• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      二階Emden-Fowler型非線性變時(shí)滯微分方程的振蕩準(zhǔn)則

      2017-04-10 06:22:57
      關(guān)鍵詞:梧州時(shí)滯二階

      楊 甲 山

      (1.梧州學(xué)院 信息與電子工程學(xué)院, 廣西 梧州 543002; 2.梧州學(xué)院 復(fù)雜系統(tǒng)仿真與智能計(jì)算實(shí)驗(yàn)室, 廣西 梧州 543002)

      二階Emden-Fowler型非線性變時(shí)滯微分方程的振蕩準(zhǔn)則

      楊 甲 山1,2

      (1.梧州學(xué)院 信息與電子工程學(xué)院, 廣西 梧州 543002; 2.梧州學(xué)院 復(fù)雜系統(tǒng)仿真與智能計(jì)算實(shí)驗(yàn)室, 廣西 梧州 543002)

      研究了一類具有變時(shí)滯的二階Emden-Fowler型非線性中立型泛函微分方程的振蕩性. 借助Riccati變換、積分平均技術(shù)和微分不等式等技巧,獲得了該類方程振蕩的新判別準(zhǔn)則和比較判別定理,推廣、改進(jìn)并豐富了現(xiàn)有文獻(xiàn)中的結(jié)果.

      振蕩性;變時(shí)滯;泛函微分方程;Riccati變換

      近來,中立型變時(shí)滯泛函方程的振蕩性研究引起了國內(nèi)外學(xué)者的廣泛興趣[1-25]. 本文考慮如下形式的二階非線性中立型變時(shí)滯微分方程

      [a(t)φ1(z′(t))]′+q(t)f(φ2(x(δ(t))))=0,t≥t0

      (1)

      的振蕩性.式(1)中,z(t)=x(t)+p(t)x(τ(t)),φ1(u)=|u|λ-1u,φ2(u)=|u|β-1u(λ>0,β>0為實(shí)常數(shù));而函數(shù)a,p,q∈C([t0,+∞),R);函數(shù)f∈C(R,R),當(dāng)u≠0且uf(u)>0時(shí),有

      (H1)a∈C1([t0,+∞),(0,+∞)),且q(t)>0,p(t)≥0.

      (H3) 存在常數(shù)L>0使得當(dāng)u≠0時(shí),f(u)/u≥L.

      若函數(shù)x(t)滿足a(t)φ1(z′(t))∈C1([Tx,+∞),R)且在區(qū)間[Tx,+∞)上滿足方程(1),則稱函數(shù)x(t)∈C1([Tx,+∞),R)(Tx≥t0)是方程(1)的一個(gè)解. 本文只討論方程(1)的非平凡解. 若方程(1)的解x(t)既不最終為正也不最終為負(fù),則稱解x(t)是振蕩的,否則是非振蕩的;若方程(1)的所有解都是振蕩的,則稱方程是振蕩的.

      {a(t)|[x(t)+p(t)x(τ(t))]′|β-1× [x(t)+p(t)x(τ(t))]′}′+q(t)|x(δ(t))|γ-1x(δ(t))=0

      (E)

      的振動(dòng)性,得到了方程(E)的若干振動(dòng)準(zhǔn)則,推廣、改進(jìn)并豐富了現(xiàn)有的一些結(jié)果. 但文獻(xiàn)[14]有限制條件“a′(t)≥0且0≤p(t)<1”,而且當(dāng)β<λ時(shí)沒有得到方程(E)的振動(dòng)準(zhǔn)則. 筆者將在條件

      (2)

      成立的情況下研究方程(1)的振蕩性,建立了方程(1)振蕩的一個(gè)較為精準(zhǔn)的判別準(zhǔn)則和比較判別定理,改善了對中立項(xiàng)系數(shù)函數(shù)的限制條件0≤p(t)<1,去掉了條件a′(t)≥0,且β>γ和β<λ2種情形均有方程的振蕩準(zhǔn)則, 所得準(zhǔn)則在β=λ的特殊情形下推廣并改進(jìn)了現(xiàn)有文獻(xiàn)中的一系列結(jié)果.

      引理1[18]設(shè)X,Y為非負(fù)實(shí)數(shù),則

      (1)當(dāng)0<λ≤1時(shí),Xλ+Yλ≥(X+Y)λ,當(dāng)且僅當(dāng)X=Y時(shí)等號成立.

      (2)當(dāng)λ>1時(shí),Xλ+Yλ≥21-λ(X+Y)λ,當(dāng)且僅當(dāng)X=Y時(shí)等號成立.

      1 主要結(jié)果及其證明

      為了敘述方便,引入下列3個(gè)記號:

      Q(t)=min{q(t),q(τ(t))},

      φ+(t)=max{0,φ(t)},

      定理1 設(shè)條件(2)成立且0≤p(t)≤p0<+∞(p0為常數(shù)),如果存在函數(shù)φ∈C1([t0,+∞),(0,+∞))使得當(dāng)λ≤β時(shí),有

      (3)

      當(dāng)λ>β時(shí),有

      (4)

      證明 反證法.設(shè)方程(1)存在一個(gè)非振蕩解x(t),不妨設(shè)x(t)為最終正解(當(dāng)x(t)為最終負(fù)解時(shí)類似可證),則?t1≥t0,使得當(dāng)t≥t1時(shí),有x(t)>0,x(τ(t))>0,x(δ(t))>0,于是由z(t)的定義知,z(t)>0且(t≥t1).由方程(1)得

      [a(t)φ1(z′(t))]′=-q(t)f(φ2(x(δ(t))))≤

      -Lq(t)(x(δ(t)))β<0,

      (5)

      注意到條件(2),于是由式(5)不難推出z′(t)>0(t≥t1).應(yīng)用式(5),當(dāng)t≥t1時(shí),有

      Lq(τ(t))(x(δ(τ(t))))β≤0,

      (6)

      于是,綜合式(5)及(6),當(dāng)t≥t1時(shí),可得

      [a(t)φ1(z′(t))]′+Lq(t)(x(δ(t)))β+

      當(dāng)0<β≤1時(shí),注意到τ′(t)≥τ0>0,τ°δ=δ°τ及z(t)≤x(t)+p0x(τ(t))以及引理1,則上式可進(jìn)一步寫成

      -LQ(t)[x(δ(t))+p0x(δ(τ(t)))]β≤

      -LQ(t)zβ(δ(t))≤0.

      當(dāng)β>1時(shí),注意到引理1,類似地,有

      -L21-βQ(t)[x(δ(t))+p0x(δ(τ(t)))]β≤

      -L21-βQ(t)zβ(δ(t))≤0.

      -L0Q(t)zβ(δ(t))≤0.

      (7)

      考慮到γ和β的取值范圍,下面分2種情形進(jìn)行討論.

      情形1λ≤β.

      做Riccati變換:

      (8)

      則w(t)>0(t≥t1),注意到τ′(t)≥τ0>0,由式(8)有

      (9)

      由z(t)>0,z′(t)>0知,存在常數(shù)η>0使得當(dāng)t≥t1時(shí),有z(τ(t))≥η.于是,綜合式(9)和(8),并注意到引理2的不等式,得

      (10)

      再做Riccati變換:

      (11)

      則v(t)>0(t≥t1),類似于上面的推導(dǎo)過程,可得

      (12)

      綜合式(10)和(12),并注意到式(7)及z′(t)>0,有

      (13)

      由式(5)知,a(t)[z′(t)]λ(t≥t1)是單調(diào)減小的,因此有

      (14)

      將式(14)代入式(13),得

      于是有

      與式(3)矛盾.

      情形2λ>β.

      (15)

      再做如式(11)所示的Riccati變換,與式(12)的推導(dǎo)過程類似,可得

      (16)

      綜合式(15)、(16),z′(t)>0及式(7)和(14),可得

      -L0φ(t)Q(t)Ψβ(t,t1)+

      因此,

      與式(4)矛盾. 定理證畢.

      定理2 設(shè)條件(2)成立,并且0≤p(t)≤p0<+∞(p0為常數(shù)),如果一階微分不等式

      yβ/λ(δ(t))≤0

      (17)

      證明 反證法:設(shè)方程(1)存在一個(gè)非振蕩解x(t),不妨設(shè)x(t)為最終正解(當(dāng)x(t)為最終負(fù)解時(shí)類似可證),則?t1≥t0,使得當(dāng)t≥t1時(shí),有x(t)>0,x(τ(t))>0,x(δ(t))>0. 由定理1的證明知,式(7)成立,于是由式(7)得

      (18)

      由于當(dāng)t≥t1時(shí),z′(t)>0,[a(t)φ1(z′(t))]′=[a(t)(z′(t))λ]′<0,所以當(dāng)t≥s≥t1時(shí),有a(t)(z′(t))λ≤a(s)(z′(s))λ,即a1/λ(s)z′(s)≥a1/λ(t)z′(t),因此

      a1/λ(t)z′(t)[θ(t)-θ(t1)],

      由式(18)并記y(t)=a(t)(z′(t))λ,于是可得

      L0Q(t)aβ/λ(δ(t))(z′(δ(t)))β[θ(δ(t))-θ(t1)]β=

      θ(t1)]βyβ/λ(δ(t)),

      表明y(t)是式(17)的一個(gè)正解,矛盾. 定理證畢.

      注1 顯然, 本文給出了一類非常廣泛的二階Emden-Fowler泛函微分方程(1)振蕩的2個(gè)判別準(zhǔn)則,改善了現(xiàn)有研究(如文獻(xiàn)[14])對中立項(xiàng)系數(shù)函數(shù)的限制條件:0≤p(t)<1. 從定理1可看出,λ>β和λ<β方程的振蕩條件是有差別的. 此外,從以下例子還可以看出,本文結(jié)果的特殊情形即定理1中當(dāng)λ=β且p0=1時(shí),其振蕩結(jié)果也是較“精細(xì)的”,這些結(jié)果推廣、改進(jìn)并豐富了現(xiàn)有文獻(xiàn)的結(jié)論.

      2 實(shí)例分析

      例1 對常數(shù)q0>0,考慮二階時(shí)滯微分方程

      (E1)

      由文獻(xiàn)[11]定理2.1知,當(dāng)q0>1.25時(shí)方程(E1)是振蕩的. 因此,本文定理1不僅包括了文獻(xiàn)[11]中的定理2.1,而且改進(jìn)了文中的相關(guān)定理.

      例2 考慮二階泛函微分方程

      (E2)

      取f(u)=u[1+ln(1+u4)],由于

      顯然條件(H1)~(H3)全部滿足. 又因?yàn)?/p>

      取φ(t)=1,則

      定理1的條件均滿足,故由定理1知,方程(E2)是振蕩的.

      注3 由于方程(E2)的中立項(xiàng)系數(shù)函數(shù)p(t)>1,λ≠β且不滿足a′(t)≥0,因此文獻(xiàn)[1-8,11-19]中的定理均不能用于方程(E2). 值得注意的是,本文定理?xiàng)l件(H2)中要求τ°δ=δ°τ, 因此當(dāng)τ°δ≠δ°τ時(shí),尋找新的技術(shù)手段來研究方程(1)的振蕩性, 這將是非常有意義的事情.

      [1]HASANBULLIM,ROGOVCHENKOYV.Oscillationcriteriaforsecondordernonlinearneutraldifferentialequations[J]. Applied Mathematics and Computation,2010,215(12):4392-4399.

      [2] LI T X, AGARWAL R P, BOHNER M. Some oscillation results for second-order neutral differential equations[J]. The Journal of the Indian Mathematical Society,2012,79(1/2/3/4):97-106.

      [3] LI T X, AGARWAL R P, BOHNER M. Some oscillation results for second-order neutral dynamic equations[J]. Hacettepe Journal of Mathematics and Statistics,2012,41(5):715-721.

      [4] LI T X, ROGOVCHENKO Y V. Oscillatory behavior of second-order nonlinear neutral differential equations[J]. Abstract and Applied Analysis,2014:ID143614.

      [5] SUN S R, LI T X, HAN Z L,et al. Oscillation theorems for second-order quasilinear neutral functional differential equations[J]. Abstract and Applied Analysis,2012:ID819342.

      [6] ZHANG C H, AGARWAL R P, BOHNER M, et al. New oscillation results for second-order neutral delay dynamic equations[J]. Advances in Difference Equations,2012:227.

      [7] ZHONG J,OUYANG Z, ZOU S. An oscillation theorem for a class of second-order forced neutral delay differential equations with mixed nonlinearities[J]. Applied Mathematics Letters,2011,24(8):1449-1454.

      [8] AGARWAL R P, BOHNER M, LI T X, et al. A new approach in the study of oscillatory behavior of even-order neutral delay differential equations[J]. Appl Math Comput,2013,225:787-794.

      [9] YANG J S, QIN X W. Oscillation criteria for certain second-order Emden-Fowler delay functional dynamic equations with damping on time scales[J]. Advances in Difference Equations,2015:97.Doi:10.1186/S13662-014-0328-X.

      [10] YANG J S, QIN X W, ZHANG X J.Oscillation criteria for certain second-order nonlinear neutral delay dynamic equations with damping on time scales [J]. Mathematica Applicata,2015,28(2):439-448.

      [11] YE L, XU Z. Oscillation criteria for second order quasilinear neutral delay differential equations[J]. Applied Mathematics and Computation,2009,207(2):388-396.

      [12] LI T X, ROGOVCHENKO Y V, ZHANG C H. Oscillation of second-order neutral differential equations[J]. Funkcialaj Ekvacioj,2013,56(1):111-120.

      [13] AGARWAL R P, BOHNER M, LI T X, et al. Oscillation of second-order Emden-Fowler neutral delay differential equations[J]. Annali di Matematica Pura ed Applicata,2014,193(6):1861-1875.

      [14] 黃記洲,符策紅.廣義Emden-Fowler方程的振動(dòng)性[J].應(yīng)用數(shù)學(xué)學(xué)報(bào),2015,38(6):1126-1135. HUANG J Z, FU C H. Oscillation criteria of generalized Emden-Fowler equations[J]. Acta Mathematicae Applicatae Sinica,2015,38(6):1126-1135.

      [15] 楊甲山,方彬.一類二階中立型微分方程的振動(dòng)性[J].數(shù)學(xué)的實(shí)踐與認(rèn)識,2013,43(23):193-197. YANG J S, FANG B. Oscillation of a class of second order neutral differential equations[J]. Mathematics in Practice and Theory,2013,43(23):193-197.

      [16] 楊甲山.具阻尼項(xiàng)的高階中立型泛函微分方程的振蕩性[J].中山大學(xué)學(xué)報(bào):自然科學(xué)版,2014,53(3):67-72. YANG J S. Oscillation of higher order neutral functional differential equations with damping[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni,2014,53(3):67-72.

      [17] 楊甲山.具正負(fù)系數(shù)和阻尼項(xiàng)的高階泛函微分方程的振動(dòng)性[J].華東師范大學(xué)學(xué)報(bào):自然科學(xué)版,2014(6):25-34. YANG J S. Oscillation of higher order functional differential equations with positive and negative coefficients and damping term[J]. Journal of East China Normal University: Natural Science,2014(6):25-34.

      [18] XING G J, LI T X, ZHANG C H. Oscillation of higher-order quasi-linear neutral differential equations[J]. Advances in Difference Equations,2011:45.Doi:10.1186/1687-1847-2011-45.

      [19] 楊甲山,覃學(xué)文.具阻尼項(xiàng)的高階Emden-Fowler型泛函微分方程的振蕩性[J].中山大學(xué)學(xué)報(bào):自然科學(xué)版,2015,54(4):63-68. YANG J S, QIN X W. Oscillation of higher hrder Emden-Fowler functional differential equations with damping[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni,2015,54(4):63-68.

      [20] 楊甲山,黃勁.時(shí)間模上一類二階非線性動(dòng)態(tài)方程振蕩性的新準(zhǔn)則[J].華東師范大學(xué)學(xué)報(bào):自然科學(xué)版,2015(3):9-15. YANG J S, HUANG J. New criteria for oscillation of certain second-order nonlinear dynamic equations on time scales[J]. Journal of East China Normal University :Natural Science,2015(3):9-15.

      [21] 楊甲山,孫文兵.具正負(fù)系數(shù)的二階差分方程的振動(dòng)性[J].山東大學(xué)學(xué)報(bào):理學(xué)版,2011,46(8):59-63. YANG J S, SUN W B. Oscillation of second order difference equations with positive and negative coefficients[J]. Journal of Shandong University:Natural Science,2011,46(8):59-63.

      [22] 趙雪芹.非線性微分方程精確解及振動(dòng)性[D].大連:大連理工大學(xué),2007. ZHAO X Q. Exact Solutions and Oscillation of Nonlinear Differential Equations[D]. Dalian: Dalian University of Technology,2007.

      [23] 莫協(xié)強(qiáng),張曉建,楊甲山.一類高階泛函微分方程非振動(dòng)解的存在性[J].四川師范大學(xué)學(xué)報(bào):自然科學(xué)版,2014,37(6):861-866. MO X Q, ZHANG X J, YANG J S. Existence of nonoscillatory solutions for a class of higher order functional differential equations[J]. Journal of Sichuan Normal University:Natural Science,2014,37(6):861-866.

      [24] YANG J S. Oscillation of third-order delay dynamic equations on time scales[J]. Chinese Quarterly Journal of Mathematics,2014,29(3):447-456.

      [25] 楊甲山.具可變時(shí)滯的二階非線性中立型泛函微分方程的振動(dòng)性[J].浙江大學(xué)學(xué)報(bào):理學(xué)版,2016,43(3):257-263. YANG J S. Oscillation of certain second-order nonlinear neutral functional differential equations with variable delay[J]. Journal of Zhejiang University:Science Edition,2016,43(3):257-263.

      YANG Jiashan1,2

      (1.SchoolofInformationandElectronicEngineering,WuzhouUniversity,Wuzhou543002,GuangxiZhuangAutonomousRegion,China; 2.LaboratoryofComplexSystemsSimulationandIntelligentComputing,WuzhouUniversity,Wuzhou543002,GuangxiZhuangAutonomousRegion,China)

      The purpose of this article is to study the oscillatory behavior of second-order Emden-Fowler nonlinear neutral functional differential equations with variable delay. By using the Riccati transformation, integral averaging technique and differential inequalities, we established a new oscillation criteria and a comparison theorem for the oscillation of the equations. These criteria dealing with some cases have not been covered by the existing results in the literature.

      oscillation; variable delay; functional differential equation; Riccati transformation

      2016-03-26.

      梧州學(xué)院2014年校級科研重大項(xiàng)目(2014A003); 碩士學(xué)位授予單位立項(xiàng)建設(shè)項(xiàng)目(桂學(xué)位[2013]4號);廣西教育廳科研項(xiàng)目(2013YB223).

      楊甲山(1963-), ORCID:http://orcid.org/0000-0002-0340-097X, 男, 學(xué)士, 教授, 主要從事微分方程的理論與應(yīng)用研究,E-mail:syxyyjs@163.com.

      10.3785/j.issn.1008-9497.2017.02.004

      O 175. 7

      A

      1008-9497(2017)02-144-07

      Oscillation criteria of second-order Emden-Fowler nonlinear variable delay differential equations. Journal of Zhejiang University(Science Edition), 2017,44(2):144-149,160

      猜你喜歡
      梧州時(shí)滯二階
      中共梧州城工委
      西江月(2021年3期)2021-12-21 06:34:18
      帶有時(shí)滯項(xiàng)的復(fù)Ginzburg-Landau方程的拉回吸引子
      一類二階迭代泛函微分方程的周期解
      一類二階中立隨機(jī)偏微分方程的吸引集和擬不變集
      二階線性微分方程的解法
      梧州工人運(yùn)動(dòng)的急先鋒
      西江月(2018年5期)2018-06-08 05:47:32
      一類二階中立隨機(jī)偏微分方程的吸引集和擬不變集
      八十多載后尋訪梧州
      文史春秋(2016年3期)2016-12-01 05:42:19
      夢梧州(外兩首)
      西江月(2016年2期)2016-11-26 12:27:13
      一階非線性時(shí)滯微分方程正周期解的存在性
      山阳县| 格尔木市| 海阳市| 曲阳县| 彭泽县| 星子县| 化隆| 宝应县| 文登市| 三台县| 环江| 贵德县| 佛教| 荥经县| 凌源市| 吉木萨尔县| 高碑店市| 南昌市| 武强县| 安平县| 东港市| 中卫市| 庆安县| 嘉禾县| 论坛| 普格县| 嘉鱼县| 乾安县| 青神县| 北安市| 肃宁县| 惠州市| 宜章县| 百色市| 东平县| 鄱阳县| 上饶县| 延边| 汽车| 潮安县| 班戈县|