張月涵,黃全勇
新生兒猝死綜合征基因?qū)W研究進展
張月涵,黃全勇*
新生兒猝死綜合征是一周歲以下的嬰兒不明原因的突然意外死亡,是新生兒意外死亡的一種病因,該病病因迄今未明。通過復(fù)習(xí)近些年國外學(xué)者關(guān)于新生兒猝死綜合征的研究,探討新生兒猝死綜合征的主要危險因素、腦部激素變化,以及與新生兒猝死綜合征相關(guān)的基因型,如與長QT綜合征相關(guān)的KCNE2、SCN5A、RyR2、CAV-3基因,基因測序方法檢測MAOA基因、與炎癥反應(yīng)和新生兒猝死綜合征相關(guān)基因研究,提供有關(guān)新生兒猝死綜合征的研究進展和研究方向,為以后新生兒猝死綜合征發(fā)病機制和病因探索提供新思路。
新生兒猝死綜合征;危險因素;激素變化;基因突變
1970年,Beckwith首次對新生兒猝死綜合(sudden infant death syndrome,SIDS)進行定義:“任何嬰兒或年幼兒童的意外死亡,無歷史性預(yù)兆,尸檢結(jié)果未能查明死亡原因”[1],但是這個定義沒有確定具體年齡范圍或提及新生兒猝死綜合征的共同特征,因此沒有得到學(xué)界的認可。直到1991年,Willinger等人對新生兒猝死綜合征重新定義為:“一周歲以內(nèi)的新生兒不明原因的意外死亡,通過系統(tǒng)的尸體解剖、死亡現(xiàn)場勘查、臨床病例回顧等一系列調(diào)查研究仍不能查明死因”[2]。該定義20多年來為全世界學(xué)者所廣泛接受。目前,美國疾病預(yù)防控制中心的定義是:“一周歲以下的嬰兒突然意外死亡,在調(diào)查研究前未能找到確切死因”[3]。
新生兒的死亡率1970年超過5/1000的活產(chǎn)嬰兒死亡率,2012年減少到1.2/1000。新生兒猝死綜合征是新生兒第一個月死亡的主要原因[4]。
1.1 俯臥體位睡眠時俯臥體位的嬰兒發(fā)生反流和窒息的風(fēng)險是最高的[5]。并且俯臥位嬰兒更有可能是奶粉喂養(yǎng)和暴露于被動吸煙的環(huán)境中,這可能增加發(fā)生新生兒猝死綜合征的危險性[6]。同時,俯臥位會增加二氧化碳重復(fù)吸入的風(fēng)險,導(dǎo)致體內(nèi)氧含量降低和最終的死亡[7]。另外,低體重兒、早產(chǎn)兒、13~24周的嬰兒采取俯臥睡姿,基于出生前的一些危險因素直到出生后的一段脆弱時期,在發(fā)育過程中觸發(fā)SIDS[8]。
1.2 吸煙孕婦吸煙與SIDS有顯著的流行病學(xué)關(guān)聯(lián),McDonald等人研究發(fā)現(xiàn)懷孕期間吸煙的孕婦分娩出的新生兒,在感染或高體溫時每分通氣量(VE)或心率(HR)無明顯改變,呼吸暫停的頻率卻獨立增加;同時,吸煙者受到細菌侵襲后炎癥系統(tǒng)會誘導(dǎo)出更強的細胞因子反應(yīng)[9],香煙中的物質(zhì)可以沉積在上皮細胞上和增加潛在病原體的黏附力[10]。
1.3 感染無論細菌感染抑或是病毒感染,均會有發(fā)生SIDS的可能性。病毒感染,可以通過誘導(dǎo)細菌的宿主受體或誘導(dǎo)出新的受體從而增加與細菌的結(jié)合力[11,12]。各種細菌的結(jié)構(gòu)抗原或外毒素可作為超級抗原(如脂多糖)激活大量炎細胞誘發(fā)炎癥反應(yīng)[13]。葡萄球菌和/或其毒素感染在SIDS病例中占很大比例,80%~90%的嬰兒感染金黃色葡萄球菌后Lewis(-)抗原表達[14]。
近期研究顯示增食欲素具有神經(jīng)保護作用[15,16],其部分功能是減少脂質(zhì)氧化、細胞凋亡和炎癥反應(yīng)[17-20]。增食欲素依靠調(diào)節(jié)腦的免疫細胞——小膠質(zhì)細胞起到保護腦神經(jīng)的作用[21]。與非SIDS相比,SIDS嬰兒下丘腦和腦橋的增食欲素免疫反應(yīng)降低,增食欲素(orexin)水平降低與磷酸化蛋白激酶RNA樣內(nèi)質(zhì)網(wǎng)激酶(pPERK)相關(guān),pPERK減少增食欲素的翻譯,pPERK還抑制腦橋多神經(jīng)元,這也表明促進蛋白表達的丟失和大量腦干神經(jīng)元的修復(fù)功能存在一個共同通路[22]。
SIDS通常伴有腦干中縫5-羥色胺(5-HT)系統(tǒng)功能障礙[23],5-HT減少26%[24]。Barrett KT等人建立模型證實出生后5~8 d是缺氧癥的過度死亡期,出生后一段特定時期缺氧性致命損傷是由部分中縫功能障礙導(dǎo)致,即使中縫核功能輕度障礙也有可能會大幅降低嬰兒出生早期缺氧窒息的自主復(fù)蘇能力[25]。
長QT綜合征(LQTS)是嬰兒的遺傳性心臟離子通道疾病,導(dǎo)致室性心律失常和最終死亡,目前已知的基因型有13個[26],如嬰兒 KCNE2基因突變[27]、SCN5A[28]、RyR2基因突變[29]等。SCN5A編碼心肌電壓門控Na+通道,能夠產(chǎn)生心肌和專門傳導(dǎo)組織興奮性和傳導(dǎo)性的大峰值Na+電流[30]。隨著遺傳性心律失常綜合征性SIDS病例的出現(xiàn),產(chǎn)生一個以SCN5A為中心功能改變的SIDS發(fā)病機制[28]。6.5%的白種人SIDS的發(fā)病機制涉及SCN5A的初級突變或罕見基因變異[31,32],5%~10%的長QT綜合征患者存在SCN5A基因突變[31]。研究表明RyR2基因突變可引起舒張期肌漿網(wǎng)Ca2+滲出引發(fā)致命性心律失常和SIDS,RyR2突變導(dǎo)致慢性低水平Ca2+滲出,除增加心源性猝死的風(fēng)險還與心肌病相關(guān)[29]。CAV-3編碼的微囊蛋白-3(Cav-3)主要在肌細胞中表達,是質(zhì)膜微囊形成的關(guān)鍵基因[33,34]。CAV-3基因突變和心肌鈉通道SCN5A編碼基因共同表達增加后期Na+電流和9型LQT、SIDS疾病相關(guān)[35,36]。基于大量的SIDS嬰兒系統(tǒng)的尸體解剖得出CAV3為SIDS特別是在>6個月SIDS發(fā)病機制的候選基因,估計目前5%~10%的SIDS病例和超過1/3的>6個月SIDS發(fā)病機制是與長QT綜合征類似的致命性心律失常性疾病相關(guān)[37]。研究結(jié)果表明K897T基因多肽性的表達和KCNH2等位基因分離,終止密碼子突變導(dǎo)致宮內(nèi)胎兒2型LQT、室性心動過速和最終的SIDS[38]。
基因測序是早期發(fā)現(xiàn)SIDS的重要科學(xué)方法,James提出,嬰兒尸體解剖時利用全基因組或全外顯子測序所提供的信息能夠更廣泛地了解人類基因的功能,以及進行遺傳咨詢[4]。尤其是對男嬰X染色體測序是十分有價值的,因為新生兒猝死綜合征男女比例為3∶2[4],且男女基因型最大的區(qū)別是正常男性只有一條X染色體。X染色體攜帶大約5%的基因組,存在1000個基因區(qū)[39]。X染色體上的單胺氧化酶A(MAOA)基因可使突觸重攝取單胺能神經(jīng)遞質(zhì)的功能失活,MAOA基因可調(diào)節(jié)去甲腎上腺素和血清素系統(tǒng)的突觸前遞質(zhì)[40]。
Highet等人的研究SIDS嬰兒證實感染可能通過白細胞介素1(IL-1)受體拮抗藥A2基因介導(dǎo)的免疫應(yīng)答通路影響白細胞介素1的釋放[41]。特別是香煙煙霧與白介素-10(G-1082A)基因表達低水平的抗炎癥反應(yīng)相關(guān)[42]。AA基因型主要是SIDS高風(fēng)險群組基因型,Moscovis等人體外研究顯示,這種基因型的吸煙者細胞反應(yīng)性是最低的[43]。黃素單加氧酶3(FMO3)影響全身尼古丁代謝[44],黃素單加氧酶3(FMO3)的G472A多肽性可以作為新生兒母親吸煙與SIDS危險因素的參考指標(biāo),父母可以通過檢測472A基因得知吸煙可能增加SIDS的風(fēng)險[45]。此外,G等位基因在通氣抑制時起保護效應(yīng),P2Y1 G等位純合子基因在呼吸反應(yīng)中起重要作用,該基因的缺乏是SIDS的病因[46]。
特殊基因型參與SIDS進程,例如TNFG-308A基因型AA和新生兒猝死綜合征具有關(guān)聯(lián)性,澳大利亞24%的SIDS嬰兒測試中檢測到白種人中罕見的TNFG-308AA等位基因[47]。
綜上所述,SIDS是一種病因未明的1周歲以內(nèi)新生兒不明原因的意外死亡,其發(fā)病機制未明。目前的研究主要是尋找與SIDS相關(guān)的危險因素,降低發(fā)生SIDS的風(fēng)險,有效控制SIDS的死亡率。腦是人體最精細的器官,腦內(nèi)激素變化與SIDS相關(guān)?;蛐偷难芯浚欣谠缙诤Y查SIDS高風(fēng)險人群,為后期預(yù)防和控制做準(zhǔn)備。同時,從分子生物學(xué)領(lǐng)域,尋找SIDS病因和治療SIDS方法。為以后的科學(xué)研究提供一定的參考價值。
[1]Beckwith JB.Discussion of terminology and definition of thesudden infant death syndrome//Bergman AB,Beckwith JB,Ray CG.Washington:Sudden Infant Death Syndrome:Proceedings of the Second International Conference on the Causes of Sudden Death in Infants Seattle[M].University of Washington Press,1970:14-22.
[2]Willinger M,James LS,Catz C.Defining the sudden infant death syndrome(SIDS):deliberations of an expert panel convened by the National Institute of Child Health and Human Development[J].Pediatr Pathol,1991,11(6):677-684.
[3]Centers for Disease Control and Prevention(CDC).Sudden unexpected infant death and sudden infant death syndrome(2016)[EB/OL].Available from:http://www.cdc.gov/sids/pdf/suddenunexpectedinfant-death.pdf.
[4]James Alfred Morris.The genomic load of deleteriousmutations:relevance to death in infancy and childhood[J].Front Immunol,2015,6(1):105.
[5]Henderson-Smart DJ,Ponsonby AL,Murphy E.Reducing the risk of sudden infant death syndrome:a review of the scientific literature[J].J Paediatr Child Health,1998,34(2):213-219.
[6]Lindgren C,Thompson JM,Haggblom L,et al.Sleeping position,breastfeeding,bedsharing and passive smoking in 3-month-old Swedish infants[J].Acta Paediatr,1998,87(10):1028-1032.
[7]Krous HF,Beckwith JB,Byard RW,et al.Sudden infant death syndrome and unclassified sudden infant deaths:a definitional and diagnostic approach[J].Pediatrics,2004,114(3):234-238.
[8]Oyen N,Markestad T,Skaerven R,et al.Combined effects of sleeping position and prenatal risk factors in sudden infant death syndrome:the Nordic Epidemiological SIDS Study[J]. Pediatrics,1997,100(4):613-621.
[9]McDonald FB,Chandrasekharan K,Wilson RJ,et al.Interactive effects of maternal cigarette smoke,heat stress,hypoxia and lipopolysaccharide(LPS)on neonatal cardiorespiratory and cytokine responses[J].Am J Physiol Regul Integr Comp Physiol,2016,12:ajpregu.00062.
[10]El Ahmer OR,Essery SD,Saadi AT,et al.The effect of cigarette smoke on adherence of respiratory pathogens to buccal epithelial cells[J].FEMS Immunol Med Microbiol,1999,23(1):27-36.
[11]Raza MW,El Ahmer OR,Ogilvie MM,et al.Infection with respiratory syncytial virus enhances expression of native receptors for non-pilate Neisseria meningitidis on HEp-2 cells[J]. FEMS Immunol Med Microbiol,1999,23(2):115-124.
[12]El Ahmer OR,Raza MW,Ogilvie MM,et al.Binding of bacteria to HEp-2 cells infected with influenza A virus[J].FEMS Immunol Med Microbiol,1999,23(4):331-341.
[13]Caroline Blackwell,Sophia Moscovis,Sharron Hall,et al.Exploring the risk factors for sudden infant deaths and their role in inflammatory responses to infection[J].Front Immunol,2015,6(1):44.
[14]Blackwell CC,MacKenzie DA,James VS,et al.Toxigenic bacteria and sudden infant death syndrome(SIDS):nasopharyngeal flora during the first year of life[J].FEMS Immunol Med Microbiol,1999,25(1/2):51-58.
[15]Butterick TA,Billington CJ,Kotz CM,et al.Orexin:Pathways to obesity resistance?[J].Rev Endocr Metab Disord,2013,14(4):357-364.
[16]Kotz C,Nixon J,Butterick T,et al.Brain orexin promotes obesity resistance[J].Ann N Y Acad Sci,2012(1264):72-86.
[17]Butterick TA,Nixon JP,Billington CJ,et al.Orexin A decreases lipid peroxidation and apoptosis in a novel hypothalamic cell model[J].Neurosci Lett,2012,524(1):30-34.
[18]Sokolowska P,Urbańska A,Biegańska K,et al.Orexins protect neuronal cell cultures against hypoxic stress:an involvement of Akt signaling[J].JMol Neurosci,2014,52(1):48-55.
[19]Sokolowska P,e Urbańska A,Namiecińska M,et al.Orexins promote survival of rat cortical neurons[J].Neurosci Lett,2012,506(2):303-306.
[20]Xiaoxing Xiong,Robin E,White,Lijun Xu,et al.Mitigation of murine focal cerebral ischemia by the hypocretin/orexin system is associated with reduced inflammation[J].Stroke,2013,44(3):764-770.
[21]Duffy CM,Yuan C,Wisdorf LE,et al.Role of orexin A signaling in dietary palmitic acid-activated microglial cells[J]. Neurosci Lett,2015,606(2):140-144.
[22]Hunt NJ,Waters KA,Machaalani R.Promotion of the unfolding protein response in Orexin/Dynorph in neurons in sudden infant death syndrome(SIDS):Elevated peak and ATF4 expression[J].Mol Neurobiol,2016,10(29):78.
[23]Kinney HC,Richerson GB,Dymecki SM,et al.The brainstem and serotonin in the sudden infant death syndrome[J].Ann Rev Pathol,2009,4(5):517-550.
[24]Duncan JR,Paterson DS,Hoffman JM,et al.Brainstem serotonergic deficiency in sudden infant death syndrome[J].JAMA,2010,303(4):430-437.
[25]Barrett KT,Dosumu-Johnson RT,Daubenspeck JA,et al.Partial raphe dysfunction in neurotransmission is sufficient to increase mortality after anoxic exposures in mice at a critical period in postnatal development[J].J Neurosci,2016,36(14):3943-3953.
[26]Glengarry JE,Crawford J,Morrow PL,et al.Long QT molecular autopsy in sudden infant death syndrome[J].Arch Dis Child,2014,99(7):635-640.
[27]Sauer CW,Marc-Aurele KL.A Neonate with susceptibility to long QT syndrome type 6 who presented with ventricular fibrillation and sudden unexpected infant death[J].Am J Case Rep,2016,17(5):544-548.
[28]Van Norstrand DW,Valdivia CR,Tester DJ,et al.Molecular and functional characterization of novel glycerol-3-phosphate dehydrogenase 1-like gene(GPD1-L)mutations in sudden infant death syndrome[J].Circulation,2007,116(20):2253-2259.
[29]Tester DJ,Dura M,Carturan E,et al.A mechanism for sudden infant death syndrome(SIDS):Stress-induced leak via ryanodine receptors[J].Heart Rhythm,2007,4(6):733-739.
[30]Bennett PB,Yazawa K,Makita N,et al.Molecular mechanism for an inherited cardiac arrhythmia[J].Nature,1995,376(6):683-685.
[31]Wang DW,Desai RR,Crotti L,et al.Jr Cardiac sodium channeldysfunction in sudden infant death syndrome[J].Circulation,2007,115(3):368-376.
[32]Arnestad M,Crotti L,Rognum TO,et al.Prevalence of long-QT syndrome gene variants in sudden infant death syndrome[J].Circulation,2007,115(3):361-367.
[33]Balijepalli RC,Kamp TJ.Caveolae,ion channels and cardiac arrhythmias[J].Prog Biophys Mol Biol,2008,98(2):149-160.
[34]Li S,Galbiati F,Volonte D,et al.Mutational analysis of caveolin-induced vesicle formation.Expression of caveolin-1 recruits caveolin-2 to caveolae membranes[J].FEBS Lett,1998,434(1):127-134.
[35]Vatta M,Ackerman MJ,Ye B,et al.Mutant caveolin-3 induces persistent late sodium current and is associated with long-QT syndrome[J].Circulation,2006,114(20):2104-2112.
[36]Cronk LB,Ye B,Kaku T,et al.Novel mechanism for sudden infant death syndrome:Persistent late sodium current secondary to mutations in caveolin-3[J].Heart Rhythm,2007,4(2):161-166.
[37]Cronk LB,Ye B,Kaku T,et al.A Novel mechanism for sudden infant death syndrome(SIDS):Persistent late sodium current secondary to mutations in caveolin-3[J].Heart Rhythm,2007,4(2):161-166.
[38]Nof E,Cordeiro JM,Pérez GJ,et al.A common single nucleotide polymorphism can exacerbate long QT type 2 syndrome leading to sudden infant death[J].Circ Cardiovasc Genet,2010,3(2):199-206.
[39]Klintschar M,Heimbold C.Association between a functional polymorphism in the MAOA gene and sudden infant death syndrome[J].Pediatrics,2012,129(3):e756-761.
[40]Highet AR,Berry AM,Goldwater PN.Distribution of interleukin-1 receptor antagonist genotypes in sudden unexpected death in infancy(SUDI):unexplained SUDI have a higher frequency of allele 2[J].Ann Med,2010,42(1):64-69.
[41]Caroline Blackwell,Sophia Moscovis,Sharron Hall,et al.Exploring the risk factors for sudden infant deaths and their role in inflammatory responses to infection[J].Front Immunol,2015,6(1):44.
[42]Moscovis SM,Gordon AE,Al Madani OM,et al.Interluekin-10 and sudden infant death syndrome[J].FEMS Immunol Med Microbiol,2004,42(1):130-138.
[43]Chenoweth MJ,Zhu AZ,Cox LS,et al.Variation in P450 oxidoreductase(POR)A503V and flavin containing monooxygenase(FMO)-3 E158K is associated with minor alterations in nicotine metabolism but does not alter cigarette consumption[J].Pharmacogenet Genomics,2014,24(3):172-176.
[44]Poetsch M,Czerwinski M,Wingenfeld L,et al.A common FMO3 polymorphism may amplify the effect of nicotine exposure in sudden infant death syndrome(SIDS)[J].Int J Legal Med,2010,124(4):301-306.
[45]Laer K,Vennemann M,Rothamel T,et al.Association between polymorphisms in the P2RY1 and SSTR2 genes and sudden infant death syndrome[J].Int J Legal Med,2013,127(6):1087-1091.
[46]Moscovis SM,Gordon AE,Al Madani OM,et al.Genetic and environmental factors affecting TNF-αresponses in relation to sudden infant death syndrome[J].Front Immunol,2015,6(3):374.
[2016-10-09收稿,2016-11-05修回]
[本文編輯:韓仲琪]
重 要 提 醒
近期,有讀(作)者反映互聯(lián)網(wǎng)上有不法網(wǎng)站冒充我刊接受作者投稿,并要求繳納審稿費、版面費,為防止作者上當(dāng)受騙,我們提醒廣大作者慎重對待。特聲明如下:
(1)本刊對所有來稿一律免收審稿費。
(2)《實用醫(yī)藥雜志》唯一投稿網(wǎng)址是http://qeyy.cbpt.cnki.net/,沒有其他投稿網(wǎng)址。
(3)本刊只接受郵局匯款和刷卡付款,請務(wù)必核對稿號(共10位數(shù)字,無字母,2017XXXXXX)、金額、匯款電話及地址等信息,并聯(lián)系編輯部。
匯款聯(lián)系電話:0531-51619233 王超 0421-619233(軍線)
請?zhí)岣呔?,?jǐn)防上當(dāng)受騙。
本刊編輯部
Research progress on the relevant genes of sudden infant death syndrome
ZHANG Yue-han,HUANG Quan-yong.Pathological Department of Basic Medical College,Dali University,Yunnan,Dali 671000,China
Sudden infant death syndrome is a sudden unexplained infant death under age of 1,which is one kind of infant death reason.The cause of disease is unknown.This article aims to review foreign scholars in recent years on sudden infant death syndrome research,so as to explore the main risk factors of sudden infant death syndrome,brain hormone changes,and neonatal study on genotype related sudden infant death syndrome,such as long QT syndrome associated with KCNE2,SCN5A,RyR2,CAV-3 gene,gene sequencing of MAOA gene detection method,and inflammation related genes and sudden infant death syndrome,to provide the relevant gene research progress and research direction of sudden infant death syndrome,so that providing new ideas for the pathogenesis and etiology of sudden infant death syndrome.
Sudden infant death syndrome;Risk factor;Hormone change;Gene mutation
R722.19
A
10.14172/j.issn1671-4008.2017.04.035
671000云南大理,大理大學(xué)基礎(chǔ)醫(yī)學(xué)院病理學(xué)教研室(張月涵,黃全勇)
黃全勇,Email:HQY07926@126.com