• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    C band microwave damage characteristics of pseudomorphic high electron mobility transistor?

    2021-09-28 02:18:36QiWeiLi李奇威JingSun孫靜FuXingLi李福星ChangChunChai柴常春JunDing丁君andJinYongFang方進(jìn)勇
    Chinese Physics B 2021年9期
    關(guān)鍵詞:孫靜常春福星

    Qi-Wei Li(李奇威),Jing Sun(孫靜),Fu-Xing Li(李福星),Chang-Chun Chai(柴常春),Jun Ding(丁君),and Jin-Yong Fang(方進(jìn)勇)

    1School of Electronics and Information,Northwestern Polytechnical University,Xi’an 710129,China

    2China Academy of Space Technology(Xi’an),Xi’an 710100,China

    3Key Laboratory of Ministry of Education for Wide Band-Gap Semiconductor Materials and Devices,School of Microelectronics,Xidian University,Xi’an 710071,China

    Keywords:high power microwave,pseudomorphic high electron mobility transistor,damage mechanism,C band,low noise amplifier(LNA)

    1.Introduction

    With the rapid development of microwave technology,microwave devices are widely used in microwave communication,navigation,telemetry,remote control,satellite communication,and military electronic countermeasures.At the same time,the rapid development of microwave power supply technology makes electromagnetic pulse interference more and more dangerous to microwave semiconductor devices.[1]A large number of simulations and experiments have been carried out to study the electromagnetic immunity of high-power microwave(HPM)at the system or component level.[2–7]

    As a typical electromagnetic pulse,narrow-band microwave pulses with a peak power up to several GW and a pulse width of about 100 ns have been reported.[8,9]Such the HPM can be coupled from the front or back doors to disrupt or damage power systems.When irradiated by a strong electromagnetic pulse,the front door coupling through the antenna port will have a large amplitude,especially if the operating frequency band is within the radiation frequency band of the electromagnetic pulse.Therefore,the HPM is considered to be a serious threat to IT infrastructure and communication equipment,especially for radio frequency(RF)front-end components.

    In the previous study,Zhang et al.studied the burnt-out characteristics of low noise amplifier(LNA)based on gallium arsenide(GaAs)pseudomorphic high electron mobility transistor(pHEMT)injected with 1.4-GHz microwave pulse.[10]Liu et al.studied the combustion destruction characteristics of Ku band microwave pulses for GaAs pHEMT.[11,12]Yu et al.[13]and Xi et al.[14]studied the nonlinear and permanent degradation of GaAs-based LNA under electromagnetic pulse(EMP).Zhou et al.studied the mechanism of GaN HEMT failure induced by HPM.[15]The C band has good anti-rain attenuation and is often used in satellite communications.However,there are few reports on the HPM effect of C band LNA.

    This paper aims to study the damage characteristics of HPM induced pHEMT in the C band from the physical perspective through simulation analysis and the experimental results.The rest of this paper is organized as follows.In Section 2,the simulation model used here is described from three aspects:the device structure,the numerical model,and the signal model.In Section 3,with the help of the device simulator Sentaurus-TCAD,the electric field intensity,the current density,and the temperature characteristics of the device are analyzed to explain the HPM damage mechanism of the device.And we conclude HPM pulse-width-dependent damage rule.In Section 4,the simulation results are compared with the experimental results,and it is determined that the gate region of the pHEMT device is the vulnerable position under the irradiation of C-band HPM.Finally,the conclusions are presented in Section 5.

    2.Simulation model

    2.1.Device structure

    Aδ-doping AlGaAs/InGaAs pHEMT is studied in this paper.Figure 1 shows its basic structure as simulated in TCAD.[16]The device cross-section consists of a 0.8-μmthick GaAs substrate,a 10-nm-deep InGaAs channel,a 34.5-nm-thick AlGaAs spacer layer,a 30-nm-thick GaAs cap layer,and a 50-nm-thick Si3N4passivation layer.There also exists aδ-doping layer,which provides the carriers for the InGaAs channel layer,in the AlGaAs spacer layer.Here,the gate length is 0.15μm and the gate width is 200μm.Furthermore,the gate Schottky barrier height is 0.9 eV and the gate recess is 15-nm deep.The source–gate separation Lgsis 0.575μm including a 40-nm-thick oxide insulation layer for reducing the gate leaking current.Its metal material of electrode is gold.[17]And it is between the source and the drain and its form is symmetric.The area surrounded by the red dotted line in Fig.1 is the vulnerable area inside pHEMT,so the model grid of this area is finely divided,and the research results are given below.

    Fig.1.Basic structure ofδ-doping AlGaAs/InGaAs pHEMT.

    2.2.Numerical model

    To study the physical effect and mechanism of HEMT’s HPM effect,we start from the basic physical equation and use Sentaurus TCAD to construct the physical equivalent model of pHEMT,including the Poisson equation and continuity equation.It is important to consider the electro-thermal effect in the simulation of the burning process of the device injected by the HPM.So the thermodynamic model is adopted to solve the internal physical quantity of the device,and the current density equation of Jnand hole Jpare revised as

    whereμn(μp)is the electron(hole)mobilityφn(φp)is the electron(hole)quasi-Fermi potential,and Pn(Pp)is the absolute thermoelectric power electron(hole).Meanwhile,with the thermodynamic model,the lattice temperature is computed from

    where cLis the lattice heat capacity,κis the thermal conductivity,k is the Boltzmann constant,ECand EVare the top of conduction band and the bottom of valance band,respectively,and Rn(Rp)is the electron(hole)recombination rate.

    Besides,the avalanche model accounting for impact ionization,the analytic-TEP model for thermal electric power,and the high-field-saturation model for electron mobility are also used in this model.[18]The description and physical equation for each of these models are available in Ref.[17].

    2.3.Signal model

    At present,in the study of the damage effect on the semiconductor device with the HPM event,lots of researchers take the sine wave as the HPM signal model.[19]So the C band HPM is assumed to be a sinusoidal wave without attenuation in this paper,and the mathematical expression is as follows:

    where U is the amplitude,f is the frequency,andφis the initial phase.Figure 2 shows the simulation circuit schematic diagram in this study.At first,the drain and the source are applied to with 12 V and grounded,respectively.And by adjusting the resistance R,the HEMT drain potential remains at 2 V when the gate potential is 0 V.Then the sinusoidal wave with a frequency f of 6.6 GHz and an initial phaseφof zero is injected into the gate terminal of pHEMT to simulate the process that the HPM energy couples into the input port of the pHEMT LNA through the front-door path.When the lattice temperature reaches the melting point of gallium arsenide 1511 K,the device is judged to be in failure and the simulation calculation is stopped.

    Fig.2.Schematic diagram of simulation circuit.

    3.Simulation results and discussion

    3.1.HPM damage effect

    In the simulation circuit described above,the HPMs with a fixed frequency of 6.6 GHz at different power levels are injected respectively into the gate port of pHEMT to explore the microwave damage characteristics of the C-band of pHEMT.Figure 3 shows the variations of the maximum temperature inside the device with time.Both the temperature change curves show periodic“rising-fall-rising”oscillations.When the HPM power equals 38.55 dBm,the highest temperature inside the device shows an overall upward trend at the beginning,and then the trend of the highest temperature inside the device stops rising and drops slightly,and finally,the trend of the highest temperature inside the device gradually stabilizes.It is inferred that in the last stage of the above-mentioned temperature change,the pHEMT device exchanges heat with the outside and the inside,and thus reaching a thermal equilibrium.Nevertheless,as the power level is elevated to 40.77 dBm,the highest temperature inside the device sharply rises and quickly reaches 1511 K(the GaAs melting point).So it can be inferred that device burn-out may occur.

    Fig.3.Variations of maximum temperature within pHEMT with time.

    Here,the situation that HPM with power of 40.77 dBm is injected into pHEMT is taken for example.Figure 4 shows the temperature distribution inside the HEMT at the time of the device burning down.In Fig.4,the change from dark blue to deep red represents the internal temperature of the device varying from 295.6 K to 1531 K.It can be seen that the hightemperature region represented by deep red is concentrated on the side of the source pole below the grid of the device,and this high-temperature region is called the hotspot inside the device.The formation mechanism of the hotspot is described below.

    Fig.4.Distribution of temperature(in unit K)at pHEMT burning time.

    3.2.HPM damage mechanism analysis

    According to Fig.3(b),the maximum temperature inside the device increases and decreases periodically,and the cycle frequency is consistent with the HPM frequency.In the following the changes of internal physical quantities of the pHEMT device during the single-cycle HPM are analyzed.Figures 5–8 show the data sampled at 0.87 ns and 0.95 ns from the simulation and the temperature distribution,electric field distribution,current distribution,and impact ionization,respectively.The values 0.87 ns and 0.95 ns are the minimum and maximum temperature peaks of the internal maximum temperature of the pHEMT device in an HPM cycle,respectively.Also,the value 0.87 ns is in the negative half cycle of the HPM and the value 0.95 ns is in the positive half cycle of the HPM signal.

    Figures 5(a)and 5(b)illustrate the distribution of temperature at 0.87 ns and 0.95 ns respectively.Obviously,the hotspot inside the device is always on the side of the source pole below the gate.And centered on the hotspot,the surrounding temperature decreases gradually.It means that the hotspot occurs where the heat is generated inside the device.However,the hotspot temperature at 0.95 ns is significantly higher than that at 0.87 ns.Therefore,the heat generated by the hotspot also varies in a single HPM cycle.

    Combining the heating curve of the pHEMT injected into HPM and the internal temperature distribution of the device,it can be obtained that the internal temperature of the device has an upward trend when the pHEMT gate is injected with HPM.And high temperature area is diffused because the heat generation is greater than the thermal diffusion in the pHEMT device.As a result,there appears a thermal accumulation effect in the device.Moreover,a large amount of heat is continuously generated and accumulated at the hotspot,which will eventually even cause a so high temperature inside the device that it exceeds the melting point of the material,and thus causing the device to burn.However,when the injected HPM power is less than a certain threshold,the internal temperature of the device will not rise any more after reaching a certain value,but will eventually stabilize.This is because the thermal diffusivity of the material increases with the temperature rising.Finally thermal output and thermal diffusion inside the device are balanced.

    Fig.5.Distribution of temperature(in unit K)at(a)0.87 ns and(b)0.95 ns.

    As can be seen from Fig.6,the electric field intensity is very high below the gate of the device,especially on both sides of the gate.This is due to the structure of the device,where the curvature is small,it is easy to form a large electric field intensity.At 0.87 ns,the maximum electric field intensity under the grid is close to that of the drain,while at 0.95 ns,the maximum electric field intensity under the grid is close to the electric field intensity of the source,because there is bias voltage at the drain.

    In Fig.7(a),at 0.87 ns,that is,in the negative half cycle,the current density is not large due to the reverse bias voltage of the Schottky junction.It can be seen from Fig.7(b)that at 0.95 ns,which is in the positive half cycle of the HPM,a current path appears under the gate and connects the gate to the InGaAs channel,and the current path is closer to the source side than to the drain.This is because the drain voltage is biased at 2 V,the gate/source voltage is greater than the gate/drain voltage.[20]The research shows that the heatproducing transistor can be expressed as Q=J·E by J current density and electric field intensity E.

    Fig.6.Distribution of electric field intensity(in units of V/cm)at(a)0.87 ns,and(b)0.95 ns.

    Fig.7.Distribution of current density(in units of A/cm2)at(a)0.87 ns,and(b)0.95 ns.

    Therefore,a lot of heat is thought to be generated in the positive half cycle.The area of high electric field intensity and high current density in the positive period device is located below the gate near the source,consistent with the location of the hotspot of the device.This indicates that the energy of HPM coupling into the device is converted into heat,causing the device to burn down.

    Figures 8(a)and 8(b)show the distribution of impact ionization at 0.87 ns and 0.95 ns of the device,respectively.The areas with impact ionization rate(in units A/cm2)less than 1×1027inside the device are shown in dark blue,and areas with impact ionization rate ranging from 1×1027to 1.2387×1032are shown in the areas from dark blue to deep red.In Fig.8(b),during the positive half cycle,the deep red area with a high ionization rate is concentrated in the lower part of the gate,and the position with the maximum ionization rate at the lower part of the gate is on the side of the source pole,which is consistent with the position of the large current channel in the lower part of the gate.However,during the negative half cycle,there is no high impact ionization region similar to the scenario during the positive half cycle in Fig.8(a).This indicates that in the positive half cycle,the grid Schottky junction is positively skewed,and the extremely strong grid field leads to an avalanche multiplier effect.In other words,the large forward bias voltage causes the gate to break down,forming a large current channel from the gate to the channel.In the negative half period,the gate/source and gate/drain voltages mostly fall on the reverse bias Schottky junction during the negative period,thereby failing to produce large collision ionization rate.

    Fig.8.Distribution of impact ionization(in units of cm?3·s?1)at(a)0.87 ns,and(b)0.95 ns.

    3.3.HPM pulse-width-dependent damage effect

    To study the HPM damage pulse width effect of pHEMT,in this paper used is the simulation model established above to inject sinusoidal signals with different voltage amplitudes and a frequency of 6.6 GHz into the input end of the pHEMT.And the simulation circuit setting is consistent with that described in Section 2.The HPM pulse width is calculated by the duration of the injected signal before the equipment burns out.Damage power threshold P is the average power absorbed by the equipment during HPM injection,and damage energy threshold E is the total energy absorbed by the equipment during HPM injection.The simulation results are shown in Fig.9.

    Fig.9.HPM damage power threshold and energy threshold versus pulse widthτ.

    The results show that with the increase of pulse width,the HPM power threshold decreases and the HPM energy threshold increases.Besides,there is a significant nonlinearity for each of the curves.By curve fitting,the empirical formula to describe the correlation can be obtained as follows:

    The above relationship is in line with the empirical formula of PN junction damage under monopulse signal presented by Wunsch and Tasca et al.[21,22]

    Figure 10 respectively show the temperature distribution of device with gate power injected at 40.49 dBm,41.71 dBm,and 42.40 dBm at the time of burnout in the above simulation,respectively.Comparing the high-temperature regions represented by the bright colors in Fig.10,it can be seen that the greater the injection power,the smaller the distribution area of the high-temperature region at the time of device burnout.This is because when more power is injected into the device,the device burns out in a shorter time and the heat does not have time to dissipate and is concentrated in a smaller area.It can be considered that the power injected by electromagnetic pulse will not change the mechanism of device burning,but only affect the burning time and the size of the high temperature zone.

    Fig.10.Distribution of temperature(in unit K)when the injected power is(a)40.49 dBm,(b)41.71 dBm,and(c)42.40 dBm.

    4.Comparison with experimental results

    The experiment is performed by directly injecting a continuous HPM at 6.6 GHz into an LNA.When the injection power exceeds 40 dBm,it is difficult to observe a stable output waveform at the output port of LNA.Therefore,the output gain of LNA is reduced by 20 dBm,which serves as a criterion to judge the damage of LNA.The experimental sample is a three-stage LNA.And the crucial transistors of the first two stages are typical GaAs pHEMT devices,whose gate length and width are consistent with those in the simulation model.By opening the package of the damaged sample,it is found that the LNA damage area is located at the first transistor gate of the LNA as shown in Fig.11.

    The scanning electron microscope(SEM)observation results of the first-level damage of the LNA are shown in Fig.12.In Fig.12(a),there are several abnormal locations in the pHEMT device,and the square area surrounded by the red line represents a typical damage area.Figure 12(b)is the magnified view of the square area enclosed by the red line in Fig.12(a).In Fig.12(b),the vertical metal strip in the middle is the gate metal of pHEMT,the left side is the source region,and the right side is the drain region.The gate metal strip is broken.Besides,the channel in the region near the gate is also damaged,and the deviation of the gate to the source side is more serious.[6,10–12]As shown in Fig.12(c),there are small balls and pits formed after the material has melted at the fracture of the gate metal strip.The damage zone of position 1 and position 2 and the normal area are analyzed by EDS,and the results are as shown in Fig.13.

    Fig.11.First-stage LNA transistors by optical microscope.

    Fig.12.Internal characteristics of damaged samples characterized by SEM.

    Fig.13.Energy spectrum analysis of damage at(a)position 1,(b)position 2,and(c)in normal area.

    As can be seen from Fig.13,the percentage composition of gold(Au)at position 1(41.45%)and the percentage composition of gold(Au)at position 2(24.68%)are significantly higher than that in the normal area(7.95%).This indicates that the gate metal Au has melted and diffused in all directions.Also,the fractions of nitrogen(5.96%)and silicon(2.78%)at place 1 are both smaller than those of nitrogen(8.61%)and silicon(4.61%)in the normal area.This indicates that the passivation layer between the gate and the source also melts and splashes out.In contrast,the nitrogen component ratio(8.00%)and silicon component ratio(9.00%)in place 2 do not decrease compared with the normal place.It is judged that the passivation layer between the gate and the drain does not burn down or burns not severely.The anatomical analysis results of the above damaged samples are consistent with the simulation results,indicating that the pHEMT will burnt out in the circuit when the HPM power is larger than a certain threshold.Furthermore,the gate of the pHEMT device,especially the gate biased to the side of the source,is the weak link under the action of HPM.

    5.Conclusions

    The C band HPM damage effects of the pHEMT devices are studied through simulation and experiment in this paper.It can be concluded that the Schottky junction undergoes an avalanche breakdown under the action of a large forward bias voltage,which results in forming a large current.And a large amount of Joule heat generated by the strong electric field and the large current density near the gate forms a hotspot.When the injected HPM power is higher than a certain threshold,the hotspot temperature oscillating rises with time.And pHEMT will eventually damage because of the thermal accumulation at the hotspot.According to the above theory and experimental results,we investigated,the key parameters causing damage to the device under typical pulse conditions,including the damage location,damage power,etc.This work has a certain reference value in evaluating the pHEMT’s microwave damage.

    猜你喜歡
    孫靜常春福星
    常春作品
    孫靜:堅(jiān)守初心 勇?lián)鷷r(shí)代使命
    Ultrafast proton transfer dynamics of 2-(2′-hydroxyphenyl)benzoxazole dye in different solvents
    家里的寶
    兩個(gè)少年兩匹馬
    兩個(gè)女人一臺(tái)戲
    以豎直上拋運(yùn)動(dòng)為例淺談學(xué)生分組合作的習(xí)題課模式
    Kinetics of Glucose Ethanolysis Catalyzed by Extremely Low Sulfuric Acid in Ethanol Medium*
    壽 酒
    西江月(2014年4期)2014-03-13 03:40:20
    等你回來(lái)
    国产精品成人在线| 香蕉精品网在线| 久久久精品区二区三区| tube8黄色片| 高清视频免费观看一区二区| 国产免费一级a男人的天堂| 人人妻人人澡人人看| 观看美女的网站| 免费日韩欧美在线观看| 亚洲国产欧美日韩在线播放| 十八禁网站网址无遮挡| 国产黄频视频在线观看| 青青草视频在线视频观看| 在现免费观看毛片| 成人国语在线视频| 亚洲欧洲国产日韩| 好男人视频免费观看在线| 香蕉精品网在线| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 99久久综合免费| 少妇人妻精品综合一区二区| 午夜视频国产福利| 国产免费一级a男人的天堂| av免费在线看不卡| 久久精品国产综合久久久 | 精品国产一区二区久久| 免费观看性生交大片5| 美女内射精品一级片tv| 久久精品久久精品一区二区三区| 在线观看国产h片| 亚洲欧美成人精品一区二区| 人妻一区二区av| 国产av精品麻豆| 国产福利在线免费观看视频| 国产精品秋霞免费鲁丝片| 国产男女内射视频| xxxhd国产人妻xxx| 大香蕉97超碰在线| 啦啦啦啦在线视频资源| tube8黄色片| 久久鲁丝午夜福利片| 制服丝袜香蕉在线| 69精品国产乱码久久久| 久久久久视频综合| 亚洲内射少妇av| 精品少妇内射三级| 国产乱来视频区| 香蕉精品网在线| 香蕉精品网在线| 91在线精品国自产拍蜜月| 一区二区三区四区激情视频| 人妻人人澡人人爽人人| 99久久综合免费| 亚洲欧美清纯卡通| 国内精品宾馆在线| 观看美女的网站| 18禁在线无遮挡免费观看视频| 国产片特级美女逼逼视频| 欧美精品亚洲一区二区| 激情视频va一区二区三区| 午夜精品国产一区二区电影| 亚洲国产欧美日韩在线播放| 亚洲,欧美精品.| 这个男人来自地球电影免费观看 | 你懂的网址亚洲精品在线观看| 最近中文字幕2019免费版| 1024视频免费在线观看| 国产黄色免费在线视频| 最新中文字幕久久久久| 久久这里只有精品19| 搡女人真爽免费视频火全软件| 成人国产av品久久久| 亚洲精品久久午夜乱码| a级毛片黄视频| 欧美精品高潮呻吟av久久| 老司机影院毛片| 亚洲伊人久久精品综合| 99九九在线精品视频| 亚洲国产成人一精品久久久| 夫妻性生交免费视频一级片| 亚洲av.av天堂| 高清不卡的av网站| 国产精品99久久99久久久不卡 | www.熟女人妻精品国产 | 亚洲国产看品久久| 亚洲欧美成人精品一区二区| 五月开心婷婷网| 人成视频在线观看免费观看| 亚洲激情五月婷婷啪啪| 一级片'在线观看视频| www日本在线高清视频| 在线观看一区二区三区激情| 男的添女的下面高潮视频| 国产亚洲欧美精品永久| 亚洲国产色片| a级片在线免费高清观看视频| 日产精品乱码卡一卡2卡三| 黑人猛操日本美女一级片| 欧美日韩av久久| 青春草视频在线免费观看| 伊人亚洲综合成人网| 久久久国产一区二区| a级毛片黄视频| 考比视频在线观看| 在线观看免费日韩欧美大片| 久久97久久精品| 自线自在国产av| 亚洲中文av在线| 99热国产这里只有精品6| 99久久综合免费| 日日啪夜夜爽| 成人毛片a级毛片在线播放| 亚洲综合色网址| 男人爽女人下面视频在线观看| 精品视频人人做人人爽| 制服诱惑二区| 嫩草影院入口| 久久国产精品男人的天堂亚洲 | 丝袜在线中文字幕| 亚洲人成77777在线视频| 99热网站在线观看| 国产又色又爽无遮挡免| 国产永久视频网站| 人人澡人人妻人| 蜜桃国产av成人99| av.在线天堂| 久久人人爽人人爽人人片va| 99热全是精品| 国产精品一区二区在线观看99| www.色视频.com| 国产成人a∨麻豆精品| 国产69精品久久久久777片| 欧美激情国产日韩精品一区| 精品久久久久久电影网| 国产精品一区www在线观看| 另类亚洲欧美激情| 又大又黄又爽视频免费| 老司机影院成人| 成年动漫av网址| 免费高清在线观看视频在线观看| 午夜福利视频精品| 久久狼人影院| 观看av在线不卡| 9191精品国产免费久久| 午夜免费观看性视频| 大香蕉久久成人网| 欧美日韩国产mv在线观看视频| 涩涩av久久男人的天堂| 亚洲av日韩在线播放| 九色成人免费人妻av| 国产精品国产三级国产专区5o| 亚洲成av片中文字幕在线观看 | 99久久中文字幕三级久久日本| 国产亚洲精品久久久com| 久久精品熟女亚洲av麻豆精品| 亚洲精品乱码久久久久久按摩| 国产精品女同一区二区软件| 高清毛片免费看| 欧美日韩一区二区视频在线观看视频在线| 久久ye,这里只有精品| 久久久精品区二区三区| 在线天堂最新版资源| 色哟哟·www| 水蜜桃什么品种好| 国产淫语在线视频| 中文欧美无线码| 国产综合精华液| 中文字幕免费在线视频6| 热99久久久久精品小说推荐| 纵有疾风起免费观看全集完整版| 校园人妻丝袜中文字幕| 韩国av在线不卡| 少妇的逼水好多| av播播在线观看一区| 日韩成人av中文字幕在线观看| 国产深夜福利视频在线观看| 美女大奶头黄色视频| 9色porny在线观看| 丝袜喷水一区| 日产精品乱码卡一卡2卡三| 高清不卡的av网站| 少妇被粗大的猛进出69影院 | 亚洲国产精品成人久久小说| 十八禁网站网址无遮挡| 又粗又硬又长又爽又黄的视频| 国产精品国产三级国产专区5o| 99re6热这里在线精品视频| 日韩不卡一区二区三区视频在线| 久久久久精品性色| 欧美+日韩+精品| 精品一区二区免费观看| 青春草国产在线视频| 黄色配什么色好看| 少妇的逼好多水| 妹子高潮喷水视频| 99视频精品全部免费 在线| 男女边吃奶边做爰视频| 亚洲av在线观看美女高潮| 天天操日日干夜夜撸| 在线观看美女被高潮喷水网站| 丝瓜视频免费看黄片| 成年美女黄网站色视频大全免费| 看免费av毛片| 亚洲精品久久成人aⅴ小说| 婷婷色综合大香蕉| 国产成人aa在线观看| 日本黄色日本黄色录像| 精品久久国产蜜桃| 97在线人人人人妻| 一区在线观看完整版| 最近手机中文字幕大全| 亚洲在久久综合| 我的女老师完整版在线观看| 激情视频va一区二区三区| 熟女电影av网| 久久99热这里只频精品6学生| 亚洲图色成人| 90打野战视频偷拍视频| 免费在线观看黄色视频的| 在线观看美女被高潮喷水网站| 欧美xxxx性猛交bbbb| 高清在线视频一区二区三区| 免费大片黄手机在线观看| 日韩av在线免费看完整版不卡| 亚洲国产av新网站| 亚洲色图综合在线观看| 久久久久久久大尺度免费视频| 亚洲人成网站在线观看播放| 亚洲国产精品一区二区三区在线| 欧美日韩视频精品一区| 日本猛色少妇xxxxx猛交久久| av不卡在线播放| 亚洲美女搞黄在线观看| 日韩熟女老妇一区二区性免费视频| 亚洲精品乱码久久久久久按摩| 中文精品一卡2卡3卡4更新| 午夜91福利影院| 涩涩av久久男人的天堂| 免费观看a级毛片全部| 国产精品熟女久久久久浪| 国产xxxxx性猛交| 母亲3免费完整高清在线观看 | 亚洲av免费高清在线观看| 亚洲,欧美精品.| 99久久中文字幕三级久久日本| 国产69精品久久久久777片| 你懂的网址亚洲精品在线观看| 观看美女的网站| 亚洲第一av免费看| 少妇人妻 视频| 最近2019中文字幕mv第一页| 国产熟女欧美一区二区| 91在线精品国自产拍蜜月| 日韩一区二区视频免费看| 亚洲天堂av无毛| 欧美 亚洲 国产 日韩一| 99国产精品免费福利视频| 一本—道久久a久久精品蜜桃钙片| 国产精品久久久久久精品古装| av.在线天堂| 黄色怎么调成土黄色| 夜夜爽夜夜爽视频| 亚洲欧洲国产日韩| 性色av一级| 国产在线一区二区三区精| a级毛片在线看网站| 日韩欧美精品免费久久| 国产探花极品一区二区| 久久ye,这里只有精品| tube8黄色片| av免费观看日本| 亚洲欧美中文字幕日韩二区| 黑丝袜美女国产一区| 久久影院123| 国产一区有黄有色的免费视频| av播播在线观看一区| 男人爽女人下面视频在线观看| 性高湖久久久久久久久免费观看| 黑人猛操日本美女一级片| 乱码一卡2卡4卡精品| 91国产中文字幕| 9热在线视频观看99| 国产精品.久久久| 黑人猛操日本美女一级片| videos熟女内射| 国产 一区精品| 久久久久网色| 制服丝袜香蕉在线| 精品久久久精品久久久| 国产精品一区二区在线观看99| 欧美性感艳星| 欧美老熟妇乱子伦牲交| 国国产精品蜜臀av免费| 精品国产一区二区三区四区第35| 国产欧美日韩综合在线一区二区| 一级黄片播放器| 制服丝袜香蕉在线| 性色avwww在线观看| 久久久久精品人妻al黑| 制服人妻中文乱码| 成年女人在线观看亚洲视频| 亚洲国产欧美在线一区| videos熟女内射| 久久精品久久久久久噜噜老黄| 亚洲欧美日韩另类电影网站| 伊人亚洲综合成人网| videossex国产| 99re6热这里在线精品视频| 欧美另类一区| 精品一区二区三卡| 久久久久视频综合| 免费黄网站久久成人精品| 2022亚洲国产成人精品| 少妇人妻精品综合一区二区| 亚洲av欧美aⅴ国产| 日韩免费高清中文字幕av| 国产一区二区三区综合在线观看 | 90打野战视频偷拍视频| 国精品久久久久久国模美| kizo精华| 激情五月婷婷亚洲| 午夜视频国产福利| 少妇的逼好多水| 国产精品麻豆人妻色哟哟久久| 最黄视频免费看| 一二三四在线观看免费中文在 | 亚洲成人手机| 久久鲁丝午夜福利片| 久久热在线av| 热99久久久久精品小说推荐| 国产视频首页在线观看| 在线观看免费视频网站a站| 亚洲精品乱久久久久久| 内地一区二区视频在线| 少妇被粗大猛烈的视频| 成年av动漫网址| 只有这里有精品99| 欧美3d第一页| 欧美亚洲 丝袜 人妻 在线| 水蜜桃什么品种好| 精品福利永久在线观看| 成年人午夜在线观看视频| 亚洲成人av在线免费| av卡一久久| 日本黄色日本黄色录像| 精品少妇久久久久久888优播| 日韩成人伦理影院| 国产亚洲最大av| 久久精品aⅴ一区二区三区四区 | 国产国拍精品亚洲av在线观看| 男人舔女人的私密视频| 欧美亚洲 丝袜 人妻 在线| 熟女人妻精品中文字幕| 一级,二级,三级黄色视频| 亚洲四区av| 欧美日韩一区二区视频在线观看视频在线| 国产免费一区二区三区四区乱码| 精品国产一区二区三区久久久樱花| 青春草亚洲视频在线观看| 免费黄频网站在线观看国产| 爱豆传媒免费全集在线观看| av在线老鸭窝| 亚洲一级一片aⅴ在线观看| 国产在线一区二区三区精| 久久精品国产自在天天线| 飞空精品影院首页| 亚洲美女黄色视频免费看| 国产亚洲一区二区精品| 大香蕉久久成人网| 热re99久久精品国产66热6| 国产黄频视频在线观看| 侵犯人妻中文字幕一二三四区| 久久免费观看电影| 99久国产av精品国产电影| 国产av码专区亚洲av| 午夜福利视频精品| 九草在线视频观看| 亚洲高清免费不卡视频| 黄色配什么色好看| 18禁在线无遮挡免费观看视频| 黄色配什么色好看| 国产免费一区二区三区四区乱码| 免费高清在线观看日韩| 一本久久精品| 色5月婷婷丁香| 国产欧美另类精品又又久久亚洲欧美| 中文乱码字字幕精品一区二区三区| 考比视频在线观看| 久久久久久伊人网av| 观看美女的网站| 男人舔女人的私密视频| 日韩一本色道免费dvd| 日韩成人av中文字幕在线观看| 精品亚洲成a人片在线观看| 亚洲av日韩在线播放| 久久久精品94久久精品| 欧美3d第一页| 老司机影院毛片| 午夜久久久在线观看| 国产精品久久久久久精品古装| 国产欧美亚洲国产| 日韩制服骚丝袜av| 人妻人人澡人人爽人人| 久久久精品免费免费高清| 69精品国产乱码久久久| 亚洲国产精品成人久久小说| 免费看光身美女| 亚洲欧美成人综合另类久久久| 亚洲欧美一区二区三区国产| 日韩熟女老妇一区二区性免费视频| 国产成人精品婷婷| 欧美成人精品欧美一级黄| 精品福利永久在线观看| 51国产日韩欧美| 久久免费观看电影| 免费看av在线观看网站| 欧美日韩精品成人综合77777| 成年av动漫网址| 一区二区av电影网| 午夜福利视频在线观看免费| 99久久中文字幕三级久久日本| 在线观看人妻少妇| 国产精品三级大全| 国产又爽黄色视频| 国产亚洲最大av| 亚洲欧美成人精品一区二区| 久久97久久精品| www.av在线官网国产| 精品卡一卡二卡四卡免费| 黑丝袜美女国产一区| 久久国内精品自在自线图片| 国产福利在线免费观看视频| 一边摸一边做爽爽视频免费| 国产黄频视频在线观看| 男人舔女人的私密视频| 色吧在线观看| 日韩精品免费视频一区二区三区 | 国产日韩欧美亚洲二区| 女人精品久久久久毛片| 巨乳人妻的诱惑在线观看| 亚洲欧洲日产国产| 国产不卡av网站在线观看| 亚洲国产精品一区三区| 免费不卡的大黄色大毛片视频在线观看| 久久久国产欧美日韩av| 一边亲一边摸免费视频| 亚洲人成网站在线观看播放| xxxhd国产人妻xxx| 岛国毛片在线播放| 99九九在线精品视频| 男女免费视频国产| 久久久久国产精品人妻一区二区| 最新的欧美精品一区二区| 青春草国产在线视频| 五月伊人婷婷丁香| 高清在线视频一区二区三区| 国产精品免费大片| 亚洲精华国产精华液的使用体验| 午夜免费鲁丝| 欧美最新免费一区二区三区| 国产亚洲精品久久久com| 日韩人妻精品一区2区三区| 97人妻天天添夜夜摸| 日本与韩国留学比较| 女的被弄到高潮叫床怎么办| 亚洲av.av天堂| 夜夜爽夜夜爽视频| 久久人人爽av亚洲精品天堂| 岛国毛片在线播放| 国内精品宾馆在线| 18在线观看网站| 另类精品久久| 美女国产视频在线观看| 日本91视频免费播放| 亚洲综合色网址| 热99久久久久精品小说推荐| 中国三级夫妇交换| 如何舔出高潮| 少妇人妻久久综合中文| 久久这里有精品视频免费| 丰满迷人的少妇在线观看| 成人免费观看视频高清| 亚洲四区av| 这个男人来自地球电影免费观看 | 国产成人aa在线观看| 亚洲精品日韩在线中文字幕| 天天躁夜夜躁狠狠躁躁| 国产欧美另类精品又又久久亚洲欧美| 宅男免费午夜| 国产成人a∨麻豆精品| 男女免费视频国产| 国产精品国产三级国产专区5o| 国产国语露脸激情在线看| 在线观看人妻少妇| 激情五月婷婷亚洲| 亚洲久久久国产精品| 91精品伊人久久大香线蕉| 亚洲av日韩在线播放| 一级黄片播放器| 久久久久精品久久久久真实原创| 一级爰片在线观看| 久久综合国产亚洲精品| 免费高清在线观看日韩| 狂野欧美激情性bbbbbb| 免费人妻精品一区二区三区视频| 久久精品国产a三级三级三级| 国产一区亚洲一区在线观看| a级片在线免费高清观看视频| 免费观看无遮挡的男女| 国产免费福利视频在线观看| 久久精品久久久久久久性| 国产极品粉嫩免费观看在线| 国产淫语在线视频| 天美传媒精品一区二区| 国产熟女欧美一区二区| 51国产日韩欧美| 日韩精品有码人妻一区| 国产免费又黄又爽又色| 日本av手机在线免费观看| 免费av不卡在线播放| 国产成人aa在线观看| 69精品国产乱码久久久| 国产又爽黄色视频| 国产综合精华液| 国产av码专区亚洲av| a 毛片基地| 日韩伦理黄色片| 久久久久久久亚洲中文字幕| 精品第一国产精品| 久久女婷五月综合色啪小说| 51国产日韩欧美| 最黄视频免费看| 亚洲三级黄色毛片| 最近中文字幕高清免费大全6| 天堂中文最新版在线下载| 三级国产精品片| 日韩制服骚丝袜av| 国产av一区二区精品久久| 卡戴珊不雅视频在线播放| 免费观看av网站的网址| 亚洲成人一二三区av| av片东京热男人的天堂| 日韩成人伦理影院| 日韩欧美精品免费久久| 一区二区三区精品91| av线在线观看网站| 国产亚洲欧美精品永久| 日本黄色日本黄色录像| a级毛片黄视频| 男人操女人黄网站| 免费少妇av软件| 黄片播放在线免费| 亚洲欧美一区二区三区黑人 | 伦精品一区二区三区| 亚洲国产最新在线播放| 这个男人来自地球电影免费观看 | 蜜桃国产av成人99| 国产欧美另类精品又又久久亚洲欧美| 国产成人一区二区在线| 欧美人与性动交α欧美软件 | av黄色大香蕉| 精品一区在线观看国产| 亚洲成人av在线免费| 99热6这里只有精品| 精品国产一区二区久久| 少妇被粗大的猛进出69影院 | 在线天堂中文资源库| 欧美国产精品va在线观看不卡| 国产精品偷伦视频观看了| 亚洲国产毛片av蜜桃av| 欧美性感艳星| 寂寞人妻少妇视频99o| 亚洲av综合色区一区| 亚洲国产欧美在线一区| 亚洲精品美女久久av网站| 久久久久精品性色| 国产熟女午夜一区二区三区| 日韩电影二区| 精品少妇久久久久久888优播| 高清黄色对白视频在线免费看| 欧美亚洲日本最大视频资源| 又粗又硬又长又爽又黄的视频| 国产一区二区三区综合在线观看 | 69精品国产乱码久久久| 亚洲第一av免费看| 免费观看性生交大片5| 精品人妻偷拍中文字幕| 久久久久久久大尺度免费视频| 国产精品欧美亚洲77777| 国产精品一区二区在线观看99| 黄网站色视频无遮挡免费观看| 日韩中文字幕视频在线看片| 深夜精品福利| 亚洲国产色片| 亚洲欧美成人综合另类久久久| kizo精华| 我要看黄色一级片免费的| 中文字幕人妻熟女乱码| 日韩欧美一区视频在线观看| 欧美日韩视频高清一区二区三区二| 日本黄大片高清| 日韩一区二区三区影片| 亚洲国产欧美在线一区| 久久久久国产网址| 国产成人aa在线观看| 国产极品粉嫩免费观看在线| 亚洲精华国产精华液的使用体验| 男女高潮啪啪啪动态图| 欧美日本中文国产一区发布| 亚洲,一卡二卡三卡| 中文字幕另类日韩欧美亚洲嫩草| 男男h啪啪无遮挡| 黑丝袜美女国产一区| 狂野欧美激情性bbbbbb| av播播在线观看一区|