王奇
【摘 要】采用重心有理插值近似未知函數(shù),得到未知函數(shù)的各階微分矩陣。利用微分矩陣將圓拱控制微分方程離散為代數(shù)方程組。將離散的邊界條件采用置換法施加到代數(shù)方程組中,得到關(guān)于圓拱屈曲載荷的特征方程。求解特征值問(wèn)題得到圓拱的屈曲載荷。給出了不同圓心角時(shí)的圓拱屈曲荷載。
【關(guān)鍵詞】重心有理插值 圓拱 屈曲荷載 配點(diǎn)法 穩(wěn)定問(wèn)題
【Abstract】The differentiation matrices of unknown function are constructed by using barycentric rational interpolation. The differential equations of Circular Arch are discretized into algebraic equations using the differentiation matrices. Discretized boundary conditions are imposed to the algebraic equations with replacing meathed, eigenvalue equations of buckling load of Circular Arch are obtained. Get the buckling load through out sovling the eigenvalue equations, give out numerical values of different Central angle.
【Key words】barycentric rational interpolation; Circular Arch;buckling load; collocation method;stability problem
圓拱屈曲微分方程為一六階微分方程,一般數(shù)值方法在求解高階微分方程時(shí)精度喪失嚴(yán)重,重心有理插值配點(diǎn)法[1-2]能解決高階微分方程。
本文采用重心有理插值配點(diǎn)法將圓拱在靜水壓力下的穩(wěn)定微分方程離散為代數(shù)方程組,寫(xiě)成矩陣形式,用Matlab編寫(xiě)程序求解。
1 靜水壓力下圓拱穩(wěn)定微分方程及其重心有理插值配點(diǎn)法離散方程
2 算例分析
對(duì)于不同的角,節(jié)點(diǎn)取15個(gè),求解特征值問(wèn)題的方程得到臨界荷載值如表1所示。表中為文獻(xiàn)[4]的解,為本文方法采用Chebyshev節(jié)點(diǎn)時(shí)的解。
從表1可以看出,文獻(xiàn)[4]的數(shù)值解對(duì)于較大時(shí)誤差較大,而重心有理插值配點(diǎn)法很好的解決了這一問(wèn)題,計(jì)算精度優(yōu)于文獻(xiàn)[4]的結(jié)果。
3 結(jié)語(yǔ)
算例表明重心有理插值配點(diǎn)法在求解高階微分方程特征值問(wèn)題時(shí)公式推導(dǎo)簡(jiǎn)單,方程離散簡(jiǎn)便,邊界條件施加方便,數(shù)值穩(wěn)定性好,計(jì)算精度極高。
參考文獻(xiàn):
[1]Berrut J-P, Mittelmann H D. The linear rational pseudospectral method with iteratively optimized poles for two-point boundary-value problems[J].SIAM Journal of Scientific Computation,2001,23:961-975.
[2]王兆清,李樹(shù)忱,唐炳濤,等.求解兩點(diǎn)邊值問(wèn)題的有理插值Galerkin法[J].山東建筑大學(xué)學(xué)報(bào),2008,23(4):283-286.
[3]龍馭球,包世華.結(jié)構(gòu)力學(xué)教程(下冊(cè)).北京:高等教育出版社,1988.
[4]梁樞平,李宏鋒,陳文.DQ法解圓拱在靜水壓力下的穩(wěn)定問(wèn)題[J].華中理工大學(xué)學(xué)報(bào),1997,25(1):79-80.