• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    空氣系統(tǒng)引氣對壓氣機(jī)性能影響的數(shù)值研究

    2011-04-19 10:38:14李紹斌李秋實(shí)
    關(guān)鍵詞:北京航空航天大學(xué)壓氣機(jī)熱力

    趙 斌 李紹斌 李秋實(shí) 周 盛

    (北京航空航天大學(xué)航空發(fā)動(dòng)機(jī)氣動(dòng)熱力科技重點(diǎn)實(shí)驗(yàn)室,北京,100191,中國)

    INTRODUCTION

    Air system is essential to the safe and reliable operation of aircraft engines.Air with proper pressure and temperature is used for cabin air conditioning,engine inlet anti-ice and cooling of high temperature components[1].Ref.[2]showed that the bleed air from the high pressure compressor took up 3%—5%of the main flow.Although the percentage is relatively small,the air coming from such an important part of the engine generates the great impact on the compressor performance[3-6].

    During recent years,the aspirated technology is widely applied to the turbo-machinery for flow control,and offers a new approach to study the impact of air system bleeding on compressor performance. Refs.[7-9]improved the blade loaded by controlling the blade surface and the end-wall separation through the boundary layer suction.Ref.[10]performed a numerical simulation on a transonic fan rotor ATS-2 and proved that the boundary layer bleeding could greatly enhance the pressure ratio and efficiency.Ref.[11] showed that boundary layer bleeding was an effective solution for separation and stall of the cascade with large turning angles.It can be concluded from the previous studies that it is very likely to improve compressor performance by studying air system bleeding.

    Current studies in this field mainly focus on how high temperature components make efficient use of mass flow in the air system for cooling, and analytical calculation on the loss along air system network.Very few of them touched on the influence of air bleeding on compressor performance.However,the air is bled from such an essential part of the engine and there must be continuous and enough air supply for the engine to run normally.Therefore,this paper tries to explore the impact of different bleeding rates and structures on the compressor totalpressure increase and stability margin.

    1 ANALYSIS OF BLEEDING MECHANISMS

    Air bleeding improves the compressor performance through removing the low-energy fluid from critical regions of blades and altering the incidence angle of blades.The former one has been widely used in the external and internal flow control since Prandtl′s boundary suction experiment in 1904.This section mainly analyzes how bleeding influences the blade incidence angle.

    Fabri′s experiment summarized the features of bleed flow,as shown in Fig.1.The main upstream flow in the bleeding slot flows faster under the suction of bleeding; The main downstream flow slows down after the main flow decreases in air bleeding.In Fig.2,the air flows into the rotor in the axial direction with a velocity of V0.In the case that bleeding slot is located upstream of blade leading edge,the inlet axial velocity of blade increases to V1,the rotation speed U remains the same after bleeding,and the inlet flow angle Uis smaller.There is a smaller blade incidence angle when the stagger angle is constant. On the other hand,if the blade leading edge is located downstream of the bleeding slot,the inlet axial velocity of blade decreases to V2after bleeding and the blade incidence angle increases.The case is also applies to stators.Therefore,the influence mechanism of bleeding on the main flow can be concluded as:the blade incidence angle can be changed by altering the relative position of bleeding slot to the blade leading edge.

    Fig.2 Influence on inlet air angle by axial velocity changes

    For the transonic and subsonic compressor rotors,most of the blade passage losses result from the blockage caused by the interaction of tip leakage flow and end-wall boundary layer,and stall usually starts from the blade tips.When air is extracted from the rotor casing,the main flow rate upstream increases,and the incidence angle and blockage from tip clearance leakage can be reduced[12-13].The stator performance is mainly restrained by the blockage on the end-wall near suction surface[14-15].Bleeding in the stator end-wall area can increase the stator inlet flow rate,decrease the incidence angle,and remove the lowenergy fluid from the end-wall area.Blockage can be reduced by end-wall bleeding for stators.The analysis above indicates that the compressor performance is very likely to be improved by bleeding.For stators with large separation in the corner,how do end-wall bleeding location and rate influence the compressor performance?Is there an optimum value for bleeding location and rate? This paper takes the low-speed single-stage compressor in Beijing University of Aeronautics and Astronautics(BUAA)as the research object,and builds a stator flow field with large separation in the corner.Six air bleeding structures are presented,one of which is numerically studied under five bleeding rates.

    2 NUMERICAL ANALYSIS PLAN

    2.1 Low-speed single-stage compressor

    The low-speed single-stage compressor in BUAAis used in this experiment.Its structure is shown in Fig.3.The design mass flow rate is 2.80 m3/s at a rotational speed of 3 000 r/min, thus providing a total pressure increase of 1 500 Pa.Details of the compressor geometry,the op-erating conditions,and the experimental data can be found in Ref.[16].Information on the compressor stage is listed in Table 1.

    Fig.3 Schematic layout of test rig

    Table 1 Design performance of low speed axial compressor

    2.2 Numerical model and reliability analysis

    The experimental measurement sections at the inlet and outlet of compressor are selected for the calculation field boundary. The space discretization of the compressor mesh is generated by the pre-processing module AutoGrid5.The calculation is performed on a single rotor and stator passage.The total mesh point number is about 600 000.Simulations of the steady 3-D viscous flow field are carried out on the compressor by using the 3-D CFD package Numeca Fine Turbo.A cell-centered second-order finite volume discretisation is employed.The turbulence model is Spallart-Almaras.Perfect air is selected as working substance.In order to ensure the simulation accuracy,the simulation is amended by low Mach number flow.The atmospheric pressure and the temperature ofexperimental environments are 102 510 Pa and 285.15 K,respectively,held as inlet boundary condition.Concerning the radial equilibrium equation,the static pressure at the mean radius is held as outlet boundary condition. During the simulation,the main operating point of the compressor characteristic curves is obtained by changing the static pressure at the outlet.

    The definition of numerical stall point in this paper is basically the same as that in Refs.[17-18].When the back pressure increases in the compressor outlet to obtain near stall characteristics,even by 0.01% of the inlet total pressure, the mass flow rate,the pressure ratio and the efficiency of compressor keep on decreasing with the number of iterations increasing,and numerical calculation cannot converge.Therefore,it can be concluded that the calculation is divergent.So the last convergence solution before divergence corresponds to the near-stall condition. The Surge Margin calculation formula is as follows

    where SMis short forSurge Margin,Msand ΔPs*are the flow rate and the total pressure increase at the near-stall point,MdandΔPd*the flow rate and the total pressure increase at design point.

    Fig.4 shows a comparison between the numerical simulation and the experimentally measured value over the 100% speedline of the lowspeed axial compressorcharacteristics without bleeding.In this paper,compressor characteristics of numerical calculations and experiment are conducted non-dimensionalized by a reference value:the abscissaOis the inlet flow coefficient Vx/ Um,and the ordinate jis the total pressure increase coefficient ΔP*/d Um2. On the design point,the simulation matches well with the experimental data of jwith a relativeerror of 1.2%. At the near-stall point,flow range in the simulation is smaller than the experimentally measured value because of the single passage steady simulation.Fig.5 shows the comparison of the radial distributions of total pressure increase at the outlet of the compressor between the simulation and the experimentally measured value on the design point(O=0.538).It is clear th at the simulation values agree well with the measured average values obtained from the four total pressure combs with circumferential averaged-distribution in the experiment.The above analysis shows that simulation calculation results are very close to the experimentlly measured results.In other words, the numerical calculation can approximatively reproduce the experimental results,and the numerical simulation is a reliable way to study the influence of bleeding on the compressor overall performance.

    Fig.5 Radial distributions of total pressure increase on design point at outlet of compressor

    2.3 Building and analysis of stators with large corner separation

    The stall is induced by the leakage of the rotor blade tip of the compressor above.In order to study the influence of bleeding structure,location and rate on the stator corner separation,another compressor is needed where there is large separation in the near-stall stator corner.Therefore, based on the reliability of the numerical method, a new compressor is built with large separation in the stator corner on the near-stall point.The ratio of rotors to stators is modified into 18∶ 12, and the stator inlet setting angle is cut by 2°.The new compressor is used as the baseline,upon which all numerical studies below are conducted.

    Fig.6 shows the skin friction line on the blade suction surface of the baseline at near-stall point. There are serious separations on stator corners.On stator suction surface,two obvious separating lines roll up from boundary layer of the suction surface and grow into the shedding vortex,thus taking along a large number of low-energy fluid to the downstream.It aggravates the stator losses.The separation on the upper half of the stator starts from 15% of the chord,and the outlet separation covers up 40% to 100% of the stator radial range.It is a typical closed form of separation.In the lower half of the stator,there is obvious separation and the radial flow.Fig.7 shows that there is the contours of the total pressure increase coefficient at stator outlet,where SS means the suction surface and PS the pressure surface.The location and the trend of corner separation at stator suction surface match well with those shown in Fig.6.The separation in the upper half of the stator outlet covers about 35% of the pitch range in circumferential.

    Fig.6 Skin friction line on stator suction surface of baseline approaching stall point

    Fig.7 Stator exit total pressure increase coefficient contours of baseline approaching stall point

    The complicated stator cornerseparations cause a huge increase in the loss.It is the most likely cause of the decrease in the compressor performance under the low flow rate condition.In this case,can these bleeding structures and rates effectively control the stator flow? And what influence does each plan have on the compressor performance?Answers are given in the comparative analysis on numerical calculation results of each bleeding plan below.

    3 INFLUENCES OF BLEEDING STRUCTURES

    3.1 Bleeding structure plans

    Six air bleeding structure plans are presented in this paper according to the bleeding mechanisms above.In each plan,bleeding slots are located downstream of the leading edge of stator blades.Information on the plans is given in Table 2,and Fig.8 shows the structure of bleeding slots.In plans a and b,the bleeding slot is about 5% chord of stator and located at 10% and 20% chord from leading edge in the casing.The bleeding location in plan c is at the trailing edge in the casing,about 5% chord of stator.In plan d,the bleeding slot is rectangle-shaped,and located near the suction surface in the casing.The length is about 59% of the stator chord,and the width is about 15% of the stator chord.The bleeding location of plan e is at the stator suction surface near the hub.The air is bled out from the casing through the internal cavity of the stator.The plan f is basically a combination of plans d and e. It controls the flow in both the casing corner and the hub corner at the same time.From plan a to plan e,2.5% of the main flow is bled out.In plan f,1% of the main flow is bled from the casing and the blade suction surface.

    Table 2 Bleeding location plans

    Fig.8 Structure of bleeding location plans

    3.2 Influence on total pressure increase and surge margin

    Figs.9,10 show the overall characteristics of total pressure increase in each bleeding plan.And Table 3 lists out different surge margins in each plan.The surge margin in the calculation of the baseline is 30.3%.It can be seen from Figs.9,10 and Table 3,only plan f manages to enhance both the total pressure increase and the surge margin, and improves the flow condition at the near-stall point.In this plan,the total pressure increase grows by 5.88% than the baseline,the mass flow range expands by 4.25%,and surge margin reaches 44.12%,which is a 45.47% increase on the baseline.In plans a and b,there is only the total pressure with a tiny increase.Two SMin both plans enhance very little,only by 2.52% and 4.06%,respectively.In plans c and d,the mass flow range is expanded at the cost of a reduction in the total pressure increase,but the surge margin decreases by 2.68% and 1.73% respectively.In plan e,the total pressure increase rises a little at near stall point,but the mass flow range decreases,so the relative surge margin reduces by 1.31%.

    Fig.9 Performance of total pressure increase in each bleeding location plan

    Fig.10 Performance of total pressure increase in plan f

    Table3 Relative increment of stability margin in each bleeding location plan %

    3.3 Influence on stator flow field

    Fig.11 shows the total pressure increase coefficient contours near stall(O=0.425)at stator outlet in each bleeding plan,where LE means the leading edge and TE the traling edge.In plan f, bleeding on the casing effectively removes a large number of low-energy fluid accumulation in the casing corner.Meanwhile,bleeding at the stator suction surface near hub eliminates the separation from the local small region,and effectively weakenes the radial flow caused by casing bleeding in the main flow.The stator flow obtains an overall improvement.The plans a and b both extract air at the entrance of stator leading edge.They reduce the incidence angle in the tip region,push back the starting location of the boundary layer separation near the casing,and reduce the large separation region on the stator casing in the radial and circumferential scale,but the large local separation of the casing still cannot be completely eliminated.In plans c and d,the large separation in the casing suction surface corner is completely removed,and the tip blockage is alleviated.However,the reduction of tip blockage and the suction effect cause the strong radial flow in the hub region.Under these influences,a large separation comes about in the suction surface corner near hub region.It indicates that there is an optimal value of bleeding rate to control the stator casing corner separation.The influence of bleeding rate on the main flow field is explored afterwards. The plan e only controls the flow in suction surface near hub region,and the large separation in the shroud corner still exists.

    Fig.11 Stator exit total pressure increase coefficient contours near stall in each bleeding location plan

    Fig.12 Radial distributions of stator total loss coefficient near stall in each bleeding location plan

    Fig.12 shows the radial distribution of the near-stall statortotal loss coefficient in each plan.In the equation of the total loss coefficients of the stators,P*inand Pinare the inlet total pressure and the static pressure of the stators,P*outis the outlet total pressure.In plan f,it is apparent that there is a great reduction in the flow loss in the areas above 40% of the blade span,and the losses in the area below 20%of the blade span are under better control.The removal of the separation and the decrease in the loss greatly improves the stator flow.

    It can be concluded that both flow mechanisms can effectively reduce the corner separation,and enhance the compressor performance. During the research,reducing the incidence angle alone cannot completely remove the large separation area near the casing.It only pushes back the starting location of the boundary layer separation on the tips near the casing and reduces the scale of separation. The compressorsurge margin hardly has any improvement. However,if the low-energy fluid in the critical area can be eliminated at the same time when the incidence angle is reduced,there is a better stator flow as the lowenergy fluid is removed and the separation is inhibited.The compressor has a comprehensive improvement in total pressure increase and surge margin.The research also indicates that too large bleeding rates bring about intensive radial flow, destruct the main flow,and increase the risk of large separation in hub region.In other words, there is an optimum value in the bleeding rate controlling the stator casing corner separation.

    4 INFLUENCES OF BLEEDING RATES

    There are different stator flow fields in plans d and f due to different bleeding rates in the analysis above.What are the similarities and dissimilarities in the stator flow field under different bleeding rates? What is the optimum bleeding rate?In order to explore the influence of different bleeding rates on the stator flow field and the performance,5 bleeding plans are presented with the same bleeding structure and location of plan d. These plans are referred to as d1—d5,and corresponding bleeding rates are 0.3%,0.6%,1%, 2% and 3%,respectively.

    4.1 Influence on total pressure increase

    Table 4 lists out the total pressure increase coefficient in each bleeding rate plan at the design point.In plan d1,the total pressure increase coefficient rises by 0.75% under a bleeding rate of 0.3%.The coefficient rises by 0.65% in plan d2 where the bleeding rate increases to 0.6%.In plan d3,the coefficient grows only by 0.15% while the bleeding rate reaches 1.0%.In plans d4 and d5,the coefficients decrease by 0.59% and 1.5% respectively when the bleeding rates keep increasing.In conclusion,there is increase in the coefficient when the bleeding rate is under 1.0%. The coefficient starts to decrease when the bleeding rate exceeds 1%.Therefore,there is an optimum value in the bleeding rates,and it is not the more the better.

    Table4 Relative value of total pressure increase coefficient in each bleeding rate plan at design point

    4.2 Influence on stator flow field

    Fig.13 presents the skin friction on the stator suction surface at the design point in each plan.Fig.14 shows the stator exit total pressure increase coefficient contours at the design point in each plan.With the bleeding rate increasing,the casing separation area starts to shrink along the radial and circumferential direction.The casing corner separation is under better control in plan d3.Its radial range is cut to 90% to 100% of the blade span,and the circumferential range also shrinks.However,the radial flow in the hub region starts to intensify and the separation area also expands when the bleeding rate grows.In plan d3,the radial range of the separation area increases to 60% of the blade span,compared to 20% of the blade span in the baseline.The circumferential influence covers up 20% of the pitch range.When the bleeding rates reach and exceed 1%,the casing corner separation gradually disappears,and the separation and the radial flow in the hub intensify.In plan d5,the casing separation completely disappears under the 3% of the bleeding rate,but larger hub separation appears and grows to 75% of the blade span.

    Fig.13 Skin friction on stator suction surface at design point in each plan

    Fig.14 Stator exit total pressure increase coefficient contours at design point in each bleeding rate plan

    Fig.15 shows the radial distributions of the stator total loss coefficient at the design point in each plan.The stator total loss coefficient in the upper half of the blade span apparently decreases with an increase in the casing bleeding rate.At the 90% of the blade span,the loss coefficient in plan d1 decreases to 0.1 from 0.3 in baseline. However,there is no significant decrease in the loss coefficient when the bleeding rate continues to grow.The loss coefficient in the lower half of the blade span increase together with the bleeding rates.The bleeding rate influences the stator total loss coefficient in the same way that stator flow field changes as shown in Figs.13,14.They both reflect how bleeding rate influences the stator flow field,and explain why the total pressure increase changes on the design points of each plan.

    Fig.15 Radial distributions of stator total loss coefficient at design point in each bleeding rate plan

    In conclusion, too much bleeding brings about intensive radial flow when removing the local separation.Furthermore,when there is large incidence angle in stators or separationin hub corner,large bleeding rates in the casing corner destroy the main flow and cause an even larger hub separation.Therefore,there is an optimum value in the bleeding rate controlling the stator casing corner separation.The value depends on the flow of the stator flow field.

    5 CONCLUSIONS

    (1)In both mechanisms about how bleeding improves the compressor performance,the elimination of low-energy fluid by bleeding plays a dominant role.The influence of bleeding on the blades incidence angle can determine the location of bleeding device.The compressor has a much better performance if both mechanisms are taken into consideration during design.

    (2)A joint bleeding structure plan bleeds 1% of the air from both the stator casing near suction side and the stator suction surface near the hub region.This plan succeeds in rising both the total pressure increase and the surge margin of compressor at the same time.Compared with the baseline condition,the total pressure increase rises by 5.88%, the flow range expands by 4.25% and the overall surge margin increases by 45.47%.

    (3)There is an optimum value in the bleeding rate controlling the stator casing corner separation.Too much bleeding brings about intensive radial flow when removing the local separation. Furthermore,when there is the large incidence angle in stators or the separation in hub corner, large bleeding rates in the casing corner destroy the main flow and cause an even larger hub separation.

    [1] Yang Yansheng,Wu Xiangyu,Lu Haiying,et al. Design manual of aircraft engine,16th volumes:Air systems and analysis of heat transfer[M].Beijing: Aviation Industry Press,2001:1-11.(in Chinese)

    [2] Zhao Bin,Li Shaobin,Hou Anpin,et al.The research on air bleed of air system in aero-engine[C]// Academic ExchangingMeeting of 15th Turbomachinery Committee of Aviation Institute.China: CSAA,2009:190-198.(in Chinese)

    [3] Andrew JY,Ronald J R.Effects of bleed air extraction on thrust level of the F404-GE-400 turbofan engine[R].NASA TM-104247,1992.

    [4] Alison B E.The effects of compressor seventh-stage bleed air extraction on performance of the F100-PW-220 afterburning turbofan engine[R].N ASA CR-179447,1991.

    [5] Wellborn S R,Michael L K.Bleed flow interactions with an axial-flow compressor powerstream[R]. AIAA Paper 2002-4057,2002.

    [6] Kerrcbroek J L,Reijnan D P,Ziminsky W S,et al. Aspirated compressors[R].ASM E Paper,GT-97-525,1997.

    [7] Merchant A A,Drela M,Kerrebrock J L,et al. Aerodynamic design and analysis of a high pressure ratio aspirated compressor stage[R].ASM E Paper, GT-2000-619,2000.

    [8] Zhou Hai,Li Qiushi,Lu Yajun.Prospects of numerical analysis of an aspirated transonic fan rotor [J].Journal of Aerospace Power,2004,19(3):408-412.(in Chinese)

    [9] Wang Songtao,Qian Jiru,Feng Guotai,et al.The research about loss reduction and separation suppress by wall suction[J].Journal of Engineering Thermophysics,2006,27(1):48-50.(in Chinese)

    [10]Conan F,Savarese S,Moteurs S.Bleed airflow CFD modeling in areodynamics simulations of jet engine compressors[R].ASM E Paper,GT-2001-0544, 2001.

    [11]Saathoff H,Stark U.Tip clearance flow in a low speed compressor and cascade[C]//Fourth European Conference on Turbomachinery.Firenze,Italy:[s. n.],2001:81-91.

    [12]Gummer V,Swoboda M,Goller M,et al.The impact of rotor tip sweep on the three-dimensional flow in a highly-loaded single stage low-speed axial compressor— Part1:design and numerical analysis[C]// Fifth European Conference on Turbomachinery. Prague,Czech Republic:[s.n.],2003.

    [13]Zhao Bin,Li Shaobin,Li Qiushi,et al.Unsteady numerical research into the impact of bleeding on axialcompressorperformance[C]//Proceeding of ASME2010 3rd Joint US-European Fluids Engineering Summer Meeting.Montreal,Canada: [s.n.], 2010:FEDSM-ICNMM2010-30228.

    [14]Joslyn H D,Dring R P. Axial compressor stator aerodynamics[J].ASM E Journal of Heat Transfer, 1985(107):485-493.

    [15]Kang S,Hirsch C.Three dimensional flow in a linear compressor cascade at design condition[R]. ASME Paper,GT91-114,1991.

    [16]Li Zhiping,Li Qiushi,Yuan Wei,et al.The experimental research on a new method for extending the axial-compressors stallmargin[J]. Journalof Aerospace Power, 2006,21(3): 485-491.(in Chinese)

    [17]Hall E J,Crook A J,Delancy R A.Aerodynamic analysis of compressor casing treatment with a3-D navier-stokes solver[R]. AIAA Paper 94-2796, 1994.

    [18]Yang H,Nuernberger D,Nicke E A.Numerical investigation of casing treatment mechanisms with a conservative mix-cell approach[R].ASM E Paper, GT-2003-28483,2003.

    猜你喜歡
    北京航空航天大學(xué)壓氣機(jī)熱力
    《北京航空航天大學(xué)學(xué)報(bào)》征稿簡則
    《北京航空航天大學(xué)學(xué)報(bào)》征稿簡則
    熱力工程造價(jià)控制的影響因素及解決
    軸流壓氣機(jī)效率評定方法
    熱力站設(shè)備評測分析
    《北京航空航天大學(xué)學(xué)報(bào)》征稿簡則
    《北京航空航天大學(xué)學(xué)報(bào)》征稿簡則
    重型燃?xì)廨啓C(jī)壓氣機(jī)第一級轉(zhuǎn)子葉片斷裂分析
    壓氣機(jī)緊湊S形過渡段內(nèi)周向彎靜子性能數(shù)值計(jì)算
    周六福520愛跑節(jié)1000人登陸西安城墻 熱力開跑
    中國寶玉石(2018年3期)2018-07-09 03:13:52
    久久久国产成人免费| 怎么达到女性高潮| 久久人妻av系列| 两性午夜刺激爽爽歪歪视频在线观看 | 免费人成视频x8x8入口观看| 精品午夜福利视频在线观看一区| 色综合婷婷激情| 亚洲熟女毛片儿| 精品一区二区三卡| 免费人成视频x8x8入口观看| 美女扒开内裤让男人捅视频| 国产精品1区2区在线观看. | 国产成人av教育| 黑人欧美特级aaaaaa片| 久久国产精品影院| 黄片小视频在线播放| 电影成人av| 欧美丝袜亚洲另类 | 亚洲在线自拍视频| 999精品在线视频| av欧美777| 男女免费视频国产| 午夜久久久在线观看| 欧美性长视频在线观看| 国产真人三级小视频在线观看| 亚洲av电影在线进入| 欧美日韩一级在线毛片| 在线观看免费高清a一片| 飞空精品影院首页| 十八禁网站免费在线| 18禁裸乳无遮挡免费网站照片 | 纯流量卡能插随身wifi吗| 一本一本久久a久久精品综合妖精| 在线观看午夜福利视频| √禁漫天堂资源中文www| www日本在线高清视频| 十八禁高潮呻吟视频| 国产免费现黄频在线看| 老司机午夜十八禁免费视频| 久久精品亚洲精品国产色婷小说| 一a级毛片在线观看| 中文字幕人妻丝袜制服| 国产亚洲欧美精品永久| 国产精品98久久久久久宅男小说| 午夜福利一区二区在线看| 免费人成视频x8x8入口观看| 久久人妻av系列| 一区二区三区激情视频| 亚洲精品粉嫩美女一区| 99热网站在线观看| 757午夜福利合集在线观看| 啦啦啦免费观看视频1| 一夜夜www| 亚洲精品乱久久久久久| 老熟妇乱子伦视频在线观看| 丰满的人妻完整版| 午夜福利在线观看吧| 免费av中文字幕在线| 色婷婷久久久亚洲欧美| 久久狼人影院| 国产黄色免费在线视频| 久久青草综合色| 久久婷婷成人综合色麻豆| 国产欧美日韩精品亚洲av| 久久午夜亚洲精品久久| 高清在线国产一区| 又黄又爽又免费观看的视频| 一区二区三区国产精品乱码| 一级,二级,三级黄色视频| 叶爱在线成人免费视频播放| 亚洲九九香蕉| 久久久久久久精品吃奶| 欧美日韩成人在线一区二区| 黄色片一级片一级黄色片| 中出人妻视频一区二区| 国产aⅴ精品一区二区三区波| 50天的宝宝边吃奶边哭怎么回事| www日本在线高清视频| 精品国产超薄肉色丝袜足j| 久久人人97超碰香蕉20202| 80岁老熟妇乱子伦牲交| 波多野结衣一区麻豆| 我的亚洲天堂| 国产男靠女视频免费网站| 黄色视频,在线免费观看| 99热网站在线观看| 亚洲欧美精品综合一区二区三区| 精品国产美女av久久久久小说| 免费看十八禁软件| 真人做人爱边吃奶动态| 久久人人97超碰香蕉20202| 久久国产精品大桥未久av| 国产成人免费观看mmmm| 亚洲欧美精品综合一区二区三区| 亚洲精品粉嫩美女一区| 精品欧美一区二区三区在线| 久久国产精品影院| 女性生殖器流出的白浆| 婷婷丁香在线五月| 亚洲中文字幕日韩| 午夜福利在线免费观看网站| 大码成人一级视频| 久久久精品区二区三区| 黑丝袜美女国产一区| e午夜精品久久久久久久| 国产精品久久久久成人av| 啦啦啦免费观看视频1| 电影成人av| 成人18禁高潮啪啪吃奶动态图| 国产亚洲一区二区精品| 亚洲九九香蕉| 久久影院123| 久久久久久免费高清国产稀缺| 亚洲精品美女久久久久99蜜臀| 一区在线观看完整版| 美女福利国产在线| 精品视频人人做人人爽| 一区在线观看完整版| 91精品国产国语对白视频| 99久久人妻综合| 香蕉丝袜av| 校园春色视频在线观看| 天堂俺去俺来也www色官网| 日韩三级视频一区二区三区| 欧美成人免费av一区二区三区 | 亚洲美女黄片视频| 黄片大片在线免费观看| 女人爽到高潮嗷嗷叫在线视频| 在线观看一区二区三区激情| 亚洲国产欧美一区二区综合| 欧美精品av麻豆av| 亚洲专区中文字幕在线| cao死你这个sao货| 国产精品一区二区在线不卡| 亚洲国产欧美日韩在线播放| 精品久久久久久久毛片微露脸| 国产麻豆69| 搡老熟女国产l中国老女人| 国产在线观看jvid| 后天国语完整版免费观看| 王馨瑶露胸无遮挡在线观看| 80岁老熟妇乱子伦牲交| 久久久精品国产亚洲av高清涩受| 在线观看免费视频日本深夜| 成在线人永久免费视频| 亚洲国产中文字幕在线视频| 大型黄色视频在线免费观看| a级毛片在线看网站| 人妻丰满熟妇av一区二区三区 | 在线观看免费日韩欧美大片| 精品国产国语对白av| 久久国产精品男人的天堂亚洲| 免费看十八禁软件| 免费一级毛片在线播放高清视频 | 天天躁夜夜躁狠狠躁躁| 中亚洲国语对白在线视频| xxxhd国产人妻xxx| 亚洲第一av免费看| 一区二区三区精品91| 久久国产亚洲av麻豆专区| 亚洲成人免费av在线播放| 欧美在线一区亚洲| 一区二区三区国产精品乱码| 国产一卡二卡三卡精品| 成人国语在线视频| 下体分泌物呈黄色| 五月开心婷婷网| 久久精品国产99精品国产亚洲性色 | 久久久久国内视频| 成人永久免费在线观看视频| 亚洲熟妇中文字幕五十中出 | 亚洲专区字幕在线| 欧美老熟妇乱子伦牲交| 操美女的视频在线观看| 精品一区二区三区视频在线观看免费 | 在线永久观看黄色视频| 老司机午夜十八禁免费视频| 妹子高潮喷水视频| 欧美老熟妇乱子伦牲交| 久久天躁狠狠躁夜夜2o2o| 国产成人免费观看mmmm| 成人18禁在线播放| 激情在线观看视频在线高清 | 精品久久蜜臀av无| 国产亚洲精品一区二区www | 黑人操中国人逼视频| 久久狼人影院| 久9热在线精品视频| 两性午夜刺激爽爽歪歪视频在线观看 | 91精品三级在线观看| 91麻豆精品激情在线观看国产 | 国产精品久久久av美女十八| 黄色女人牲交| 人成视频在线观看免费观看| 在线av久久热| 国产免费男女视频| 男女午夜视频在线观看| 女性生殖器流出的白浆| 一级片'在线观看视频| 亚洲精品中文字幕在线视频| 国产成人精品无人区| 夜夜躁狠狠躁天天躁| 涩涩av久久男人的天堂| 欧美日韩视频精品一区| 在线十欧美十亚洲十日本专区| 亚洲第一青青草原| 亚洲精品国产一区二区精华液| 免费在线观看影片大全网站| 成年人免费黄色播放视频| 精品欧美一区二区三区在线| 12—13女人毛片做爰片一| 亚洲精品中文字幕一二三四区| 黄片播放在线免费| 婷婷成人精品国产| 日韩欧美国产一区二区入口| 人人澡人人妻人| 成人av一区二区三区在线看| 午夜福利在线免费观看网站| 午夜精品在线福利| 久久精品国产99精品国产亚洲性色 | 久久精品亚洲av国产电影网| 午夜日韩欧美国产| 亚洲国产毛片av蜜桃av| 日本黄色日本黄色录像| 亚洲成a人片在线一区二区| 免费在线观看日本一区| av天堂在线播放| 久久久久久久精品吃奶| 亚洲国产中文字幕在线视频| 成人av一区二区三区在线看| 欧美日韩乱码在线| 亚洲人成伊人成综合网2020| 色老头精品视频在线观看| 国产av一区二区精品久久| 夜夜爽天天搞| 久久久国产一区二区| 成年人午夜在线观看视频| 欧美av亚洲av综合av国产av| 18禁美女被吸乳视频| 日韩欧美在线二视频 | 国产亚洲精品久久久久5区| 亚洲综合色网址| 欧美精品啪啪一区二区三区| 国产淫语在线视频| 超色免费av| 国产精品久久久久成人av| 日本黄色日本黄色录像| 最近最新中文字幕大全电影3 | 18禁黄网站禁片午夜丰满| 少妇 在线观看| 99精国产麻豆久久婷婷| 中文字幕av电影在线播放| 一区二区日韩欧美中文字幕| 中出人妻视频一区二区| videos熟女内射| tocl精华| 麻豆成人av在线观看| 欧美激情高清一区二区三区| 丝袜美足系列| 五月开心婷婷网| 国产高清国产精品国产三级| 国产高清激情床上av| 日本vs欧美在线观看视频| 超碰97精品在线观看| 天天操日日干夜夜撸| 91精品国产国语对白视频| 91麻豆精品激情在线观看国产 | 一边摸一边抽搐一进一出视频| 久久久国产精品麻豆| 正在播放国产对白刺激| 亚洲精品久久成人aⅴ小说| 精品无人区乱码1区二区| 国产99白浆流出| 大型av网站在线播放| 精品国产国语对白av| 亚洲精品美女久久久久99蜜臀| 国产精品 欧美亚洲| 男女午夜视频在线观看| 很黄的视频免费| 国产精品久久久久久精品古装| 久久99一区二区三区| 丁香六月欧美| 99在线人妻在线中文字幕 | 女人高潮潮喷娇喘18禁视频| 欧美色视频一区免费| 久热爱精品视频在线9| 中文字幕人妻丝袜制服| 欧美乱码精品一区二区三区| 久久久国产精品麻豆| 50天的宝宝边吃奶边哭怎么回事| 午夜福利一区二区在线看| 精品久久蜜臀av无| 午夜福利视频在线观看免费| bbb黄色大片| 国产无遮挡羞羞视频在线观看| 天天操日日干夜夜撸| 日韩免费高清中文字幕av| 国产亚洲欧美在线一区二区| 日日爽夜夜爽网站| 亚洲精品国产精品久久久不卡| 久久午夜综合久久蜜桃| 搡老岳熟女国产| 高清毛片免费观看视频网站 | 亚洲专区字幕在线| 俄罗斯特黄特色一大片| 9191精品国产免费久久| 精品久久久久久久毛片微露脸| 久久青草综合色| 亚洲第一青青草原| 欧美久久黑人一区二区| 欧美老熟妇乱子伦牲交| av一本久久久久| 久久国产精品男人的天堂亚洲| 精品无人区乱码1区二区| 午夜两性在线视频| 国产成人影院久久av| a级毛片黄视频| 成在线人永久免费视频| 午夜日韩欧美国产| 国产一区二区三区在线臀色熟女 | 999久久久国产精品视频| 午夜精品在线福利| 国产成人欧美| 国产熟女午夜一区二区三区| 国产无遮挡羞羞视频在线观看| 又大又爽又粗| 黑人巨大精品欧美一区二区mp4| 啪啪无遮挡十八禁网站| 成年版毛片免费区| 亚洲黑人精品在线| 亚洲午夜精品一区,二区,三区| 欧美日韩乱码在线| 欧美精品啪啪一区二区三区| 69av精品久久久久久| 老司机深夜福利视频在线观看| 黄色视频,在线免费观看| 一区二区三区国产精品乱码| 精品久久久久久久毛片微露脸| 少妇猛男粗大的猛烈进出视频| 精品人妻熟女毛片av久久网站| 正在播放国产对白刺激| 在线免费观看的www视频| 黑人猛操日本美女一级片| 国产真人三级小视频在线观看| 久久精品国产99精品国产亚洲性色 | 欧美中文综合在线视频| 久久精品aⅴ一区二区三区四区| 91麻豆av在线| 精品一品国产午夜福利视频| 免费av中文字幕在线| 日韩欧美一区视频在线观看| 欧美中文综合在线视频| 亚洲视频免费观看视频| 亚洲情色 制服丝袜| 精品乱码久久久久久99久播| 色尼玛亚洲综合影院| 一区福利在线观看| 高清在线国产一区| 日韩欧美三级三区| 久久午夜综合久久蜜桃| 亚洲成av片中文字幕在线观看| 亚洲在线自拍视频| 亚洲精品国产精品久久久不卡| 窝窝影院91人妻| 99在线人妻在线中文字幕 | 日本欧美视频一区| 欧美另类亚洲清纯唯美| 日韩欧美一区视频在线观看| 搡老乐熟女国产| 国产91精品成人一区二区三区| 欧美精品av麻豆av| 中文字幕人妻丝袜一区二区| 国产激情欧美一区二区| 精品久久久久久久毛片微露脸| 精品卡一卡二卡四卡免费| 成年人免费黄色播放视频| 欧美国产精品一级二级三级| 黑人巨大精品欧美一区二区蜜桃| 亚洲精品中文字幕一二三四区| 黄片播放在线免费| 日韩免费av在线播放| 天堂中文最新版在线下载| 久久影院123| 久久久国产欧美日韩av| 最新的欧美精品一区二区| 精品国产国语对白av| 亚洲成av片中文字幕在线观看| 精品午夜福利视频在线观看一区| 日韩免费av在线播放| 18在线观看网站| 无限看片的www在线观看| 亚洲av成人av| 欧美日韩亚洲国产一区二区在线观看 | 欧美日韩黄片免| 亚洲aⅴ乱码一区二区在线播放 | 一区二区三区激情视频| 午夜精品在线福利| 亚洲 国产 在线| 免费在线观看亚洲国产| 在线观看一区二区三区激情| 午夜成年电影在线免费观看| 欧美老熟妇乱子伦牲交| 窝窝影院91人妻| 人人妻人人澡人人爽人人夜夜| 9191精品国产免费久久| 久久精品国产亚洲av高清一级| 热99国产精品久久久久久7| 亚洲aⅴ乱码一区二区在线播放 | 捣出白浆h1v1| 啦啦啦在线免费观看视频4| 五月开心婷婷网| 91在线观看av| 最近最新中文字幕大全免费视频| 一级a爱视频在线免费观看| 欧美日韩成人在线一区二区| 天堂俺去俺来也www色官网| 亚洲av欧美aⅴ国产| 久久久久精品国产欧美久久久| 黑人猛操日本美女一级片| 午夜免费成人在线视频| 男人的好看免费观看在线视频 | av有码第一页| 婷婷丁香在线五月| 伊人久久大香线蕉亚洲五| 18禁美女被吸乳视频| 91精品国产国语对白视频| 亚洲,欧美精品.| 欧美丝袜亚洲另类 | 大型av网站在线播放| 黑人操中国人逼视频| 亚洲成人国产一区在线观看| 一级片'在线观看视频| 精品亚洲成a人片在线观看| 国产欧美亚洲国产| 亚洲综合色网址| 亚洲伊人色综图| 国产成人一区二区三区免费视频网站| 久久人妻熟女aⅴ| 精品少妇久久久久久888优播| av视频免费观看在线观看| 色婷婷av一区二区三区视频| 久久香蕉精品热| 中文字幕人妻丝袜制服| 高潮久久久久久久久久久不卡| 免费少妇av软件| 亚洲成a人片在线一区二区| 999精品在线视频| 最新的欧美精品一区二区| 欧美不卡视频在线免费观看 | 国产精品综合久久久久久久免费 | 中文字幕人妻丝袜制服| 亚洲色图av天堂| 青草久久国产| 午夜免费成人在线视频| 欧洲精品卡2卡3卡4卡5卡区| 中文字幕人妻丝袜一区二区| 在线观看舔阴道视频| 亚洲精品中文字幕一二三四区| 麻豆成人av在线观看| 久久香蕉激情| 国产在线观看jvid| 搡老乐熟女国产| 美女高潮到喷水免费观看| 精品久久久精品久久久| 亚洲精品自拍成人| 中文字幕制服av| 最新在线观看一区二区三区| 国产av一区二区精品久久| 夜夜躁狠狠躁天天躁| 一个人免费在线观看的高清视频| 老司机在亚洲福利影院| 国产成人精品无人区| 亚洲国产精品合色在线| 亚洲国产看品久久| avwww免费| 日韩有码中文字幕| 久热爱精品视频在线9| 人成视频在线观看免费观看| 高清欧美精品videossex| 亚洲av电影在线进入| 日日摸夜夜添夜夜添小说| 天堂动漫精品| 国产精品一区二区在线不卡| 国产淫语在线视频| 欧美精品av麻豆av| 一个人免费在线观看的高清视频| 水蜜桃什么品种好| 在线观看日韩欧美| 国产真人三级小视频在线观看| 制服人妻中文乱码| 大香蕉久久网| 国产精品国产高清国产av | 中文亚洲av片在线观看爽 | 在线观看一区二区三区激情| 国产在线精品亚洲第一网站| 叶爱在线成人免费视频播放| 午夜两性在线视频| e午夜精品久久久久久久| 另类亚洲欧美激情| 99精品在免费线老司机午夜| 欧美激情高清一区二区三区| 亚洲精品成人av观看孕妇| 在线观看免费午夜福利视频| av网站在线播放免费| 1024香蕉在线观看| 欧美日韩国产mv在线观看视频| 久久天躁狠狠躁夜夜2o2o| 男人舔女人的私密视频| 日韩欧美在线二视频 | 超碰成人久久| 亚洲人成电影观看| 国产亚洲精品第一综合不卡| 久久国产精品人妻蜜桃| 99精国产麻豆久久婷婷| 中文亚洲av片在线观看爽 | 丰满的人妻完整版| 亚洲国产欧美网| 亚洲五月天丁香| 久久人人97超碰香蕉20202| 国产男女内射视频| 黄色视频不卡| 手机成人av网站| 99香蕉大伊视频| 一a级毛片在线观看| 日日夜夜操网爽| 亚洲欧美一区二区三区黑人| 久久婷婷成人综合色麻豆| 中出人妻视频一区二区| 天堂√8在线中文| 在线十欧美十亚洲十日本专区| tocl精华| 午夜福利欧美成人| 免费观看精品视频网站| 天天操日日干夜夜撸| 午夜精品国产一区二区电影| 亚洲综合色网址| 欧美激情 高清一区二区三区| 精品久久久精品久久久| 国产精品成人在线| 搡老岳熟女国产| 亚洲精品久久午夜乱码| 大型av网站在线播放| 纯流量卡能插随身wifi吗| 午夜久久久在线观看| 久久久国产精品麻豆| 久热爱精品视频在线9| 亚洲人成伊人成综合网2020| 亚洲精品一二三| 香蕉久久夜色| 国产av又大| 色在线成人网| 久久青草综合色| 欧美在线一区亚洲| 日韩制服丝袜自拍偷拍| 国产人伦9x9x在线观看| 91av网站免费观看| 婷婷成人精品国产| 免费久久久久久久精品成人欧美视频| 视频区欧美日本亚洲| 亚洲一区中文字幕在线| 亚洲五月天丁香| 久久婷婷成人综合色麻豆| 精品无人区乱码1区二区| 丰满人妻熟妇乱又伦精品不卡| 日本五十路高清| 久久精品国产99精品国产亚洲性色 | 亚洲精品国产区一区二| 午夜精品在线福利| 亚洲 国产 在线| 国产单亲对白刺激| 久久精品国产清高在天天线| 日日摸夜夜添夜夜添小说| 免费女性裸体啪啪无遮挡网站| 午夜激情av网站| 欧美乱妇无乱码| 老熟女久久久| e午夜精品久久久久久久| 国产一区有黄有色的免费视频| 欧美日韩亚洲国产一区二区在线观看 | 午夜免费观看网址| 一级毛片女人18水好多| 亚洲成人国产一区在线观看| 大陆偷拍与自拍| 手机成人av网站| 亚洲精品自拍成人| 成人av一区二区三区在线看| 精品无人区乱码1区二区| 久久狼人影院| 人人澡人人妻人| 90打野战视频偷拍视频| 岛国在线观看网站| tocl精华| 日本欧美视频一区| 亚洲情色 制服丝袜| 少妇裸体淫交视频免费看高清 | 国产精品久久久久久人妻精品电影| 日韩免费高清中文字幕av| 国产成人精品在线电影| 好看av亚洲va欧美ⅴa在| 久久精品成人免费网站| 999久久久国产精品视频| 高清av免费在线| 天堂√8在线中文| 免费在线观看视频国产中文字幕亚洲| а√天堂www在线а√下载 | 欧美日韩一级在线毛片| 亚洲少妇的诱惑av| 伦理电影免费视频| 日韩熟女老妇一区二区性免费视频| 国产精品久久久久成人av| 午夜精品在线福利| 搡老岳熟女国产| 一级毛片女人18水好多| 狠狠婷婷综合久久久久久88av| 亚洲欧美日韩另类电影网站|