賀斌,郭會(huì)朵,趙茹茜*
(南京農(nóng)業(yè)大學(xué)農(nóng)業(yè)部動(dòng)物生理生化重點(diǎn)實(shí)驗(yàn)室,江蘇 南京 210095)
精子中線粒體的功能和命運(yùn)
賀斌,郭會(huì)朵,趙茹茜*
(南京農(nóng)業(yè)大學(xué)農(nóng)業(yè)部動(dòng)物生理生化重點(diǎn)實(shí)驗(yàn)室,江蘇 南京 210095)
線粒體是細(xì)胞中最為重要的細(xì)胞器之一,通過氧化磷酸化產(chǎn)生ATP維持細(xì)胞正常生理功能,還參與鈣離子穩(wěn)態(tài)、細(xì)胞凋亡和類固醇激素合成等生物學(xué)過程。此外,線粒體是唯一含有功能性基因組(mtDNA)的細(xì)胞器。精子作為高度分化的生殖細(xì)胞,其線粒體與其他細(xì)胞存在許多異同之處。由于精子的特殊性,精子中線粒體的功能以及mtDNA是否遺傳給子代方面的研究已成為關(guān)注的焦點(diǎn)。本文綜述了精子線粒體和mtDNA的生物學(xué)特征、功能以及受精后的去向。
精子;線粒體;mtDNA;母系遺傳
線粒體(mitochondria)是細(xì)胞中最為重要的細(xì)胞器之一,除了產(chǎn)生ATP之外,還參與了其它多種生理過程,如鈣離子穩(wěn)態(tài)、細(xì)胞凋亡、脂質(zhì)和氨基酸代謝、類固醇激素合成等。線粒體不同于其它細(xì)胞器的一個(gè)重要特征是其含有自己的環(huán)狀基因組,稱之為線粒體 DNA(mitochondrial,mtDNA)。mtDNA 編碼13個(gè)呼吸鏈蛋白,這對(duì)于線粒體功能非常重要。精子中線粒體與其他細(xì)胞中的線粒體存在許多相同之處,而作為生殖細(xì)胞中唯一攜帶遺傳物質(zhì)的細(xì)胞器,又具有很多獨(dú)特的功能。相同之處在于精子線粒體同樣參與能量供應(yīng),鈣離子穩(wěn)態(tài)等過程;不同之處在于,精子線粒體還參與了精子獲能以及頂體反應(yīng)等精子獨(dú)有的功能。此外,精子作為父本遺傳物質(zhì)最重要的載體,其mtDNA是否參與遺傳信息的傳遞尚不明確。本文對(duì)多種動(dòng)物精子線粒體的生物學(xué)特征、功能和命運(yùn)的研究進(jìn)展進(jìn)行綜述。
1.1 線粒體形態(tài)
精子發(fā)生過程中,線粒體的形態(tài)處于動(dòng)態(tài)的變化過程中。精原細(xì)胞和早期的精母細(xì)胞含有傳統(tǒng)意義上的線粒體,晚期的精母細(xì)胞、精細(xì)胞和精子線粒體為高度濃縮狀態(tài),此時(shí)的線粒體代謝效率較強(qiáng)[1]。成熟精子中含有22-75個(gè)線粒體,線粒體相互連接,在鞭毛中段周圍形成緊密的螺旋[2]。線粒體主要由線粒體外膜,線粒體內(nèi)膜,膜間隙和線粒體基質(zhì)構(gòu)成,線粒體內(nèi)膜折疊纏繞形成線粒體內(nèi)嵴,線粒體內(nèi)嵴具有呼吸鏈酶系及ATP酶復(fù)合體,參與呼吸鏈電子傳遞,在內(nèi)膜可形成跨膜質(zhì)子梯度,在ATP合成酶催化下將ADP生成ATP[3]。精子的運(yùn)動(dòng)依賴于線粒體提供能量。精子線粒體結(jié)構(gòu)的改變會(huì)伴隨其中各種能量代謝酶含量的改變,如細(xì)胞色素氧化酶、琥珀酸脫氫酶、乳酸脫氫酶同工酶含量的改變,會(huì)影響精子的供能,從而導(dǎo)致精子運(yùn)動(dòng)障礙[4]。由此可見,線粒體形態(tài)的完整性及其組分對(duì)于維持精子活力至關(guān)重要。
1.2 線粒體膜電位
線粒體在呼吸氧化過程中,將所產(chǎn)生的能量以電化學(xué)勢(shì)能儲(chǔ)存于線粒體內(nèi)膜,在內(nèi)膜兩側(cè)造成質(zhì)子及其他離子濃度的不對(duì)稱分布而形成線粒體膜電位(Mitochondrial membrane potential),正常的線粒體膜電位是維持線粒體進(jìn)行氧化磷酸化和產(chǎn)生三磷酸腺苷的先決條件。線粒體膜電位是反映線粒體功能的主要指標(biāo),可以指示線粒體的能量狀態(tài),常被作為評(píng)估線粒體呼吸鏈和電子傳遞的活性[5]。大量研究表明,精子線粒體膜電位與精子活力及體外受精能力密切相關(guān),高線粒體膜電位是精子活力的必備條件[6-9]。
1.3 線粒體DNA
線粒體是唯一含有功能性基因組的細(xì)胞器,線粒體基因組是雙鏈環(huán)狀的DNA,15-17 kbp,由37個(gè)基因構(gòu)成,其中包括13個(gè)多肽、22個(gè)轉(zhuǎn)運(yùn)RNA(tRNA)和 2個(gè)核糖體 RNA(rRNA),所編碼的 13個(gè)多肽是線粒體電子傳遞鏈的最主要成分。小鼠精子中含有約50-75個(gè)mtDNA拷貝數(shù),而人類精子中含有約1500個(gè)mtDNA拷貝數(shù)[10-11]。mtDNA位點(diǎn)缺失或者突變都可以導(dǎo)致精子活力降低,有文獻(xiàn)報(bào)道m(xù)tDNA 4977 bp位點(diǎn)缺失會(huì)造成精子活力下降和男性不育[12],而mtDNA 4696 bp位點(diǎn)缺失導(dǎo)致小鼠精子結(jié)構(gòu)異常[13]。研究發(fā)現(xiàn),不育男性精子中mtDNA拷貝數(shù)顯著高于正常精子,而mtDNA完整性明顯降低[14-15]。對(duì)此,有2種解釋:一是不正常精子為了彌補(bǔ)線粒體呼吸鏈活性不足,所以增加了其mtDNA含量;另一種是在不育患者精子中,其mtDNA增加是精子發(fā)育異常的表現(xiàn)。mtDNA的轉(zhuǎn)錄和翻譯受到核基因編碼的轉(zhuǎn)錄因子的調(diào)節(jié),在人精子中發(fā)現(xiàn),此類轉(zhuǎn)錄因子的含量及其轉(zhuǎn)位線粒體的過程與精子質(zhì)量密切相關(guān)[16]。Jodar等提取精子RNA進(jìn)行芯片分析發(fā)現(xiàn),異常精子中mtDNA轉(zhuǎn)錄的RNA豐度顯著低于正常精子[17]。總之,mtDNA與精子質(zhì)量間存在相關(guān)性,但其確切關(guān)系尚未完全明確。
2.1 線粒體參與能量供應(yīng)
精子的各種生理活動(dòng)均需要大量的能量供應(yīng),而精子中ATP主要通過2種代謝方式產(chǎn)生:糖酵解和氧化磷酸化(Oxidative phosphorylation,OXPHOS),前者主要在精子頭部和尾部發(fā)生,后者主要在精子中段線粒體分布區(qū)域發(fā)生[18]。然而,對(duì)于精子優(yōu)先利用何種能量代謝方式,一直存在爭議。有文獻(xiàn)報(bào)道,OXPHOS是精子中主要的能量代謝方式,線粒體膜電位和氧氣的消耗量與ATP含量和精子活力呈正相關(guān)[19-21]。在精子尾部的纖維鞘內(nèi)存在多種糖酵解的關(guān)鍵酶[22],小鼠精子糖酵解酶缺失會(huì)導(dǎo)致不育[23-25]。此外,使用解偶聯(lián)劑CCCP抑制線粒體OXPHOS發(fā)現(xiàn)小鼠精子活力并不受影響,且精子中ATP量基本不變。如果ATP僅僅是由線粒體呼吸產(chǎn)生,由于線粒體只位于精子中段,那么ATP就需要通過自由擴(kuò)散到達(dá)精子尾部,這顯然不能滿足鞭毛高速運(yùn)動(dòng)所需的大量ATP,而糖酵解所需的酶類都位于精子的尾部,因此,糖酵解是小鼠精子鞭毛運(yùn)動(dòng)所需ATP的主要來源[26]。事實(shí)上,精子能量供應(yīng)方式存在物種差異。有些物種,如豬、馬的精子線粒體OXPHOS作用較強(qiáng),僅依靠糖酵解并不能維持精子活力[8,27-28];而有些物種,如牛線粒體OXPHOS和糖酵解均較強(qiáng)[29];而小鼠、大鼠和人類,其精子ATP主要依賴于糖酵解供應(yīng)[30]。
使用丙酮酸或乳酸代替培養(yǎng)基里的葡萄糖時(shí),小鼠精子的活力和ATP量維持不變,但是如果此時(shí)加入CCCP以抑制線粒體呼吸,精子的活力和ATP量均大大降低[26]。由此可見,精子所處的微環(huán)境中能量代謝底物可影響精子的代謝方式。由于OXPHOS比糖酵解產(chǎn)生的ATP較多,線粒體主要集中在哺乳動(dòng)物精子中段,可能可以利用更多物質(zhì)(脂肪酸、單羧酸、氨基酸)產(chǎn)生能量,這時(shí)OXPHOS可能作為ATP主要的產(chǎn)生方式[31-32]。由此可見,糖酵解和OXPHOS共同參與能量供應(yīng)的過程。在不同的環(huán)境中或不同的生理狀態(tài)下,其能量供應(yīng)方式也會(huì)不同。當(dāng)糖酵解的底物很少時(shí),精子會(huì)啟動(dòng)利用線粒體呼吸獲得ATP。
2.2 線粒體參與鈣離子(Ca2+)穩(wěn)態(tài)
Ca2+在精子中起著重要作用,其調(diào)節(jié)精子很多功能,如精子運(yùn)動(dòng)、精子獲能、超活化和頂體反應(yīng)[33]。線粒體是胞內(nèi)Ca2+的貯存場(chǎng)所,線粒體內(nèi)的Ca2+濃度對(duì)于線粒體的ATP合成、線粒體通透性及細(xì)胞質(zhì)內(nèi)鈣信號(hào)的調(diào)節(jié)具有重要影響[34-35]。體細(xì)胞線粒體可通過線粒體鈣離子轉(zhuǎn)運(yùn)體攝取Ca2+,從而調(diào)控胞內(nèi)Ca2+濃度、細(xì)胞代謝和存活能力,同時(shí),精子中也存在線粒體鈣離子轉(zhuǎn)運(yùn)體[36]。依賴線粒體活性的精子活力可被外源Ca2+明顯抑制,而依賴糖酵解的精子活力并不受影響,在線粒體膜被除去或者干擾線粒體功能之后,額外添加ATP或鈣離子,精子活力將得到明顯提高[37]。線粒體通過富集和釋放Ca2+以維持鈣離子穩(wěn)態(tài),從而介導(dǎo)一些胞內(nèi)反應(yīng),另外基質(zhì)內(nèi)Ca2+富集可促進(jìn)能量的產(chǎn)生,進(jìn)而增加胞內(nèi)ATP含量,從而提高精子活力[38]。
2.3 線粒體參與精子凋亡
目前,研究已發(fā)現(xiàn),多種凋亡信號(hào)均可作用于線粒體,促進(jìn)膜間腔促凋亡因子的釋放,啟動(dòng)線粒體介導(dǎo)的凋亡(apoptosis)通路。由于精子缺乏胞質(zhì)成分,學(xué)者們對(duì)精子能否發(fā)生凋亡仍有疑問。事實(shí)上,精子可表現(xiàn)多種凋亡特征,如Caspases激活、磷脂酰絲氨酸外翻、DNA損傷等[39-40]。此外,線粒體Annexin V染色可指示精子質(zhì)量,而Caspase激活與精子質(zhì)量低下和受精能力弱存在相關(guān)性,這些現(xiàn)象均表明精子凋亡與精子活力存在密切聯(lián)系。研究發(fā)現(xiàn),Caspase主要集中在精子中段、線粒體分布的部位[41],而使用凋亡誘導(dǎo)劑可增加Caspase活性[42],從而證明精子線粒體可能參與凋亡過程?;钚匝酰≧eactive oxygen species,ROS)可使精子DNA受到損傷,進(jìn)而引起精子凋亡[43]。線粒體是ROS產(chǎn)生的主要場(chǎng)所,ROS作為OXPHOS的副產(chǎn)物,起著重要的作用。在精子中,線粒體復(fù)合物Ⅰ和Ⅲ是ROS產(chǎn)生的主要位點(diǎn)[44]。生理范圍內(nèi)的ROS參與多項(xiàng)精子功能調(diào)節(jié),如活力、獲能、頂體反應(yīng)、超活化和受精等[45-47],而超出生理范圍的ROS會(huì)導(dǎo)致精子存活、活力和線粒體膜電位下降,精子形態(tài)不完整,DNA損傷和脂質(zhì)過氧化,最終導(dǎo)致其凋亡[44,48-49]。此外,線粒體內(nèi)Ca2+濃度升高可引起細(xì)胞色素氧化酶系統(tǒng)功能失調(diào),導(dǎo)致氧化單電子還原成氧自由基增多,誘發(fā)精子凋亡。
2.4 線粒體參與精子獲能
精子獲能(capacitation)是精子獲得穿透卵子透明帶能力的生理過程。隨著精子的獲能,氧耗量增加,精子運(yùn)動(dòng)加速,線粒體發(fā)生松散。牛和豬精子體外獲能和孕酮誘導(dǎo)的頂體反應(yīng)中均觀察到耗氧峰值,因此,推測(cè)線粒體在此過程中發(fā)揮了重要作用[50-51]。此外,精子獲能過程中伴隨有蛋白質(zhì)的磷酸化尤其是酪氨酸的磷酸化,有研究已證實(shí)精子中多種線粒體蛋白參與了精子獲能所依賴的蛋白酪氨酸磷酸化過程[52]。
3.1 線粒體母系遺傳
大量的細(xì)胞譜系與種族發(fā)育學(xué)的研究結(jié)果均顯示,子代線粒體是由母本遺傳而來,即母系遺傳(Maternal inheritance)[53-54]。在受精過程中,精子所攜帶的mtDNA易受到活性氧的損傷,損傷的mtDNA遺傳給子代將導(dǎo)致線粒體功能障礙和線粒體相關(guān)疾病[55]。因此,在進(jìn)化過程中,機(jī)體保留了一系列精子線粒體和mtDNA的清除機(jī)制。目前報(bào)道的精子線粒體和mtDNA清除包括兩階段:在精子形成期,線粒體的數(shù)量逐漸減少;受精后,受精卵中mtDNA迅速被降解。
3.2 受精前線粒體清除
精子發(fā)生過程中,其胞質(zhì)成分大部分丟失,只含有較少細(xì)胞器,其中最主要的細(xì)胞器是線粒體[56]。精子發(fā)生過程中伴隨著mtDNA拷貝數(shù)減少,這一現(xiàn)象主要發(fā)生在圓形精細(xì)胞向長形精子轉(zhuǎn)化的過程中,含有精細(xì)胞細(xì)胞質(zhì)成分的殘余體被支持細(xì)胞吞噬[57]。Diez-Sanchez[11]發(fā)現(xiàn)向前運(yùn)動(dòng)和不向前運(yùn)動(dòng)精子中mtDNA拷貝數(shù)分別是700和1200。Luo等[58]通過密度梯度離心方法分離了不同活力的小鼠精子,統(tǒng)計(jì)發(fā)現(xiàn)高活力精子和低活力精子中mtDNA拷貝數(shù)分別是1.29和45.93,即能進(jìn)入輸卵管發(fā)生受精的高活力精子幾乎不含有mtDNA。類似結(jié)果在豬精子中得到了驗(yàn)證[8]。此外,為闡明不同活力精子中線粒體活性是否存在差異,Guo等[8]比較了不同活力豬精子線粒體的特征及其調(diào)節(jié)因素,結(jié)果表明,盡管高活力精子線粒體數(shù)量少于低活力精子,但線粒體生物合成能力顯著高于低活力精子。在線蟲精子發(fā)生過程中,mtDNA可被核酸內(nèi)切酶G降解,使得受精前精子中僅留下無mtDNA的空泡狀線粒體[59]??梢姡泳€粒體清除是精子發(fā)生過程中的重要過程,而mtDNA拷貝數(shù)可能是精子質(zhì)量的重要指標(biāo)。然而,精子線粒體清除是否是精子的一種積極主動(dòng)行為,線粒體清除后是否促進(jìn)了精子活力的提高,還有待進(jìn)一步研究。
3.3 受精后線粒體清除
也有觀點(diǎn)[60]認(rèn)為,精子發(fā)生過程中線粒體內(nèi)核酸開始發(fā)生降解,到受精后源于精子的mtDNA被迅速降解而丟失,使得早期胚胎留下空泡狀的精子線粒體。也有證據(jù)[61]表明精子線粒體在早期胚胎中以泛素化的方式發(fā)生降解。Sato等[62]以線蟲為研究對(duì)象,將線蟲精子中的線粒體進(jìn)行染色標(biāo)記后進(jìn)行受精,觀察受精卵中線粒體的動(dòng)態(tài)變化,發(fā)現(xiàn)來自精子的線粒體在受精卵中以自噬的方式降解,該結(jié)論在自噬缺陷型線蟲得到了進(jìn)一步的驗(yàn)證,自噬缺陷的受精卵中精子線粒體和所攜帶的基因組能被遺傳給幼蟲。與此不同,Luo等[58]利用2種轉(zhuǎn)基因小鼠品系,一種攜帶綠色熒光蛋白GFP標(biāo)記的自噬體,另一種攜帶紅色熒光蛋白標(biāo)記的線粒體,證實(shí)自噬并未參與小鼠受精后精子線粒體的清除。最近,Zhou等[63]在秀麗隱桿線蟲的研究中發(fā)現(xiàn),受精后精子線粒體核酸內(nèi)切酶CPS-6從線粒體膜間質(zhì)轉(zhuǎn)位到線粒體基質(zhì)里面,對(duì)線粒體DNA進(jìn)行降解、清除。除此之外,也有觀點(diǎn)[58]認(rèn)為精子線粒體在受精過程中進(jìn)入到了受精卵,得以保存,只是在卵裂過程中,精子線粒體非平均地分配到卵裂球中,被大量的母本線粒體稀釋,故而子代個(gè)體中只有部分細(xì)胞可檢測(cè)到父本線粒體。綜上所述,精子線粒體在受精后可能存在泛素化、自噬和核酸酶降解等多種降解方式,使得精子線粒體保存到子代的可能性非常小,但不能完全排除精子線粒體遺傳給子代的可能性。
4.1 精子線粒體生物學(xué)特征研究展望
線粒體電子傳遞鏈?zhǔn)怯珊嘶蚪M和mtDNA編碼的蛋白共同組成,核編碼的蛋白在胞漿內(nèi)表達(dá)后,在一系列伴侶分子的作用下,轉(zhuǎn)位至線粒體,完成組裝之后才能發(fā)揮功能[64-65]。雖然精子成熟后,其轉(zhuǎn)錄活性基本消失,但仍具有較強(qiáng)的轉(zhuǎn)錄后調(diào)節(jié)和翻譯活性,且其翻譯過程受到精密的調(diào)節(jié)[66]。此外,精子中還存在蛋白翻譯后調(diào)節(jié),如磷酸化、乙酰化、糖基化和泛素化等[67]。因此,深入研究和探明精子內(nèi)線粒體相關(guān)的蛋白翻譯、修飾和線粒體轉(zhuǎn)位的過程將有助于理解線粒體的結(jié)構(gòu)和功能。
4.2 精子線粒體功能研究展望
目前,對(duì)精子線粒體的功能已有大量報(bào)道,盡管現(xiàn)在已明確線粒體對(duì)精子質(zhì)量至關(guān)重要,但其具體發(fā)揮的作用尚未完全明確。目前已知線粒體主要參與精子的能量供應(yīng)、鈣穩(wěn)態(tài)和獲能等過程,精子線粒體是否與其他細(xì)胞中的線粒體一樣,參與細(xì)胞凋亡、類固醇激素合成等過程尚不明確。此外,已有報(bào)道對(duì)精子線粒體功能的研究主要是以嚙齒類動(dòng)物為模型,然而不同物種間線粒體功能存在較大差異,因此,深入研究和闡明各個(gè)物種精子線粒體的功能,將有助于提高飼養(yǎng)動(dòng)物的繁殖力。
4.3 精子線粒體命運(yùn)研究展望
精子線粒體命運(yùn)是目前生命科學(xué)研究的熱點(diǎn)領(lǐng)域,精子線粒體及mtDNA清除的機(jī)制呈現(xiàn)多樣化。然而,精子線粒體和mtDNA的清除到底發(fā)生在何時(shí),何處?受到哪些信號(hào)的調(diào)節(jié)?線粒體清除后精子是否擁有更強(qiáng)的受精能力?這些均有待進(jìn)一步研究。對(duì)上述問題的研究,不僅有助于理解線粒體母系遺傳機(jī)制,還有助于診斷和治療線粒體相關(guān)的男性不育和遺傳性疾病。
[1] Ramalho-Santos J,Varum S,Amaral S,et al.Mitochondrial functionality in reproduction:from gonads and gametes to embryos and embryonic stem cells[J].Human Reproduction Update,2009,15:553-572.
[2] Otani H,Tanaka O,Kasai K,et al.Development of mitochondrial helical sheath in the middle piece of the mouse spermatid tail:regular dispositions and synchronized changes[J].The Anatomical Record,1988,222:26-33.
[3] Bereiter-Hahn J,Jendrach M.Mitochondrial dynamics[J].International Review of Cell and Molecular Biology,2010,284:1-65.
[4] Pelliccione F,Micillo A,Cordeschi G,et al.Altered ultrastructure of mitochondrial membranes is strongly associated with unexplained asthenozoospermia[J].Fertility and Sterility,2011,95:641-646.
[5] Uribe P,Villegas J V,Boguen R,et al.Use of the fluorescent dye tetramethylrhodamine methyl ester perchlorate for mitochondrial membrane potential assessment in human spermatozoa[J].Andrologia,2017,doi:10.1111/and.12753.
[6] Barbonetti A,Vassallo M R,Costanzo M,et al.Involvement of cannabinoid receptor-1 activation in mitochondrial depolarizing effect of lipopolysaccharide in human spermatozoa[J].Andrology,2014,2:502-509.
[7] Zhu X,Shi D,Li X,et al.TLR signalling affects sperm mitochondrial function and motility via phosphatidylinositol 3-kinase and glycogen synthase kinase-3 alpha[J].Cellular Signaling,2016,28:148-56.
[8] Guo H,Gong Y,He B,et al.Relationships between mitochondrial DNA content,mitochondrial activity,and boar sperm motility[J].Theriogenology,2017,87:276-83.
[9] He B,Guo H,Gong Y,et al.Lipopolysaccharide-induced mitochondrial dysfunction in boar sperm is mediated by activation ofoxidative phosphorylation[J].Theriogenology,2017,87:1-8.
[10] Manfredi G T D,Papadopoulou L C,Pallotti F,et al.The fate of human sperm-derived mtDNA in somatic cells[J].American Society of Human Genetics,1997,61:953-960.
[11]Diez-Sanchez C.Mitochondrial DNA Content of human spermatozoa[J].Biology of Reproduction,2002,68:180-185.
[12] Kao S C H,Wei Y H.Mitochondrial deoxyribonucleic acid 4977 bp deletion is associated with diminished fertility and motility of human sperm[J].Biology of Reproduction,1995,52:729-736.
[13] Nakada K,Sato A,Yoshida K,et al.Mitochondria-related male infertility[J].Proceedings of the National Academy ofSciences of the United States of America,2006,103:15148-15153.
[14] May-Panloup P,Chrétien M F,Savagner F,et al.Increased sperm mitochondrial DNA content in male infertility[J].Human Reproduction,2003,18:550-556.
[15] Song G J,Lewis V.Mitochondrial DNA integrity and copy number in sperm from infertile men[J].Fertility and Sterility,2008,90:2238-2244.
[16] Amaral A,Ramalho-Santos J,St John J C.The expression of polymerase gamma and mitochondrial transcription factor A and the regulation of mitochondrial DNA content in mature human sperm [J].Human Reproduction,2007,22:1585-1596.
[17] Jodar M,Kalko S,Castillo J,et al.Differential RNAs in the sperm cells of asthenozoospermic patients[J].Human Reproduction,2012,27:1431-1438.
[18]Pe a F J,Rodríguez Martínez H,Tapia J A,et al.Mitochondria in mammalian sperm physiology and pathology:a review[J].Reproduction in Domestic Animals,2009,44:345-349.
[19] Ford W C.Glycolysis and sperm motility:does a spoonful of sugar help the flagellum go round[J].Human Reproduction Update,2006,12:269-274.
[20] Ruiz-Pesini E D,López-Pérez M J,et al.The role of the mitochondrion in sperm function:is there a place for oxidative phosphorylation or is this a purely glycolytic process[J].Current Topics in Developmental Biology,2007,77:3-19.
[21] Storey B T.Mammalian sperm metabolism:oxygen and sugar,friend and foe[J].The International Journal of Developmental Biology,2008,52(5-6):427-437.
[22] Turner R M.Moving to the beat:a review of mammalian sperm motility regulation[J].Reproduction Fertility and Development,2006,18:25-38.
[23]Miki K,Qu W,Goulding E H,et al.Glyceraldehyde 3-phosphate dehydrogenase-S,a sperm-specific glycolytic enzyme,is required for sperm motility and male fertility[J].Proceedings of the National Academy of Sciences of the United States of America,2004,101:16501-16506.
[24]Nakamura N,Dai Q,Williams J,et al.Disruption of a spermatogenic cell-specific mouse enolase 4(eno4)gene causes sperm structural defects and male infertility[J].Biology of Reproduction,2013,88(4):90.
[25] Odet F,Duan C,Willis W D,et al.Expression of the gene for mouse lactate dehydrogenase C(Ldhc)is required for male fertility[J].Biology of Reproduction,2008,79:26-34.
[26]Mukai C,Okuno M.Glycolysis plays a major role for adenosine triphosphate supplementation in mouse sperm flagellar movement[J].Biology of Reproduction,2004,71:540-547.
[27]Rodriguez-Gil J E,Bonet S.Current knowledge on boar sperm metabolism:comparison with other mammalian species[J].Theriogenology,2016,85:4-11.
[28] Darr C R,Cortopassi G A,Datta S,et al.Mitochondrial oxygen consumption is a unique indicator of stallion spermatozoal health and varies with cryopreservation media[J].Theriogenology,2016,86:1382-1392.
[29] Galantino-Homer H L,F(xiàn)lorman H M,Storey B T,et al.Bovine sperm capacitation:assessment of phosphodiesterase activity and intracellular alkalinization on capacitation associated protein tyrosine phosphorylation[J].Molecular Reproduction and Development,2004,67:487-500.
[30]Birkhead T R,Hosken D J,Pitnick S.An Evolutionary Perspective[M].San Diego:Academic Press,2009:185-206.
[31]VanDopC H S,LardyH A.Pyruvatemetabolism in bovine epididymal spermatozoa[J].The Journal of Biological Chemistry,1997,252:1303-1308.
[32] Hammerstedt R H,Lardy H A.The effect of substrate cycling on the ATP yield of sperm glycolysis[J].The Journal of Biological Chemistry,1983,258:8759-8768.
[33] Publicover S,Harper C V,Barratt C.[Ca2+]i signalling in sperm--making the most of what you've got[J].Nature Cell Biology,2007,9(3):235-242.
[34] Rizzuto R,De Stefani D,Raffaello A,et al.Mitochondria as sensors and regulators of calcium signalling[J].Nature Reviews Molecular Cell Biology,2012,13:566-578.
[35]Ardon F,Rodriguez-Miranda E,Beltran C,et al.Mitochondrial inhibitors activate influx of external Ca2+in sea urchin sperm[J].Biochimica et Biophysica Acta,2009,1787(1):15-24.
[36]Kirichok Y,Krapivinsky G,Clapham D E.The mitochondrial calcium uniporter is a highly selective ion channel[J].Nature,2004,427:360-364.
[37] Piomboni P,F(xiàn)ocarelli R,Stendardi A,et al.The role of mitochondria in energy production for human sperm motility[J].International Journal of Andrology,2012,35:109-124.
[38] Li X,Wang L,Li Y,et al.Calcium regulates motility and protein phosphorylation by changing cAMP and ATP concentrations in boar sperm in vitro[J].Animal Reproduction Science,2016,172:39-51.
[39] Sakkas D,Moffatt O,Manicardi G C,et al.Nature of DNA damage in ejaculated human spermatozoa and the possible involvement of apoptosis[J].Biology of Reproduction,2002,66:1061-1067.
[40] Varum S,Bento C,Sousa A P,et al.Characterization of human sperm populations using conventional parameters,surface ubiquitination,and apoptotic markers[J].Fertility and Sterility,2007,87:572-583.
[41]Weng S L,Taylor S L,Morshedi M,et al.Caspase activity and apoptotic markers in ejaculated human sperm[J].Molecular Human Reproduction,2002,8:984-991.
[42] Grunewald S,Paasch U,Said T M,et al.Caspase activation in human spermatozoa in response to physiological and pathological stimuli[J].Fertility and Sterility,2005,83:1106-1112.
[43] Aitken R J,Whiting S,De Iuliis G N,et al.Electrophilic aldehydes generated by sperm metabolism activate mitocho-ndrial reactive oxygen species generation and apoptosis by targeting succinate dehydrogenase[J].The Journal of Biological Chemistry,2012,287:33048-66060.
[44]Koppers A J,Garg M L,Aitken R J.Stimulation of mitochondrial reactive oxygen species production by unesterified,unsaturated fatty acids in defective human spermatozoa[J].Free Radical Biology&Medicine,2010,48:112-119.
[45] Du Plessis S S,Agarwal A,Halabi J,et al.Contemporary evidence on the physiological role of reactive oxygen species in human sperm function[J].Journal of Assisted Reproduction and Genetics,2015,32:509-520.
[46] Katoh Y,Takebayashi K,Kikuchi A,et al.Porcine sperm capacitation involves tyrosine phosphorylation and activation of aldose reductase[J].Reproduction,2014,148:389-401.
[47]Awda B J,Mackenzie-Bell M,Buhr M M.Reactive oxygen species and boar sperm function[J].Biology of Reproduction,2009,81:553-561.
[48] Koppers A J,De Iuliis G N,F(xiàn)innie J M,et al.Significance of mitochondrial reactive oxygen species in the generation of oxidative stress in spermatozoa[J].The Journal of Clinical Endocrinology and Metabolism,2008,93:3199-31207.
[49] Aitken R J,Jones K T,Robertson S A.Reactive oxygen species and sperm function in sickness and in health[J].Journal of Andrology,2012,33:1096-1106.
[50]Ramio-Lluch L,F(xiàn)ernandez-Novell J M,Pena A,et al.'In vitro'capacitation and acrosome reaction are concomitant with specific changes in mitochondrial activity in boar sperm:evidence for a nucleated mitochondrial activation and for the existence of a capacitation-sensitive subpopulational structure[J].Reproduction in Domestic Animals,2011,46:664-673.
[51]Cordoba M,Mora N,Beconi M T.Respiratory burst and NAD(P)H oxidase activity are involved in capacitation of cryopreserved bovine spermatozoa[J].Theriogenology,2006,65:882-892.
[52]Shivaji S,Kota V,Siva A B.The role of mitochondrial proteins in sperm capacitation[J].Journal of Reproductive Immunology,2009,83:14-8.
[53] Hutchison C A,Newbold J E,Potter S S,et al.Maternal inheritance ofmammalian mitochondrialDNA[J].Nature,1974,251:536-538.
[54] Sato M,Sato K.Maternal inheritance of mitochondrial DNA by diverse mechanisms to eliminate paternal mitochondrial DNA[J].Biochimica et Biophysica Acta,2013,1833:1979-1984.
[55] Ford W C.Regulation of sperm function by reactive oxygen species[J].Human Reproduction Update,2004,10:387-399.
[56]Ho H C,Wey S.Three dimensional rendering of the mitochondrial sheath morphogenesis during mouse spermiogenesis[J].Microscopy Research and Technique,2007,70:719-723.
[57] Hecht N B,Liem H,Kleene K C,et al.Maternal inheritance of the mouse mitochondrial genome is not mediated by a loss or gross alteration of the paternal mitochondrial DNA or by methylation of the oocyte mitochondrial DNA[J].Developmental Biology,1984,102:452-461.
[58]Luo S M,Ge Z J,Wang Z W,et al.Unique insights into maternal mitochondrial inheritance in mice[J].Proceedings of the National Academy of Sciences of the United States of America,2013,110:13038-13043.
[59]DeLuca S Z,O'Farrell P H.Barriers to male transmission of mitochondrial DNA in sperm development[J].Developmental Cell,2012,22:660-668.
[60] Nishimura Y,Yoshinari T,Naruse K,et al.Active digestion of sperm mitochondrial DNA in single living sperm revealed by optical tweezers[J].Proceedings of the National Academy of Sciences of the United States of America,2006,103:1382-1387.
[61]Sutovsky P,Moreno R D,Ramalho-Santos J,et al.Ubiquitin tag for sperm mitochondria[J].Nature,1999,402:371-372.
[62] Sato M,Sato K.Degradation of paternal mitochondria by fertilization-triggered autophagy inC.elegansembryos[J].Science,2011,334:1141-1144.
[63] Zhou Q,Li H,Li H,et al.Mitochondrial endonuclease G mediates breakdown of paternal mitochondria upon fertilization[J].Science,2016,353:394-399.
[64] Chacinska A,Koehler C M,Milenkovic D,et al.Importing mitochondrial proteins:machineries and mechanisms[J].Cell,2009,138:628-644.
[65]Becker T,Bottinger L,Pfanner N.Mitochondrial protein import:from transport pathways to an integrated network[J].Trends in Biochemical Sciences,2012,37:85-91.
[66]Koch S,Acebron S P,Herbst J,et al.Post-transcriptional Wnt signaling governs epididymal sperm maturation[J].Cell,2015,163:1225-1236.
[67]Samanta L,Swain N,Ayaz A,et al.Post-Translational modifications in sperm proteome:the chemistry of proteome diversifications in the pathophysiology of male factor infertility[J].Biochimica et Biophysica Acta,2016,1860:1450-1465.
Role and fate of mitochondria in sperm
He Bin,Guo Huiduo,Zhao Ruqian*
(KeyLaboratory of Animal Physiology and Biochemistry,Ministry of Agriculture,Nanjing Agricultural University,Nanjing,Jiangsu 210095,China)
Mitochondria play important role in oxidative phosphorylation,calcium homeostasis,apoptosis,and steroidogenesis.Moreover,mitochondria is the only organelle that contains its own functional genome.Sperm is a highly differentiated gamete.Although the mitochondria in the sperm share many common features with those in other somatic cells,they show some unique characteristics.To date,the role of mitochondria in sperm and its final fate are still controversial.Here,we review the current understanding of the mitochondria and their mtDNA,including the biological characteristics,the functions,and the fate after fertilization.
sperm;mitochondria;mitochondrial DNA(mtDNA);maternal inheritance
S811.2
A
10.13880/j.cnki.65-1174/n.2017.02.001
1007-7383(2017)02-0133-06
2017-03-10
國家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2016YFD0500502),國家自然科學(xué)基金項(xiàng)目(31502027)
賀斌(1984-),男,講師,從事動(dòng)物生殖生理學(xué)研究。
*通信作者:趙茹茜(1964-),女,教授,從事動(dòng)物生理學(xué)與動(dòng)物福利研究,e-mail:zhao.ruqian@gmail.com。