徐 平
(鄭州大學(xué) 水利與環(huán)境學(xué)院,鄭州 450001)
空溝對(duì)平面縱波隔離效果的理論解答
徐 平
(鄭州大學(xué) 水利與環(huán)境學(xué)院,鄭州 450001)
借助復(fù)變函數(shù)的保角變換法將有限長(zhǎng)度的空溝映射變換為單位圓,根據(jù)空溝四周完全自由的邊界條件,運(yùn)用波動(dòng)函數(shù)展開(kāi)法得到了空溝對(duì)縱波(P波)和剪切波(SV波)隔離的理論解答。引入位移比值(屏障后某點(diǎn)由入射波波、散射波產(chǎn)生的總位移與入射波單獨(dú)產(chǎn)生的位移之比),以入射P波為例,計(jì)算了溝寬0.4 m、溝長(zhǎng)分別為3.0 m、4.0 m、5.0 m和6.0 m共4條空溝的位移比值,通過(guò)比較發(fā)現(xiàn):隨著空溝長(zhǎng)度的增加,最佳隔振效果明顯提高,區(qū)域明顯增大;當(dāng)空溝長(zhǎng)度達(dá)到6.0 m時(shí),靠近空溝的區(qū)域的隔振效果超過(guò)了70%,隔振效果比較理想。最后對(duì)比了空溝和單排柱腔列的隔振效果,結(jié)果表明:由于單排柱腔列產(chǎn)生波的透射和繞射,而空溝僅產(chǎn)生波的繞射,6.0 m長(zhǎng)空溝的最佳隔振效果與8根半徑1.0 m的單排柱腔列相當(dāng),因此在場(chǎng)地和施工條件都允許的前提下,宜優(yōu)先考慮空溝進(jìn)行隔振。
空溝;平面縱波;隔離效果;保角映射;隔振設(shè)計(jì)
隨著我國(guó)城鎮(zhèn)化的迅猛發(fā)展,各種建筑和交通設(shè)施(交通干道、地鐵、高架等)都得到大量的建設(shè),居民區(qū)、商業(yè)中心、工業(yè)區(qū)和交通干道逐漸形成一個(gè)立體的交通網(wǎng),使得我們整個(gè)城市幾乎每時(shí)每刻都在產(chǎn)生著頻率高、荷載循環(huán)次數(shù)大的人工振動(dòng)[1]。人工振動(dòng)已經(jīng)成了一種新形式的環(huán)境污染,并被列為世界七大環(huán)境公害之一。
屏障是緩解人工振動(dòng)強(qiáng)度的主要措施,屏障一般分為連續(xù)屏障和非連續(xù)屏障兩種形式[2]。目前,關(guān)于空溝和填充溝等形式的連續(xù)屏障已經(jīng)進(jìn)行了大量的試驗(yàn)和數(shù)值模擬:① 試驗(yàn)方面:RICHART[3]通過(guò)空溝隔振試驗(yàn)提出了隔振效果評(píng)價(jià)指標(biāo);ERKAN等[4]采用電動(dòng)搖振器產(chǎn)生激振荷載,通過(guò)測(cè)試和對(duì)比加速度信號(hào)研究了空溝的隔振效果;徐平等[5]采用FWD(落錘式彎沉儀)的重錘產(chǎn)生沖擊荷載,通過(guò)對(duì)比測(cè)試和對(duì)比豎向位移分析了空溝的隔振效果;ULGEN等[6]采用總重80 kN、偏心重10 kN的振動(dòng)壓路機(jī)產(chǎn)生激振荷載,分析了頻率、土層參數(shù)和空溝尺寸等對(duì)空溝隔振效果的影響;② 在數(shù)值模擬方面:ADAM等[7]采用FEM-BEM耦合方法研究了空溝對(duì)列車荷載的隔振問(wèn)題;淳慶等[8]采用ANSYS軟件模擬了空溝對(duì)強(qiáng)夯施工的隔振問(wèn)題,通過(guò)數(shù)值擬合給出了空溝隔振效果的近似公式;王曉等[9]運(yùn)用ANSYS軟件模擬了上海自由電子激光工程的三維空溝隔振問(wèn)題。
上述研究結(jié)果表明,空溝對(duì)強(qiáng)夯施工、交通荷載、沖擊振動(dòng)等都具有比較理想的隔振效果,溝深是影響空溝隔振振效果的主要因素,而溝寬對(duì)隔振效果影響不大。連續(xù)屏障和非連續(xù)屏障等被動(dòng)隔振機(jī)理可以從波動(dòng)理論作出定性解釋:在振源與保護(hù)建(構(gòu))筑物之間設(shè)立屏障,阻斷振動(dòng)波傳播途徑,消耗振動(dòng)波攜帶的能量,進(jìn)而達(dá)到隔振或減振的目的。但當(dāng)前關(guān)于空溝隔振的研究主要集中于試驗(yàn)和數(shù)值模擬,而未見(jiàn)基于波動(dòng)理論開(kāi)展的研究報(bào)道。本文借助復(fù)變函數(shù)的積分變換法將有限長(zhǎng)度的隔振溝變換為單位圓,運(yùn)用波函數(shù)展開(kāi)法建立空溝對(duì)平面P波和SV波隔振的理論解答,以入射平面P波為例,分析了空溝的隔振效果,最后從波的傳播機(jī)理上對(duì)比了空溝與單排柱腔列屏障的隔振效果。
土體內(nèi)傳播兩種彈性波:P波(傳播方向和偏振方向一致)和S波(傳播方向和偏振方向垂直),而S波又可進(jìn)一步分解成SH波(偏振方向水平)和SV波(偏振方向豎直)。SH波散射時(shí)只包含SH波成分,而P波和SV波會(huì)產(chǎn)生耦合散射,即散射波同時(shí)包含P波和SV波成分,因此關(guān)于空溝對(duì)P波和SV波隔離問(wèn)題的研究思路是一致的,本文首先給出空溝對(duì)P波隔離問(wèn)題的解答。
將土體視為各向同性的無(wú)限均質(zhì)彈性體,不計(jì)空溝深度的影響,采用復(fù)變函數(shù)的保角變換方法[10],引入保角變換z=ω(η)可將寬度為a、長(zhǎng)度為b的空溝從Z平面映射為η平面內(nèi)的單位圓,如圖1所示。
在η平面內(nèi)取η=rexp(iθ),其中,r和θ為η點(diǎn)的極坐標(biāo),r和x軸的夾角為γ,如圖2所示。
圖2 極坐標(biāo)系和直角坐標(biāo)系的關(guān)系Fig.2 Relationships between polar and rectangular coordinate system
對(duì)于頻率為ω的入射P波,在直角坐標(biāo)系(x,y)下,其勢(shì)函數(shù)可以寫(xiě)成
φinc=φ0exp[ikp(xcosα+ysinα)]
(1)
(2)
采用保角變換z=ω(η),式(2)可進(jìn)一步寫(xiě)成
(3)
(4a)
(4b)
采用z=ω(η)保角變換后,式(4)可進(jìn)一步寫(xiě)成
(5a)
(5b)
在極坐標(biāo)系(r,θ)下,正應(yīng)力σr和剪應(yīng)力τrθ的求解公式為[11-12]
(6a)
(6b)
假定空溝四周完全自由,即應(yīng)力為零
(7)
將式(3)、(5)和(6)代入式(7),經(jīng)過(guò)整理可得關(guān)于待定復(fù)系數(shù)An和Bn的無(wú)窮線性方程組
(8)
上式簡(jiǎn)寫(xiě)成
(9)
式中:λ*=λ/μ。
將式(9)左右兩端同乘以e-imθ,并對(duì)變量θ在區(qū)間[-π,π]上求積分,則得到關(guān)于待定復(fù)系數(shù)An和Bn的理論解的無(wú)窮線性方程組
(10)
(11a)
(11b)
在極坐標(biāo)系(r,θ)下,徑向位移ur和環(huán)向位移uθ的求解公式為[11-12]
(12a)
(12b)
將式(3)和(5)代入式12(a)和12(b)可得任意一點(diǎn)處由入射P波、散射P波和SV波引起的位移
(13a)
(13b)
(13c)
(13d)
(14)
(15a)
(15b)
3.1 空溝隔振效果分析
入射P波和SV波的結(jié)論比較接近,限于篇幅,本文只給出入射平面P波的數(shù)值計(jì)算結(jié)果。
對(duì)于極坐標(biāo)系下的任一點(diǎn)(rj,θj,),uy和u0可由下式確定
(16a)
(16b)
土體內(nèi)波縱和橫波的波速分別取cp=160 m/s和cs=100 m/s,固有圓頻率取ω=75 Hz;空溝寬度a取0.4 m,長(zhǎng)度b分別取3.0 m、4.0 m、5.0 m和6.0 m。通過(guò)計(jì)算得到空溝后一定區(qū)域內(nèi)(-10 m≤x≤10 m,0≤y≤200 m)的|uy/u0|等值線,如圖3所示。
從圖3可以看出,當(dāng)空溝長(zhǎng)度b由3.0 m增大到6.0 m時(shí),相同|uy/u0|等值線所占的區(qū)域面積明顯增大,以|uy/u0|≤0.6(即隔振效果≥40%)為例,區(qū)域面積分別為4 m2、400 m2、900 m2和3 400 m2;特別是當(dāng)b=6.0 m時(shí),隔振效果比較理想,空溝后y≤100 m區(qū)域的隔振效果超過(guò)了50%,y≤80 m區(qū)域的隔振效果超過(guò)了60%,y≤50 m區(qū)域的隔振效果超過(guò)了70%,空溝后近處的隔振效果好于遠(yuǎn)處。
(a) b=3.0 m
(b) b=4.0 m
(c) b=5.0 m
3.2 空溝與單排柱腔屏障隔振效果對(duì)比
作為對(duì)比,根據(jù)文獻(xiàn)[13],取單排柱腔組成的非連續(xù)屏障參數(shù)如下:柱腔數(shù)為8、半徑為1.0 m、間距為s=3.0 m,整體寬度為23.0 m。單排柱腔和空溝的尺寸如圖4所示。
圖4 單排柱腔屏障和空溝示意圖Fig.4 A row of cylindrical cavities and an open trench
圖5 單排柱腔屏障后的|uy/u0|等值線Fig.5 Contours of |uy/u0| behind a row of cylindrical cavities
比較圖5和3(d)可以發(fā)現(xiàn),8根半徑為1.0 m的柱腔列構(gòu)成的非連續(xù)屏障(屏障的整體寬度為23.0 m)對(duì)P波的隔離效果與長(zhǎng)度為6.0 m、寬度為0.4 m的空溝基本相當(dāng),在y≤100 m區(qū)域的隔振效果均超過(guò)50%,屏障后近處的隔振效果均好于遠(yuǎn)處,上述現(xiàn)象可從彈性波的傳播機(jī)理上可以進(jìn)行如下解釋,單排柱腔列的隔振效果主要取決于彈性波在柱腔之間空隙的透射,而空溝的隔振效果主要取決于彈性波在空溝兩端的繞射,盡管空溝(連續(xù)屏障)的長(zhǎng)度低于單排柱腔列的整體長(zhǎng)度,但不產(chǎn)生透射,能更有效地截?cái)鄰椥圆ǖ膫鞑ネ緩剑虼丝諟媳葐闻胖涣懈欣诟粽瘛?/p>
運(yùn)用復(fù)變函數(shù)的保角映射方法和波場(chǎng)勢(shì)函數(shù)展開(kāi)法,建立了有限長(zhǎng)度的空溝對(duì)P波和SV波隔離問(wèn)題的理論解,并給出了空溝對(duì)P波隔離的數(shù)值解答,通過(guò)對(duì)比分析得到以下主要結(jié)論:
(1) 隨著空溝長(zhǎng)度的增加,有效隔振效果明顯提高,區(qū)域明顯增大,對(duì)于寬度為0.4 m、長(zhǎng)度為6.0 m的空溝,其對(duì)P波的隔離效果比較理想,屏障后y≤50 m區(qū)域的隔振效果超過(guò)70%;
(2) 由于空溝(連續(xù)屏障)不產(chǎn)生透射,在空溝長(zhǎng)度遠(yuǎn)低于單排柱腔列(非連續(xù)屏障)整體長(zhǎng)度的情況下,空溝對(duì)P波的隔振效果與單排柱腔列相當(dāng),因此,在場(chǎng)地和施工條件都允許的前提下,宜優(yōu)先采用空溝進(jìn)行隔振。
[1] 凌育洪, 吳景壯, 馬宏偉.地鐵引起的振動(dòng)對(duì)框架結(jié)構(gòu)的影響及隔振研究-以某教學(xué)樓為例[J].振動(dòng)與沖擊, 2015, 34(4): 184-189.
LING Yuhong, WU Jingzhuang, MA Hongwei.Effects of subway vibration on a frame structure and its vibration isolation[J].Journal of Vibration and Shock, 2015, 34(4): 184-189.
[2] WOODS R D.Screening of surface waves in soils[J].Journal of Soil Mechanics and Foundation Engineering.ASCE, 1968, 94 (4): 951-979.
[3] RICHART F E, WOODS R D.Vibration of soils and foundations[M].New Jersey: Prentice-Hall, INC, Englewood Cliffs, 1987: 130-142.
[4] ERKAN ?, SEYHAN F, GüNAY B, et al.Field experiments on wave propagation and vibration isolation by using wave barriers[J].Soil Dynamics and Earthquake Engineering, 2009, 29(5): 824-833.
[5] 徐平, 張?zhí)旌? 石明生, 等.空溝對(duì)沖擊荷載隔離的現(xiàn)場(chǎng)試驗(yàn)與數(shù)值模擬[J].巖土力學(xué), 2014, 35(增刊1): 341-346.
XU Ping, ZHANG Tianhang, SHI Mingsheng, et al.In-situ test and numerical simulation of isolation of impact loads by open trenches[J].Rock and Soil Mechanics, 2014, 35(Sup1): 341-346.
[6] ULGEN D, TOYGAR O.Screening effectiveness of open and in-filled wave barriers: A full-scale experimental study[J].Construction and Building Materials, 2015, 86(5): 12-20.
[7] ADAM M, ESTORFF O.Reduction of train-induced building vibrations by using open and filled trenches[J].Computer Structure, 2005, 83: 1-24.
[8] 淳慶, 潘建吾.減振溝在強(qiáng)夯施工時(shí)的減振效果研究[J].振動(dòng)與沖擊, 2010, 29(6): 115-120.
CHUN Qing, PAN Jianwu.Vibration-isolating effect of vibration-isolating slot in the process of dynamic compaction construction[J].Journal of Vibration and Shock, 2010, 29(6): 115-120.
[9] 王曉, 嚴(yán)中保, 杜涵文.上海自由電子激光工程隔振溝減振數(shù)值分析[J].振動(dòng)與沖擊, 2012, 31(15): 190-194.
WANG Xiao, YAN Zhongbao, DU Hanwen.Numerical analysis of vibration-attenuation effect of trenches in the engineering project of Shanghai free electron laser[J].Journal of Vibration and Shock, 2012, 31(15): 190-194.
[10] 趙凱, 劉長(zhǎng)武, 張國(guó)良.用彈性力學(xué)的復(fù)變函數(shù)法求解矩形硐室周邊應(yīng)力[J].采礦與安全工程學(xué)報(bào), 2007, 24(3): 361-365.
ZHAO Kai, LIU Changwu, ZHANG Guoliang.Solution for perimeter stresses of rocks around a rectangular chamber using the complex function of elastic mechanics[J].Journal o f Mining & Safety Engineering, 2007, 24(3): 361-365.
[11] 徐平.多排樁非連續(xù)屏障對(duì)平面彈性波的隔離[J].巖石力學(xué)與工程學(xué)報(bào), 2012, 31(增刊1): 3159-3166.
XU Ping.Isolation of Plane elastic waves by discontinuous barriers composed of several rows of piles[J].Chinese Journal of Rock Mechanics and Engineering, 2012, 31(Sup1): 3159-3166.
[12] LIU D K, GAI B Z, TAO G Y.Applications of the method of complex function to dynamic stress concentration[J].Wave Motion, 1982(4): 293-304.
[13] 徐平.多排柱腔列對(duì)平面P波和SH波的隔離[J].工程力學(xué), 2011, 28(5): 78-83.
XU Ping.Isolations of plane P and SH waves by barriers composed of several rows of cylindrical cavities[J].Engineering Mechanics, 2011, 28(5): 78-83.
Theoretical analysis for isolation effect of an open trench on plane longitudinal waves
XU Ping
(School of Water and Environment, Zhengzhou University, Zhengzhou 450001, China)
An open trench with finite length was transformed to a unit circle with the conformal mapping method of complex functions, the boundaries of the trench were considered as free, theoretical solutions to isolation problems of longitudinal waves (P waves) and shear waves (SV waves) with an open trench were obtained based the wave function expansion method.The normalized displacement amplitudes were introduced, they were the ratios of displacement amplitudes of soil behind a barrier caused by both incident P or SV waves and scattering P and SV waves to those only by incident P or SV waves.Only incident P waves were taken as examples, and 4 trenches with a width of 0.4 m and lengths of 3.0 m, 4.0 m, 5.0 m and 6.0 m were analyzed.The results showed that the isolation effect and effective isolation zones increase obviously when the trench length increases from 3.0 m to 6.0 m, and the isolation effect exceeds 70% behind the trench when its length is 6.0 m, it reaches the in-situ test results of an open trench to isolate the impact loads.Finally, the isolation effect of an open trench and that of a discontinuous barrier composed of a row of cylindrical cavities were compared, and the results showed that because wave diffracting and trasmitting occur in a row of cylindrical cavities while only wave diffracting occurs in a trench, so the isolation effect of a trench with length of 6.0 m is equivalent to that of a row of 8 cylindrical cavities with a radius of 1.0 m, and so an open trench is the first and the best choice for the vibration isolation under the permission of field and operation conditions.
open trench; plane longitudinal waves; isolation effect; conformal mapping method; vibration isolation design
國(guó)家自然科學(xué)基金(51475164);河南省高??萍紕?chuàng)新人才支持計(jì)劃(14HASTIT050)
2015-09-07 修改稿收到日期:2015-11-07
向玲 女,博士,教授,1971年生
TU435
A
10.13465/j.cnki.jvs.2017.05.011