于吉林大學第一醫(yī)院轉(zhuǎn)化醫(yī)學院,獲醫(yī)學免疫學博士學位。研究方向是髓系抑制細胞在自身免疫疾病中的作用及機制。目前,在Sci Transl Med 等雜志發(fā)表SCI論文6篇,承擔國家級自然科學基金及省級、院級科研項目5項。
伊煥發(fā)(1973年-),教授,博士生導師。2002年獲北京大學醫(yī)學部醫(yī)學碩士,2007年獲中國科學院動物研究所理學博士,隨后在美國Roswell Park Cancer Institute和Virginia Commonwealth University從事博士后研究,2012年起任職于吉林大學第一醫(yī)院。主要從事天然免疫抑制細胞與疾病研究。目前主持國家自然科學基金2項,參與科技部973項目(子課題負責人)及國家重大傳染病專項“十二五”項目各1項,省部級課題3項。以第一作者或通訊作者在Sci Transl Med、Blood、J Immunol、Cancer Res、Transplantation等雜志發(fā)表文章13篇。
楊永廣(1961年-),教授、博士生導師,中組部“千人計劃”特聘專家,國家海外杰出青年基金獲得者,現(xiàn)任吉林大學免疫學研究所所長,人類疾病動物模型國家地方聯(lián)合工程實驗室主任,科技部表觀遺傳藥物與人類疾病動物模型國際聯(lián)合研究中心主任,國家重大科學研究計劃(973)及國家重大傳染病專項“十二五”項目首席科學家。從事免疫學研究20余年,主要研究方向包括移植免疫、免疫耐受機制和誘導方法及免疫系統(tǒng)人源化動物的構(gòu)建和應用;迄今發(fā)表SCI論文100余篇。研究工作曾獲美國NIH等研究基金機構(gòu)的資助,目前主持科技部國家重大科學研究計劃(973)、國家自然科學基金面上項目及教育部創(chuàng)新團隊等項目。
20世紀70年代末,人們在荷瘤小鼠和腫瘤患者體內(nèi)發(fā)現(xiàn)一群具有免疫抑制功能的髓系來源的細胞,稱為髓系抑制細胞(Myeloid-derived suppressor cells,MDSC)[1]。在腫瘤領域中,因MDSC有抑制功能可引起腫瘤逃逸而被廣泛研究[1-3]。近年來MDSC在自身免疫疾病中的作用逐漸受到重視,但MDSC在自身免疫疾病中的作用尚不明確[4]。在多種自身免疫疾病小鼠模型中,外周血或脾臟內(nèi)MDSC顯著增多,在體外能抑制T細胞增殖,但其體內(nèi)功能仍不一致,有研究認為其能通過抑制功能緩解疾病[5,6],也有研究認為其不能有效緩解疾病[7],甚至能促進疾病的進展[8-12]。深入研究MDSC在自身免疫疾病中的作用對疾病機制的理解及臨床治療具有重要意義。
MDSC是由骨髓祖細胞和不成熟的髓系細胞(Immature myeloid cell,IMC)組成的異質(zhì)細胞群。在骨髓發(fā)育過程中,正常生理條件下IMC會進一步發(fā)育為成熟的單核系、粒系及樹突細胞。而當在腫瘤、炎癥、創(chuàng)傷、自身免疫疾病等病理條件下,通過釋放一些免疫抑制性因子,阻斷IMC的分化,使髓系前體細胞不能發(fā)育成熟,使IMC數(shù)量顯著增加,并遷出骨髓外,在外周血及脾臟或病變部位中大量集聚,形成MDSC(圖1)[13,14]。
目前MDSC仍缺乏特異性的表面標志,使其難以與單核細胞或中性粒細胞區(qū)分。在小鼠中,通常以CD11b和Gr-1為MDSC的表面標記,即CD11b+Gr-l+細胞為MDSC,并根據(jù) Gr-1表位特異性的抗體Ly6G和Ly6C表達及形態(tài)的差異,MDSC又可分為兩個亞群:CD11b+Ly6G+Ly6Clow粒細胞樣髓系抑制細胞 (Granulocytic myeloid-derived suppressor cells,G-MDSC) 和CD11b+Ly6G-Ly6Chigh單核細胞樣髓系抑制性細胞 (Monocytic myeloid-derived suppressor cells,M-MDSC)[15]。在人類,MDSC表面主要表達CD11b和CD33兩種分子,并缺乏人成熟細胞標記MHCⅡ分子HLA-DR,即以CD11b+CD33+HLA-DR-為標志[13,16]。此外,MDSC也缺乏譜系特異性抗原(Lineage specific antigens,Lin),包括CD3、CD19、CD56等,其表型可為CD11b+CD33+HLA-DR-Lin-[17]。人類的MDSC也可分為兩個亞群:CD66b+或CD15+為表型的G-MDSC和CD14+為表型的M-MDSC。另外,有研究在臍血[18,19]或轉(zhuǎn)移性小兒肉瘤患者外周血內(nèi)[20]發(fā)現(xiàn)一個新的MDSC亞群,即纖維細胞樣MDSC (Fibrocytic myeloid-derived suppres-sor cells,F(xiàn)-MDSC ), 其表型特點是 HLA-DR+、CD33+或CD33low/-[18-20],通過吲哚胺2,3雙加氧酶(Indoleane-2,3-dioxygenase,IDO)誘導調(diào)節(jié)性T細胞(regulatory T cells,Treg)或直接抑制T細胞增殖。然而在小鼠腫瘤模型或其他腫瘤患者中尚未發(fā)現(xiàn)該亞群,還有待進一步研究。
圖1 MDSC的產(chǎn)生[13]Fig.1 Origin of MDSC[13]
MDSC的抑制作用研究大都集中在腫瘤領域[21]。在荷瘤小鼠和腫瘤患者體內(nèi),MDSC具有強大而廣譜的免疫抑制功能,比如消耗淋巴細胞所需的氨基酸、產(chǎn)生氧化應激產(chǎn)物、促進Treg細胞的活化和擴增、干擾T細胞的遷移和活性等,過繼回輸MDSC能夠顯著促進小鼠體內(nèi)腫瘤的生長[13,22]。
2.1 消耗淋巴細胞所需的氨基酸 MDSC分泌高活性的精氨酸酶(Arginase-1,Arg-1),Arg-1通過把L-精氨酸分解為尿素和鳥氨酸[13,23],造成了微環(huán)境中L-精氨酸的短缺,這種非必需氨基酸的缺乏可下調(diào)T細胞TCRξ-鏈的產(chǎn)生從而抑制T細胞的增殖[24]。此外,半胱氨酸是T細胞活化所必需的氨基酸。在生理狀態(tài)下,抗原呈遞細胞利用甲硫氨酸合成半胱氨酸,轉(zhuǎn)運至T細胞內(nèi)維持T細胞的正常活動。而MDSC不能將甲硫氨酸轉(zhuǎn)化為半胱氨酸,因此它們完全依賴于攝入的胱氨酸轉(zhuǎn)化為半胱氨酸。當MDSC出現(xiàn)大量聚集時,將會攝入大部分胱氨酸,從而剝奪抗原呈遞細胞(Antigen presentation cells,APC)利用胱氨酸的能力,使APC產(chǎn)生的半胱氨酸減少;同時MDSC不能將產(chǎn)生的半胱氨酸轉(zhuǎn)運至T細胞,使T細胞不能合成活化所需的蛋白質(zhì),從而阻斷T細胞的活化[25,26]。
2.2 產(chǎn)生氧化應激產(chǎn)物 MDSC可產(chǎn)生氧化應激物質(zhì)和活性氮等,是介導MDSC抑制T細胞功能的另一主要介質(zhì)[13]。腫瘤分泌的TGF-β、IL-10、IL-3、IL-6、GM-CSF、血小板源性生長因子(Platelet derived growth factor,PDGF)等細胞因子可誘導MDSC產(chǎn)生活性氧簇(Reactive oxygen species,ROS)[27,28]。ROS能上調(diào)CD95L的表達,同時下調(diào)抗凋亡基因Bcl2的表達,直接誘導活化的T細胞凋亡[29]。MDSC與T細胞接觸產(chǎn)生的過氧亞硝酸鹽(Peroxynitrite,ONOO-)和過氧化氫等氧化應激物質(zhì)也能抑制T細胞活性,機制包括抑制T細胞TCRξ鏈的表達,阻礙IL-2受體信號以及TCR的硝化作用[30-32]。此外,MDSC來源的誘導型一氧化氮合酶(inducible nitric oxide synthase,iNOS)分解L-Arg 產(chǎn)生大量的NO,NO通過抑制Jak3/STAT5信號,減少MHCⅡ類分子的表達,誘導T細胞凋亡[26,33,34]。NO還可以封閉IL-2受體通路上重要的信號蛋白從而抑制T細胞活化[13,35]。
2.3 促進Treg細胞的活化和擴增 MDSC可促進抗原特異性Treg細胞的擴增和誘導幼稚CD4+T細胞轉(zhuǎn)化為Treg細胞[36-42]。此外,IDO是色氨酸代謝的限速酶,MDSC在IDO的協(xié)同作用下,可誘導Treg分化而間接抑制免疫應答[18]。
2.4 干擾T細胞的遷移和活性 CD62L即L-選擇素,是幼稚T細胞遷移到外周淋巴結(jié)所必需的。MDSC可通過下調(diào)CD62L導致CD8+和CD4+T細胞不能歸巢到外周淋巴結(jié)中,從而不能被腫瘤抗原正常激活。另外,MDSC產(chǎn)生的過氧亞硝酸鹽能硝化或亞硝基化CCL2,從而影響T細胞進入腫瘤部位。
2.5 其他 MDSC抑制機制也與細胞和細胞間的接觸(CD40-CD40L接觸)、產(chǎn)生IFN-γ、IL-10 和TGF-β細胞因子有關[40,43]。
研究表明MDSC在多種自身免疫疾病小鼠模型及病人中顯著增多,但其功能存在爭議[4,44,45]。一些研究認為MDSC因其抑制功能可以緩解疾病[5,6],而另一些研究認為MDSC在體內(nèi)炎癥狀態(tài)下有促炎及促疾病作用[4,10,11]。以下我們對MDSC在各種自身免疫疾病中的作用加以詳細闡述。
3.1 MDSC與多發(fā)性硬化 多發(fā)性硬化(Multiple sclerosis,MS)是中樞神經(jīng)系統(tǒng)(Central nervous system,CNS)常見的自身免疫疾病,實驗性自身免疫性腦脊髓炎(Experimental autoimmune encephalomyelitis,EAE)小鼠模型是代表性的MS小鼠模型。EAE小鼠外周血和脾內(nèi)MDSC比例顯著增加,并在腦及脊髓內(nèi)有大量MDSC浸潤,數(shù)量隨疾病演變而變化,即從無癥狀開始逐漸增加,在臨床期數(shù)量達到頂峰,隨后逐漸下降,慢性期時降至最低點。Zhu等[46]也發(fā)現(xiàn)CD11b+Ly6Chigh的M-MDSC在EAE小鼠外周血、脾和CNS中增多,并與發(fā)病癥狀的嚴重程度呈正相關,脾M-MDSC在體外能顯著抑制CD4+CD8+T細胞的增殖[46]。用合成的維生素A類物質(zhì)誘導EAE小鼠的MDSC分化后,脊髓中T細胞數(shù)量增多,且神經(jīng)系統(tǒng)癥狀惡化,提示MDSC具有抑制作用[47]。Ioannou等[5]則認為僅CD11b+Ly6G+G-MDSC在外周血、淋巴結(jié)和脊髓中大量增多,并且轉(zhuǎn)輸G-MDSC 可緩解EAE小鼠疾病病情。此外,對MS患者MDSC的研究較少,有報道MS患者外周血中CD15+CD33+HLA-DRlowCD14-G-MDSC在外周血中增多,并在體外證明其具有抑制T細胞增殖的功能[5]。MDSC在MS中也通過上調(diào)iNOS、Arg-1表達等機制發(fā)揮抑制T細胞作用[6,46]。
盡管EAE小鼠體內(nèi)MDSC增多,有研究認為可以通過抑制T細胞活性緩解疾病[5,6],但有些研究卻發(fā)現(xiàn)轉(zhuǎn)輸CD11b+Ly6G-MDSC后EAE小鼠并無癥狀改善[7],而且有促進炎癥及疾病進展的作用[8,12,48]。比如,King等[8]發(fā)現(xiàn)GM-CSF可促進CD11b+CD62L+Ly6ChighM-MDSC從骨髓中釋放,這些細胞通過血腦屏障進入CNS,除了增加促炎因子分泌,還能向DC和巨噬細胞分化,使EAE癥狀及病情加重。Yi等[12]發(fā)現(xiàn)CD11b+Gr1+MDSC增多,盡管MDSC在體外可抑制T細胞增殖,但在體外IL-6和TGF-β等Th17極化的條件下可促進Th17細胞分化;MDSC促Th17分化的作用與其產(chǎn)生IL-1β有關,體內(nèi)用吉西他濱選擇性剔除MDSC或應用IL-1β抑制劑顯著降低Th17細胞比例,緩解疾病癥狀。此外,在Theiler′s鼠腦脊髓炎病毒(Theiler′s murine encephalomyelitis virus,TMEV)感染所致的MS小鼠模型中發(fā)現(xiàn),去除MDSC后脫髓鞘的癥狀減輕[48]。
上述研究得出相反結(jié)論可能與MDSC所處的炎癥環(huán)境不同有關。MDSC在體外大都有著抑制功能,然而在體內(nèi)復雜的炎癥環(huán)境存在下,MDSC可能發(fā)生抑制作用減弱或分化為DC和巨噬細胞,從而促進炎癥反應。
3.2 MDSC與類風濕關節(jié)炎 膠原蛋白誘導的關節(jié)炎(Collagen-induced arthritis,CIA)是類風濕性關節(jié)炎(Rheumatoid arthritis,RA)的常用動物模型。研究發(fā)現(xiàn)CIA小鼠脾臟中MDSC大量擴增,體外可抑制CD4+T細胞增殖,同時抑制CD4+T細胞分泌IFN-γ、IL-2、TNF-α和IL-6等促炎因子,抑制Th17細胞分化,促進IL-10的表達;轉(zhuǎn)輸MDSC到CIA小鼠中使疾病癥狀緩解[49]。此外,在CIA小鼠[50]和RA患者[51]的滑膜液中均發(fā)現(xiàn)G-MDSC增多,患者滑膜液中的MDSC可抑制T細胞的增殖,由此表明G-MDSC限制了T細胞向關節(jié)處的浸潤。
然而,也有研究認為MDSC在RA中起促炎作用,并促進疾病的發(fā)展[9,10]。Guo等[9]發(fā)現(xiàn),CIA中MDSC在體內(nèi)擴增,CIA來源的MDSC產(chǎn)生高水平的IL-1β、TNF-α等促炎因子,并在體外促進Th17分化。當轉(zhuǎn)輸MDSC后小鼠疾病癥狀加重,而去除MDSC后疾病得到緩解。Zhang等[10]同樣發(fā)現(xiàn)用抗Gr-1抗體去除MDSC后,血清中IL-17水平減少,T細胞增殖受抑。而當轉(zhuǎn)輸MDSC到去除MDSC的CIA小鼠中,關節(jié)炎癥狀加重,IL-17水平增多,提示MDSC可促進Th17分化和疾病進展。同樣,在RA患者中發(fā)現(xiàn)MDSC在RA患者外周血顯著增多,與疾病嚴重程度及Th17反應正相關[9,10]。由此可見,RA中MDSC發(fā)揮免疫抑制還是促炎的作用尚不完全明確,需進一步研究明確。
3.3 MDSC和SLE MRL-Fas/lpr是常用的小鼠SLE模型,Iwata等[52]發(fā)現(xiàn)在MRL-Fas/lpr小鼠的疾病發(fā)展過程中,CD11b+GR-1low細胞在外周血、脾、腎組織內(nèi)被檢測到,體外有抑制CD4+T細胞作用,機制與Arg-1有關。Trigunaite等[53]在SLE小鼠模型中觀察到Gr-1+CD11b+細胞分布在脾臟B細胞濾泡結(jié)構(gòu)周圍,在體外可以抑制初始B細胞向漿細胞分化。在NZB×NZW F1遺傳背景的SLE小鼠模型中,MDSC在體外可抑制幼稚T細胞向濾泡輔助T細胞(T follicular helper cell,Tfh)細胞分化[54]。由此表明MDSC可通過直接抑制B細胞作用和抑制Tfh細胞分化兩種方式來抑制B細胞的免疫應答。
然而,也有研究認為MDSC在SLE中發(fā)揮了促進疾病進展的作用。在MRL/lpr小鼠模型中,Gr-1+CD11b+MDSC增多并可通過IL-1β促進Th17細胞及抑制Treg的產(chǎn)生,從而發(fā)揮致病作用[55]。而我們的研究發(fā)現(xiàn)MDSC及其兩個亞群在SLE患者外周血中顯著增多,并與病情正相關。在體外Th17極化條件下MDSC可通過分泌Arg-1促進Th17細胞分化,機制與下游GCN2-eIF2α及mTOR通路相關。而在人源化SLE小鼠中去除MDSC后,則Th17細胞減少,疾病癥狀減輕[11]。上述實驗證明了MDSC通過Arg-1促Th17的產(chǎn)生在SLE發(fā)病中起了促進作用。
3.4 MDSC和自身免疫性肝炎 自身免疫性肝炎(Autoimmune hepatitis,AIH)是一種肝臟特異性的自身免疫病,其特點是肝門區(qū)及肝實質(zhì)內(nèi)有產(chǎn)生IFN-γ的T細胞聚集,導致肝細胞損傷和壞死。在Tgfb1-/-小鼠AIH模型中,肝臟Th1細胞增多的同時伴隨有CD11b+Gr-1+的MDSC增多。從肝臟分離出的CD11b+Gr-1+的MDSC在體外能抑制CD4+T細胞,機制與NO、IFN-γ和細胞-細胞接觸有關[56]。AIH病人外周血中有M-MDSC樣細胞增多[57],肝活檢提示有CD11b+細胞浸潤,提示MDSC在外周血及肝組織中增殖,參與免疫應答[58]。
3.5 MDSC和炎癥性腸病 炎癥性腸病(Inflammatory bowel disease,IBD)是一組表現(xiàn)為腸道慢性非特異性炎癥的自身免疫疾病,包括潰瘍性結(jié)腸炎和Crohn′s病。研究表明MDSC參與調(diào)控IBD炎癥反應,體外實驗進一步表明CD11b+Gr-1+MDSC可通過iNOS來抑制CD8+T 細胞的增殖,轉(zhuǎn)輸CD11b+Gr-1+MDSC給IBD模型小鼠可減輕小鼠腸炎癥狀[59]。此外,研究還發(fā)現(xiàn)MDSC還能抑制IBD小鼠IFN-γ、GM-CSF、IL-17及TNF-α等細胞因子的表達[59]。而炎癥性腸病患者的外周血中發(fā)現(xiàn)CD14+HLADR-/lowM-MDSC增多,體外有免疫抑制作用[59]。
3.6 MDSC和其他自身免疫疾病 此外,在Ⅰ型糖尿病模型中,MDSC在體外能促進Treg細胞的擴增,抑制T細胞的增殖,體內(nèi)轉(zhuǎn)輸MDSC可緩解糖尿病的癥狀[60]。在實驗性自身免疫性重癥肌無力(Experimental autoimmune myasthenia gravis,EAMG)動物模型中,MDSC可在體外促進T細胞的凋亡[61]。在實驗性自身免疫性葡萄膜炎(Experimental autoimmune uveitis,EAU)動物模型中,發(fā)現(xiàn)在眼部炎癥的進展中有MDSC聚集,體外可抑制T細胞活化[62]。Marhaha等[63]在自身免疫性斑禿小鼠模型中發(fā)現(xiàn)重復接觸致敏原導致小鼠皮膚和脾臟內(nèi)Gr1+細胞增加,體外可抑制效應細胞增殖,體內(nèi)可部分恢復毛發(fā)生長。
3.7 MDSC在自身免疫疾病的作用及機制 正如表1所示,不同自身免疫疾病小鼠模型中分離出的MDSC體外都具有抑制T細胞的功能,機制與表達iNOS、Arg-1或產(chǎn)生ROS等有關。但在體內(nèi)研究中,MDSC的具體功能很難確定。有研究認為MDSC在體內(nèi)有保護作用,例如在EAE[5]、RA[49]、IBD[59]、Ⅰ型糖尿病模型[60]中,轉(zhuǎn)輸MDSC后疾病得到緩解。也有研究發(fā)現(xiàn),轉(zhuǎn)輸MDSC不能緩解疾病的癥狀[7],甚至引起疾病的惡化[9,10],而去除MDSC可緩解疾病的進展[9-12]。MDSC在自身免疫病中相互矛盾的結(jié)果,除了實驗模型不同(誘導方式、發(fā)病機制不同),與MDSC的異質(zhì)性、缺少特異的識別標志(導致分離純化可能為不同的細胞)也有關系。另外,即使同樣的模型,不同機構(gòu)間小鼠遺傳差異、疾病進展階段不同、回輸細胞的亞群、時間、方案的不同都可能導致實驗結(jié)果差異。比如,同為CIA模型,F(xiàn)ujii等[49]的實驗小鼠有明顯的疾病緩解期,MDSC是在緩解期開始時分離的,表型是以G-MDSC為主;但Zhang等[10]和Guo等[9]的CIA小鼠關節(jié)炎癥狀逐漸加重,并且兩者都通過loss-gain實驗表明MDSC具有促炎癥作用。另一方面,自身免疫炎癥條件下內(nèi)源性的MDSC可能失去抑制作用,Guo等[9]表明CIA后期(28 d)的MDSC比發(fā)病前(14 d)MDSC抑制功能減弱,同時CIA來源的MDSC比na?ve小鼠MDSC產(chǎn)生更多的IL-1β。然而,是否不同模型炎癥微環(huán)境的特殊因子活化了MDSC的某個亞群功能或分化通路,仍然需要更多更細致的實驗去驗證。由于在體內(nèi)實驗中MDSC顯現(xiàn)出的非保護及促炎癥作用,學者開始研究其促炎癥作用的機制。Th17細胞是CD4+T細胞的亞群,以分泌IL-17A、IL-17F等細胞因子為特點[64,65],在MS、SLE等多種自身免疫疾病中有明確致病作用[66,67]。近幾年來,MDSC與Th17細胞的關系的研究開始引起人們的關注。有報道IL-17因子可以促進MDSC的擴增及集聚[68,69]。有報道在腫瘤[70]及類風濕關節(jié)炎[9]中MDSC比例與IL-17因子水平呈正相關,然而,在類風濕關節(jié)炎患者中,也有報道MDSC與Th17細胞的水平?jīng)]有相關性[71]。Yi等[12]在EAE小鼠模型中發(fā)現(xiàn),MDSC在體外Th17極化條件及體內(nèi)均能促進Th17分化,機制與IL-1β有關,而在體內(nèi)實驗中,吉西他濱去除MDSC后,Th17細胞減少并可以有效緩解病情,說明MDSC具有促炎及致病作用。此后,RA模型研究中也證明了CD11b+Gr1+細胞在體內(nèi)外促進Th17分化功能,并能促進疾病進展,轉(zhuǎn)輸MDSC后疾病加重,去除MDSC后IL-17減少,疾病得到緩解[9,10]。而SLE患者和人源化小鼠中發(fā)現(xiàn),MDSC可促Th17分化及疾病進展,機制與MDSC分泌的Arg-1有關[11],在SLE的MRL/lpr小鼠模型中,也同樣發(fā)現(xiàn)MDSC顯著增多,并可促Th17分化,機制與IL-1β有關[55]。這些實驗說明了自身免疫疾病中MDSC可促Th17分化而導致疾病進展。
表1 MDSC在各種自身免疫疾病中的作用
Tab.1 Role of MDSC in different autoimmune disorders
HumandiseaseSpeciesCellphenotypeMechanismofsuppression(invitro)ProinflammatorymechanismFunctioninvivoReferenceMultiplesclerosisMouseCD11b+Ly6ChighLy6G-iNOS-NotdeterminedZhu[46]MouseCD11b+Ly6G+Notdetermined-ProtectiveIoannou[5]MouseArg-1+CD11b+Gr-1+M-CSF1R+Arg-1-ProtectiveMoline[6]MouseCD11b+Ly6G+iNOSandcell-contact-Non-protectiveSlaney[7]MouseCD11b+CD62L+Ly6ChighNotdeterminedIL-1βproductionPathogeneticKing[8]MouseCD11b+Gr1+NotdeterminedIL-1β-dependentTh17differentiationPathogeneticYi[12]MouseCD11b+Ly6C+Notdetermined-PathogeneticBowen[48]HumanCD15+CD33+HLA-DRlowCD14-Arg-1-PathogeneticIoannou[5]RheumatoidarthritisMouseCD11b+Gr1+Arg-1-ProtectiveFujii[49]MouseCD11b+Gr1+ROSandiNOS-NotdeterminedEgelston[50]MouseCD11b+Gr1+NotdeterminedIL-1β-dependentTh17differentiationPathogeneticZhang[10]Mouse/humanCD11b+Gr1+/CD11b+CD33+NotdeterminedIL-1β-dependentTh17differentiationPathogeneticGuo[9]MouseCD11b+Gr1lowArg-1-NotdeterminedIwata[25]HumanCD11b+CD33+HLA-DRlo/-Notdetermined-NotdeterminedKurko[51]SystemiclupuserythematosusMouseCD11b+Gr1lowNotdeterminedIL-1β-dependentTh17differentiationandPathogeneticJi[55]HumanizedmiceHLADR-CD11b+NotdeterminedArg1-dependentTh17differentiationPathogeneticWu[11]HumanHLADR-CD11b+NotdeterminedArg1-dependentTh17differentiationPathogeneticWu[11]InflammatoryboweldiseaseMouseCD31+CD11b+Gr1+iNOS-ProtectiveHaile[59]AutoimmunehepatitisMouseCD11b+Ly6ChighLy6G-iNOS-Non-protectiveCripps[56]MyatheniagravisMouseNotdeterminedTcellapoptosis-Non-protectiveMcIntosh[61]InflammatoryeyediseaseMouseCD11b+Gr1+Ly6G-TNFR-dependent-NotdeterminedKerr[62]AlopeciaareataMouseCD11b+Gr1+CD3ζdownregulation-ProtectiveMarhaba[63]Type1diabetesMouseGr1+CD115+Notdetermined-ProtectiveYin[60]
綜上所述,自身免疫中MDSC大量擴增并參與了自身免疫疾病的免疫反應過程,在體外也有抑制T細胞的功能。然而在自身免疫疾病動物模型體內(nèi),這些大量擴增的MDSC卻不能有效阻止疾病的進展,MDSC在體內(nèi)是否仍發(fā)揮抑制作用尚存在爭議[4,44]。我們及其他研究人員發(fā)現(xiàn)盡管MDSC在體外有抑制功能,但在體外及體內(nèi)也有促Th17分化的作用[9-12]。綜上認為,在自身免疫疾病中,一方面,MDSC通過抑制T細胞發(fā)揮抗炎及緩解疾病的作用,另一方面在持續(xù)炎癥條件下反而促進Th17細胞分化發(fā)揮促進炎癥及疾病進展的作用。由于缺少特異的表面標志,一定程度上阻礙了對MDSC復雜發(fā)育過程的理解,我們?nèi)匀浑y以確定的是MDSC在疾病不同階段還是其不同亞群發(fā)揮了促Th17分化和抑制T細胞增殖截然不同功能;另外MDSC促進Th17分化的下游分子通路仍然不明確,亟待進一步研究。解決這些問題將有助于優(yōu)化MDSC抑制免疫應答的功能,減少其促炎作用,為基于MDSC有效治療自身免疫疾病提供新的治療措施和干預靶點。
[1] Talmadge JE,Gabrilovich DI.History of myeloid-derived suppressor cells[J].Nat Rev Cancer,2013,13(10):739-752.
[2] Parker KH,Beury DW,Ostrand-Rosenberg S.Myeloid-derived suppressor cells: Critical cells driving immune suppression in the tumor microenvironment[J].Adv Cancer Res,2015,128:95-139.
[3] Gantt S,Gervassi A,Jaspan H,etal.The role of myeloid-derived suppressor cells in immune ontogeny[J].Front Immunol,2014,5:387.
[4] Boros P,Ochando J,Zeher M.Myeloid derived suppressor cells and autoimmunity[J].Hum Immunol,2016,77(8):631-636.
[5] Ioannou M,Alissafi T,Lazaridis I,etal.Crucial role of granulocytic myeloid-derived suppressor cells in the regulation of central nervous system autoimmune disease[J].J Immunol,2012,188(3):1136-1146.
[6] Moline-Velazquez V,Cuervo H,Vila-Del Sol V,etal.Myeloid-derived suppressor cells limit the inflammation by promoting t lymphocyte apoptosis in the spinal cord of a murine model of multiple sclerosis[J].Brain Pathol,2011,21(6):678-691.
[7] Slaney CY,Toker A,La Flamme A,etal.Naive blood monocytes suppress t-cell function.A possible mechanism for protection from autoimmunity[J].Immunol cell Biol,2011,89(1):7-13.
[8] King IL,Dickendesher TL,Segal BM.Circulating ly-6c+myeloid precursors migrate to the cns and play a pathogenic role during autoimmune demyelinating disease[J].Blood,2009,113(14):3190-3197.
[9] Guo CQ,Hu FL,Yi HF,etal.Myeloid-derived suppressor cells have a proinflammatory role in the pathogenesis of autoimmune arthritis[J].Ann Rheum Dis,2016,75(1):278-285.
[10] Zhang H,Wang S,Huang Y,etal.Myeloid-derived suppressor cells are proinflammatory and regulate collagen-induced arthritis through manipulating th17 cell differentiation[J].Clin Immunol,2015,157(2):175-186.
[11] Wu H,Zhen Y,Ma Z,etal.Arginase-1-dependent promotion of Th17 differentiation and disease progression by mdscs in systemic lupus erythematosus[J].Sci Transl Med,2016,8(331):331ra340.
[12] Yi H,Guo C,Yu X,etal.Mouse CD11b+gr-1+ myeloid cells can promote Th17 cell differentiation and experimental autoimmune encephalomyelitis[J].J Immunol,2012,189(9):4295-4304.
[13] Gabrilovich DI,Nagaraj S.Myeloid-derived suppressor cells as regulators of the immune system[J].Nat Rev Immunol,2009,9(3):162-174.
[14] Wynn TA.Myeloid-cell differentiation redefined in cancer[J].Nat Immunol,2013,14(3):197-199.
[15] Peranzoni E,Zilio S,Marigo I,etal.Myeloid-derived suppressor cell heterogeneity and subset definition[J].Curr Opin Immunol,2010,22(2):238-244.
[16] Zhao F,Hoechst B,Duffy A,etal.S100a9 a new marker for monocytic human myeloid-derived suppressor cells[J].Immunology,2012,136(2):176-183.
[17] Wesolowski R,Markowitz J,Carson WE 3rd.Myeloid derived suppressor cells-a new therapeutic target in the treatment of cancer[J].J Immunother Cancer,2013,1:10.
[18] Zoso A,Mazza EM,Bicciato S,etal.Human fibrocytic myeloid-derived suppressor cells express ido and promote tolerance via treg-cell expansion[J].Eur J Immunol,2014,44(11):3307-3319.
[19] Mazza EM,Zoso A,Mandruzzato S,etal.Gene expression profiling of human fibrocytic myeloid-derived suppressor cells (f-mdscs)[J].Geno Data,2014,2:389-392.
[20] Zhang H,Maric I,DiPrima MJ,etal.Fibrocytes represent a novel mdsc subset circulating in patients with metastatic cancer[J].Blood,2013,122(7):1105-1113.
[21] Gabrilovich DI,Ostrand-Rosenberg S,Bronte V.Coordinated regulation of myeloid cells by tumours[J].Nat Rev Immunol,2012,12(4):253-268.
[22] Kumar V,Patel S,Tcyganov E,etal.The nature of myeloid-derived suppressor cells in the tumor microenvironment[J].Trends Immunol,2016,37(3):208-220.
[23] Heuvers ME,Muskens F,Bezemer K,etal.Arginase-1 mrna expression correlates with myeloid-derived suppressor cell levels in peripheral blood of nsclc patients[J].Lung Cancer,2013,81(3):468-474.
[24] Rodriguez PC,Quiceno DG,Zabaleta J,etal.Arginase i production in the tumor microenvironment by mature myeloid cells inhibits t-cell receptor expression and antigen-specific t-cell responses[J].Cancer Res,2004,64(16):5839-5849.
[25] Srivastava MK,Sinha P,Clements VK,etal.Myeloid-derived suppressor cells inhibit t-cell activation by depleting cystine and cysteine[J].Cancer Res,2010,70(1):68-77.
[26] Ostrand-Rosenberg S,Sinha P.Myeloid-derived suppressor cells: Linking inflammation and cancer[J].J Immunol,2009,182(8):4499-4506.
[27] Soliman H,Mediavilla-Varela M,Antonia S.Indoleamine 2,3-dioxygenase: Is it an immune suppressor?[J].Cancer J,2010,16(4):354-359.
[28] Kusmartsev S,Su Z,Heiser A,etal.Reversal of myeloid cell-mediated immunosuppression in patients with metastatic renal cell carcinoma[J].Clin Cancer Res,2008,14(24):8270-8278.
[29] Hildeman DA,Mitchell T,Aronow B,etal.Control of bcl-2 expression by reactive oxygen species[J].Proc Natl Acad Sci U S A,2003,100(25):15035-15040.
[30] Schmielau J,Finn OJ.Activated granulocytes and granulocyte-derived hydrogen peroxide are the underlying mechanism of suppression of T-cell function in advanced cancer patients[J].Cancer Res,2001,61(12):4756-4760.
[31] Mazzoni A,Bronte V,Visintin A,etal.Myeloid suppressor lines inhibit t cell responses by an no-dependent mechanism[J].J Immunol,2002,168(2):689-695.
[32] Nagaraj S,Gupta K,Pisarev V,etal.Altered recognition of antigen is a mechanism of CD8+T cell tolerance in cancer[J].Nat Med,2007,13(7):828-835.
[33] Boros P,Ochando JC,Chen SH,etal.Myeloid-derived suppressor cells: Natural regulators for transplant tolerance[J].Hum Immunol,2010,71(11):1061-1066.
[34] Fujimura T,Mahnke K,Enk AH.Myeloid derived suppressor cells and their role in tolerance induction in cancer[J].J Dermatol Sci,2010,59(1):1-6.
[35] Vasquez-Dunddel D,Pan F,Zeng Q,etal.Stat3 regulates arginase-i in myeloid-derived suppressor cells from cancer patients[J].J Clin Invest,2013,123(4):1580-1589.
[36] Luan Y,Mosheir E,Menon MC,etal.Monocytic myeloid-derived suppressor cells accumulate in renal transplant patients and mediate CD4(+) Foxp3(+) Treg expansion[J].Am J Ransplantat,2013,13(12):3123-3131.
[37] Centuori SM,Trad M,LaCasse CJ,etal.Myeloid-derived suppressor cells from tumor-bearing mice impair tgf-beta-induced differentiation of CD4+CD25+Foxp3+tregs from CD4+CD25-Foxp3-t cells[J].J Leuk Biol,2012,92(5):987-997.
[38] Chou HS,Hsieh CC,Charles R,etal.Myeloid-derived suppressor cells protect islet transplants by b7-h1 mediated enhancement of t regulatory cells[J].Transplantation,2012,93(3):272-282.
[39] Berezhnaya NM.Interaction between tumor and immune system: The role of tumor cell biology[J].Exper Oncol,2010,32(3):159-166.
[40] Pan PY,Ma G,Weber KJ,etal.Immune stimulatory receptor CD40 is required for T-cell suppression and t regulatory cell activation mediated by myeloid-derived suppressor cells in cancer[J].Cancer Res,2010,70(1):99-108.
[41] Serafini P,Mgebroff S,Noonan K,etal.Myeloid-derived suppressor cells promote cross-tolerance in B-cell lymphoma by expanding regulatory t cells[J].Cancer Res,2008,68(13):5439-5449.
[42] Pan PY,Wang GX,Yin B,etal.Reversion of immune tolerance in advanced malignancy: Modulation of myeloid-derived suppressor cell development by blockade of stem-cell factor function[J].Blood,2008,111(1):219-228.
[43] Huang B,Pan PY,Li Q,etal.Gr-1+CD115+immature myeloid suppressor cells mediate the development of tumor-induced t regulatory cells and T-cell anergy in tumor-bearing host[J].Cancer Res,2006,66(2):1123-1131.
[44] Cripps JG,Gorham JD.MDSC in autoimmunity[J].Int Immunopharmacol,2011,11(7):789-793.
[45] Crook KR,Liu P.Role of myeloid-derived suppressor cells in autoimmune disease[J].World J Immunol,2014,4(1):26-33.
[46] Zhu B,Bando Y,Xiao S,etal.CD11b+ly-6c(hi) suppressive monocytes in experimental autoimmune encephalomyelitis[J].J Immunol,2007,179(8):5228-5237.
[47] Moline-Velazquez V,Ortega MC,Vila del Sol V,etal.The synthetic retinoid am80 delays recovery in a model of multiple sclerosis by modulating myeloid-derived suppressor cell fate and viability[J].Neurobiol Dis,2014,67:149-164.
[48] Bowen JL,Olson JK.Innate immune CD11b+gr-1+ cells,suppressor cells,affect the immune response during theiler's virus-induced demyelinating disease[J].J Immunol,2009,183(11):6971-6980.
[49] Fujii W,Ashihara E,Hirai H,etal.Myeloid-derived suppressor cells play crucial roles in the regulation of mouse collagen-induced arthritis[J].J Immunol,2013,191(3):1073-1081.
[50] Egelston C,Kurko J,Besenyei T,etal.Suppression of dendritic cell maturation and T cell proliferation by synovial fluid myeloid cells from mice with autoimmune arthritis[J].Arthritis Rheum,2012,64(10):3179-3188.
[51] Kurko J,Vida A,Glant TT,etal.Identification of myeloid-derived suppressor cells in the synovial fluid of patients with rheumatoid arthritis: A pilot study[J].BMC Musculoskelet Disord,2014,15:281.
[52] Iwata Y,Furuichi K,Kitagawa K,etal.Involvement of CD11b+gr-1 low cells in autoimmune disorder in mrl-fas lpr mouse[J].Clin Exp Nephrol,2010,14(5):411-417.
[53] Trigunaite A,Khan A,Der E,etal.Gr-1(high) CD11b+cells suppress b cell differentiation and lupus-like disease in lupus-prone male mice[J].Arthritis Rheum,2013,65(9):2392-2402.
[54] Der E,Dimo J,Trigunaite A,etal.Gr1+cells suppress t-dependent antibody responses in (nzb x nzw)f1 male mice through inhibition of t follicular helper cells and germinal center formation[J].J Immunol,2014,192(4):1570-1576.
[55] Ji J,Xu J,Zhao S,etal.Myeloid-derived suppressor cells contribute to systemic lupus erythaematosus by regulating differentiation of th17 cells and tregs[J].Clin Sci,2016,130(16):1453-1467.
[56] Cripps JG,Wang J,Maria A,etal.Type 1 T helper cells induce the accumulation of myeloid-derived suppressor cells in the inflamed tgfb1 knockout mouse liver[J].Hepatology,2010,52(4):1350-1359.
[57] Longhi MS,Mitry RR,Samyn M,etal.Vigorous activation of monocytes in juvenile autoimmune liver disease escapes the control of regulatory T-cells[J].Hepatology,2009,50(1):130-142.
[58] Senaldi G,Portmann B,Mowat AP,etal.Immunohistochemical features of the portal tract mononuclear cell infiltrate in chronic aggressive hepatitis[J].Arch Dis Child,1992,67(12):1447-1453.
[59] Haile LA,von Wasielewski R,Gamrekelashvili J,etal.Myeloid-derived suppressor cells in inflammatory bowel disease: A new immunoregulatory pathway[J].Gastroenterology,2008,135(3):871-881.
[60] Yin B,Ma G,Yen CY,etal.Myeloid-derived suppressor cells prevent type 1 diabetes in murine models[J].J Immunol,2010,185(10):5828-5834.
[61] McIntosh KR,Drachman DB.Induction of apoptosis in activated t cell blasts by suppressive macrophages: A possible immunotherapeutic approach for treatment of autoimmune disease[J].Cell Immunol,1999,193(1):24-35.
[62] Kerr EC,Raveney BJ,Copland DA,etal.Analysis of retinal cellular infiltrate in experimental autoimmune uveoretinitis reveals multiple regulatory cell populations[J].J Auto Immun,2008,31(4):354-361.
[63] Marhaba R,Vitacolonna M,Hildebrand D,etal.The importance of myeloid-derived suppressor cells in the regulation of autoimmune effector cells by a chronic contact eczema[J].J Immunol,2007,179(8):5071-5081.
[64] Matsushita S,Higashi T.Human Th17 cell clones and natural immune responses[J].Allergol Int,2008,57(2):135-140.
[65] Lubberts E.The IL-23-IL-17 axis in inflammatory arthritis[J].Nat Rev Rheum,2015,11(10):562.
[66] de Oliveira DM,de Oliveira EM,Ferrari Mde F,etal.Simvastatin ameliorates experimental autoimmune encephalomyelitis by inhibiting Th1/Th17 response and cellular infiltration[J].Inflammopharmacol,2015,23(6):343-354.
[67] Yiu G,Rasmussen TK,Ajami B,etal.Development of Th17-associated interstitial kidney inflammation in lupus-prone mice lacking the gene encoding stat-1[J].Arthritis Rheum,2015,68(5):1233-1244.
[68] Wu P,Wu D,Ni C,etal.γδT17 cells promote the accumulation and expansion of myeloid-derived suppressor cells in human colorectal cancer[J].Immunity,2014,40(5):785-800.
[69] Chen X,Churchill MJ,Nagar KK,etal.IL-17 producing mast cells promote the expansion of myeloid-derived suppressor cells in a mouse allergy model of colorectal cancer[J].Oncotarget,2015,6(32):32966-32979.
[70] Yazawa T,Shibata M,Gonda K,etal.Increased IL-17 production correlates with immunosuppression involving myeloid-derived suppressor cells and nutritional impairment in patients with various gastrointestinal cancers[J].Mole Clin Oncol,2013,1(4):675-679.
[71] Jiao Z,Hua S,Wang W,etal.Increased circulating myeloid-derived suppressor cells correlated negatively with Th17 cells in patients with rheumatoid arthritis[J].Scandinavian J Rheumatol,2013,42(2):85-90.
[收稿2016-12-05]
(編輯 許四平)
Role of myeloid-derived suppressor cells in autoimmune disease
WUHao,YIHuan-Fa,YANGYong-Guang.
TheFirstHospitalAcademyofTranslationalMedicineandInstituteofImmunologyofJilinUniversity,Changchun130061,China
Myeloid-derived suppressor cells (MDSC) are a bone marrow-derived heterogeneous cell population with immunosuppressive activity.Although there is convincing evidence that autoimmune diseases are associated with MDSC expansion,controversies remained regarding the role of MDSCs in controlling autoimmune responses.Recent studies have shown that the expansion of MDSCs,which are capable of inhibiting effector cell function in vitro,does not always lead to alleviation of autoimmune diseases,and in some cases paradoxically exacerbates the disease progression.This review summarizes recent insights into the role of MDSCs in the development of autoimmune responses and the potential of using MDSCs for the treatment of autoimmune diseases.
MDSC;Autoimmune disease;Th17 differentiation
10.3969/j.issn.1000-484X.2017.03.001
①本文受國家自然科學基金(81671592、81373159、81273334、81641064)、國家重點基礎研究發(fā)展計劃(973)項目(2013CB966903、2015CB964400)、教育部創(chuàng)新團隊(IRT1133、IRT_15R24)和吉林省科技廳項目(20150101127JC、20140413058GH)資助。
R392
A
1000-484X(2017)03-0321-08
②通訊作者,E-mail:yihuanfa@jlu.edu.cn; E-mail:yongg@jlu.edu.cn。