• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Network coding resources optimization with transmission delay constraint in multicast networks①

    2017-03-28 09:47:37QuZhijian曲志堅
    High Technology Letters 2017年1期

    Qu Zhijian (曲志堅)

    *, Fu Jia**, Liu Xiaohong*, Li Caihong*(*School of Computer Science and Technology, Shandong University of Technology, Zibo 255049, P.R.China)

    Network coding resources optimization with transmission delay constraint in multicast networks①

    Qu Zhijian (曲志堅)②

    *, Fu Jia**, Liu Xiaohong*, Li Caihong*(*School of Computer Science and Technology, Shandong University of Technology, Zibo 255049, P.R.China)

    (**School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, P.R.China)

    Minimizing network coding resources of multicast networks, such as the number of coding nodes or links, has been proved to be NP-hard, and taking propagation delay into account makes the problem more complicated. To resolve this optimal problem, an integer encoding routing-based genetic algorithm (REGA) is presented to map the optimization problem into a genetic algorithm (GA) framework. Moreover, to speed up the search process of the algorithm, an efficient local search procedure which can reduce the searching space size is designed for searching the feasible solution. Compared with the binary link state encoding representation genetic algorithm (BLSGA), the chromosome length of REGA is shorter and just depends on the number of sinks. Simulation results show the advantages of the algorithm in terms of getting the optimal solution and algorithmic convergence speed.

    network coding, genetic algorithm (GA), search space, multicast network

    0 Introduction

    Network coding provides numerous advantages over store-and-forward based routing solution[1]. In network coding research community, the network coding operations are always assumed that it has to be conducted in all coding-possible nodes to achieve the required throughput. However, it is usually the case that network coding is required only at a subset of the coding-possible nodes[2]. For example, a source node s wishes to transmit multicast messages to all of the destinations at the multicast rate of two. In order to guarantee the required multicast rate, a multicast tree may contains one to three coding nodes according to different multicast tree establishing algorithm. The problem of determining such a minimum coding nodes subset has been proved to be NP-hard[3].

    Many scholars have concentrated on this problem and worked for minimizing the number of coding nodes or links. For example, Wang, et al.[4]modified the ant colony algorithm to optimize network coding resources, and Xing, et al.[5-7]proposed some evolutionary algorithms. Qu, et al.[8]proposed an adaptive quantum-inspired evolutionary algorithm based on Hamming distance to optimize the network coding resources in multicast networks. However, their work did not take delay or delay difference constraints into account.

    Obviously, network coding will lead to increase the transmission delay and the computational overhead when combining packets in intermediate nodes[9]. To solve this problem, Wu, et al.[10]developed a joint coding and feedback scheme to improve the throughput and reliability in wireless multicast. The results showed that the delay, encoding, and decoding complexities were low even for a large number of receivers. To reduce the packets delay and minimize packet dropping probability, Yu, et al.[11]considered multiple transmission methods and integrated packet scheduling with adaptive network coding method selection, and presented a dynamic coding-aware routing metric, which could increase potential coding opportunities. Those literatures above show the necessity of researching on network coding with delay needs.

    In real-time interactive applications, the efficiency of the message transmission and the fairness among receivers should be considered as a must one. The network coding resource optimization problems under the restriction of the end-to-end delay and the delay difference among the source-destination paths (see Ref.[12] for details) will be considered. The investigation of combining network coding resource optimization with delay needs can render realistic significance.

    1 Problem formulation

    The illustration of transmission delay constraints in network coding based multicast network is shown as follows: Considering the same network scenarios in Fig.1(a), where each link has a unit capacity and source s expects to send data at rate of 2 units to the sink t1, t2, t3, and t4, respectively. The transmission delay for each link is labeled in Fig.1 and both the coding and decoding time is assumed to be 1. Note that the coding-waited time and decoding-waited time should also be highly considered.

    Figs1(a), (b), (c), and (d) are 4 kinds of data transmission schemes with different amount of coding nodes. Note that the delay from source s to the sinks just depends on the path with maximum delay among all the source-destination paths. Namely, the original information cannot be recovered until all necessary messages received by a sink are collected. For example, the delays of two paths from s to sink t1are 3 and 10, respectively in Fig.1. Hence, the practical delay between s and sink t1is 10 and the inter-destination delay difference is 20 which is the difference between 30 and 10. Here, the concept of delay difference is defined as follows:

    Fig.1 Network coding sub-graph with different coding nodes and path delay property

    Delay Difference: The maximum sink delay subtracts the minimum sink delay.

    For example, in Table 1, the maximum sink delay is 30 (t3), the minimum sink delay is 10 (t1), thus the delay difference of the multicast scenario is 20. So a triple (1, 30, 20) is got, here the first represents the coding node number, the second represents the maximum sink delay, and the third represents the delay difference of the given multicast scenario.

    Table 1 The path from s to each sink with end-to-end delay and inter-destination delay difference for Fig.1(b)

    SourceSinkPathsPathdelayDelaydifferencest1t2t3t4s-1-3-t1;s-2-4-c1-10-t1s-1-3-c1-7-t2s-2-4-c2-8-t2s-1-5-c2-8-t3s-2-6-c3-9-t3s-1-5-c3-9-t4s-2-6-t4310615203025320

    The triples of
    Figs1(b)~(d) are (1, 30, 20), (1, 24, 14), and (1, 24, 15). It is easy to understand that, even though the number of coding nodes is the same, the performance of delay is quite different in different transmission scenarios. If the maximum end-to-end delay and delay difference bounds are confirmed, the feasible transmission scenarios will be determined. This is a very important problem, but the algorithm proposed by Kim, et al. and Xing, et al. just dedicated their efforts to minimize coding nodes/links without considering the delay requirements. So their coding sub-graph may contain paths severely violating the delay constraints, which deteriorates the benefits that network coding is characterized to a certain extent.

    2 Mathematic model

    The problem is to find the minimal set of coding links where the network coding scenario is required to 1) achieve multicast rate r, 2) meet the end-to-end delay requirements, and 3) meet the inter-destination delay difference constraints. The given multicast network is represented by a directed acyclic graph G = (V, E), where V denotes the set of vertices and E is the set of edges. The capacity of each edge e∈E is unit, and if there has an edge exceeding unit capacity, it is represented by multiple unit edges. The multicast problem is considered with one source s∈V and a sink set T?V-{s}, a link delay function d:E→R+, delay tolerance Θ, delay difference Ω , and the rate r. Here rate r is an integer and it can be achievable if a transmission scheme can guarantee all |T| sinks receiving packets from the source at least rate r. More specifically, to achieve rate r, there should be at least r link-disjoint paths to each sink subject to:

    (1)

    where Pi(s,vk) denotes the i-th path from source s to the k-th sink vk.This multicast problem can be converted into a multi-objective optimization problem, and stated mathematically as

    Minimize:

    (2)

    where c represents the amount of coding links employed in network coding.

    Subject to:

    min{R(s,vi)|vi∈T, i=1,2,…,|T|}≥r

    (3)

    (4)

    (5)

    xi∈{0, 1} i=1,2,…,n

    (6)

    where symbol x including n elements, denotes the output links of an intermediate node with multiple input links. If xi=1, it means that the i-th output link must be linearly coded; otherwise, it means that no coding operation is required over this link. Here the concept of merging node is presented.

    Merging Node: The intermediate nodes which have multiple input links are called merging nodes.

    All the output links of a merging node are named as potential coding links.

    Fig.2 An example of determining the output link states of a merging node

    In Eq.(3), R(s,vi) represents the rate from source s to sink viunder the current multicast tree. To achieve the desired multicast rate r, the minimum R(s,vi) among all the sinks should observe Eq.(3). Namely, for each sink, at least r link-disjoint paths from source to each one must be guaranteed. Eqs(4) and (5) are referred to as source-destination delay constraint and inter-destination delay difference constraint, respectively. The end-to-end delay for sink viactually depends on the one that has the maximum delay among r link-disjoint paths and is calculated by δvi(i=1,2,…,|D|; vi∈D) for each sink vi, which is defined as

    (7)

    here Pj(s,vi) means the j-th path from s to sink vi. After computing the end-to-end delay of each sink, the inter-destination delay variation can be obtained by Eq.(5). Therefore, the objective is to minimize Eq.(2) subjected to Eqs(3), (4), (5) and (6). Note that in Eqs(4) and (5), the coding-waited time is not considered, which will be explained and calculated in the following REGA.

    3 Solutions

    A routing-based encoding representation approach[13]is employed to map the optimization problem to a GA framework. The given multicast topology is decomposed to a secondary graph (see more details in the Ref.[8]), and then the path array Pi(i=1,2,…,|T|) which contains all paths from s to each sink tisubject to Eq.(4) is gotten. For the i-th path array Pi, all possible combinations are selected each of which consists of r link-disjoint paths. If the number of the selected combinations is mi, the combinations are numbered sequentially from 1 to mi, and then Piis updated by micombinations. Therefore, array Piconsists of r·mipaths. Table 2 shows all possible r link-disjoint paths in array Pi.

    Table 2 Array Piincludes all possible r link-disjoint paths

    Fig.3 Integer encoding representation

    An integer encoding routing-based genetic algorithm (REGA) is presented to search the optimal solution. The flowchart of REGA is shown in Fig.4.

    The algorithm starts from an initial population Qpopcontaining k chromosomes. The fitness function is given in Eq.(8), where α is the number of coding links, λ and β are constants, dnis the number of source-destination paths, dvdenotes the maximum inter-destination delay variation and p(dv, Ω) is a penalty function which is defined in Eq.(9).

    (8)

    (9)

    When performing the algorithm, the fittest chromosome is directly copied into the new population. This elitism strategy shows great improvement for the algorithmic performance in our simulation. Roulette selection and single crossover are carried out and followed by a random mutation which helps escaping from the local optimal. Moreover, it is widely demonstrated that the infeasible chromosomes also help population evolve rapidly. Hence, according to the level of violation, different scale penalties are imposed on the infeasible solutions while determining their fitness, which speed up search from not only feasible domain but also infeasible domain.

    Fig.4 The flowchart of REGA

    4 Simulation and analysis

    To evaluate the performance of REGA, comparisons have been carried out with BLSGA[3]over the 2 fixed multicast networks and 1 random multicast network. The 2 fixed networks are 3-copy and 7-copy networks which have been used in Ref.[3]. Fig.5 illustrates an example of n-copy network, where Fig.5(a) is the original network and Fig.5(b) is a 3-copy network constructed by cascading 3 copies of the original network. For the n-copy network, the source node is at the top, and the sinks are at the bottom. According to Fig.5, it is known that the n-copy network contains n+1 sinks.

    Fig.5 Illustration the n-copy network

    The parameters of the 3 test networks shown in Table 3.

    Table 3 Network parameters

    The parameters for REGA are set as following: delay∈(0,1] with arbitrary unit which is uniformly distributed, crossover operator pc=0.8, mutation operator pm=0.1, and λ=10, β=100. In addition, the size of population (Popsize) and the number of iteration (NI) shown in following result tables vary with the size of solution space. Moreover, all simulations are run on a Windows XP computer with Intel(R) Core(TM) 2 Quad CPU, 2.40GHz, 3.25G RAM

    With regard to BLSGA, note that it is developed for a non-delay-constrained network coding resource optimization problem. Hence to provide an apple-to-apple comparison, some adjustments for BLSGA should be enforced to introduce link delay. For each individual in the population, it represents a multicast tree which is checked whether the current transmission scheme can guarantee the given multicast rate achievable. If the rate can be achieved, Ford-Fulkson algorithm is used to compute the end-to-end paths for each sink, and then the end-to-end delay for each source-destination path can be calculated. Correspondingly, the inter-destination delay variation is obtained. Due to the introduction of delay requirements, fitness function has to be adjusted and re-defined as

    (10)

    where nmaxis the number of potential coding links. The definition of dnand p(dv, Ω) is identical with that of REGA and β=100. If anyone of the constraints Eqs(3), (4), and (5) is violated, chromosome y is infeasible and corresponding penalty is added in the process of fitness evaluation.

    Before comparing the searching result under the delay restriction, the convergence speed of the 2 algorithms are tested firstly. Table 4 and Table 5 list the algorithmic parameters used in this test. Fig.6 and Fig.7 show the convergence speed over 15-copy and 31-copy networks. The index called mean network coding operation times (MNCO) is employed in the simulation, and it is defined as Eq.(11). Here ntrialsindicates the times of algorithmic trial and t is the number of evolutionary generation. b(t,i) denotes the best fitness (namely, the number of minimal coding links) so far when the population evolves to the t-th generation in the i-th trial. In the simulation ntrials=30.

    Table 4 Algorithmic parameters of REGA

    Table 5 Algorithmic parameters of BLSGA

    (11)

    In Fig.6 only 13 generation evolutions are required to hit the best solution. However, in order to get a best solution, BLSGA needs a huge population 150 and a big evolutionary generation 1000. From Fig.7, it can be seen that even using such prominent parameters, however, the performance is still worse than that of REGA. It is clear that the convergence speed of REGA is better, especially in the larger multicast networks (such as 31-copy network). The result provides a solid demonstration about the efficiency of REGA.

    Fig.6 Convergence speed of REGA

    Moreover, the simulation results about searching for the best solution under the delay restriction are shown in Table 6, Table 7, Table 8. The numeric results in a row in parentheses indicate coding number (CN), maximum end-to-end delay (MD), maximum delay difference (MDD), computational time (CT, the unit is second), Popsize, and NI, respectively. Therefor the numbers in the brackets from Table 6 to Table 8 indicate the numerical result of (CN, MD, MDD, CT, Popsize, NI) respectively. Actually, each algorithm in tables has been run for 30 times, and the best result among those 30 trials is chosen.

    From the numerical results it can be known that BLSGA even cannot find a satisfied solution. Several reasons may be responsible for this. First, due to the binary link state representation in BLSGA, the size of solution space is too large to handle, especially in such strict constraints. Thereby an increment for BLSGA on both Popsize and NI has to be imposed to promote the search ability, which extremely enhance CT. Besides, according to the chromosome encoding principle, the length of the string in REGA just depends on the number of sinks and is evidently much shorter than that of BLSGA, which can reduce the computing complexity and speed up the algorithm operation. On the other hand, compared with the constitution of solution space of REGA, BLSGA search space has too many infeasible solutions while in REGA only the solutions subject to Eqs(3) and (4) can be covered.

    Table 6 Numerical results of 3-copy network

    Table 7 Numerical results 7 copy network

    Table 8 Numerical results of random network

    Moreover, the simulation results also indicate that the coding numbers will be influenced by different delay constraints in a same multicast network. When the QoS level becomes severer, the encoding cost will increase, hence it should play a trade-off between the encoding cost and delay constraints. As for the performance of the algorithms, thanks to the RE and some excellent evolutionary schemes, such as fitness penalty and elitism strategy, REGA outperforms significantly over the BLSGA in terms of the ability to get a satisfied solution and the computational time.

    5 Conclusions

    In this study, the problem of minimizing the coding cost with required data rate and delay constraints in network coding based multicast networks is studied. An algorithm named REGA, has been proposed to address this problem. In REGA, an efficient and problem-specific local search scheme is designed to help the algorithm to obtain the optimality more quickly. Then it is demonstrated that even under the severe delay constraints, the proposed REGA can still render a feasible solution for real application in such coding resources optimization area. The distinguished suboptimal solutions obtained by REGA prove the capability and efficiency of the utility in this field.

    [1] Ahlswede R, Cai N, Li S, et al. Network information flow. IEEE Transactions on Information Theory, 2000, 46(4): 1204-1216

    [2] Minkyu K, Varun A, Una-May O, et al. Genetic representations for evolutionary minimization of network coding resources. Computer Science, 2007, 4448:21-31

    [3] Minkyu K, Médard, Aggarwal V, et al. Evolutionary approaches to minimize network coding resources. In: Proceedings of the 26th IEEE International Conference on Computer Communications, Anchorage, USA, 2007. 1991-1999

    [4] Wang Z, Xing H, Li T, et al. A modified ant colony optimization algorithm for network coding resource minimization. IEEE Transactions on Evolutionary Computation, 2016, 20(3): 325-342

    [5] Xing H, Qu R, Bai L, et al. On minimizing coding operations in network coding based multicast: an evolutionary algorithm. Applied Intelligence, 2014, 41(3): 820-836

    [6] Xing H, Qu R. A nondominated sorting genetic algorithm for bi-objective network coding based multicast routing problems. Information Sciences, 2013, 233(6): 36-53

    [7] Xing H, Qu R, Kendall G, et al. A path-oriented encoding evolutionary algorithm for network coding resource minimization. Journal of the Operational Research Society, 2014, 65(8): 1261-1277

    [8] Qu Z, Liu X, Zhang X, et al. Hamming-distance-based adaptive quantum-inspired evolutionary algorithm for network coding resources optimization. The Journal of China Universities of Posts and Telecommunications, 2015, 22(3): 92-99

    [9] Keshavarz-Haddad A, Riedi R. Bounds on the benefit of network coding for wireless multicast and unicast. IEEE Transactions on Mobile Computing, 2014, 13(1), 102-115

    [10] Wu F, Sun Y, Yang Y, et al. Constant-delay and constant-feedback moving window network coding for wireless multicast: design and asymptotic analysis. IEEE Journal on Selected Areas in Communications, 2015, 33(2): 127-140

    [11] Yu Y, Peng Y, Li X, et al. Distributed packet-aware routing scheme based on dynamic network coding. China Communications, 2016, 13(10): 20-28

    [12] Rouskas G, Baldine I. Multicasting routing with end-to-end delay and delay variation constraints. In: Proceedings of the 15th Annual Joint Conference of the IEEE Computer Societies, Networking the Next Generation, San Francisco, USA, 1996. 353-360

    [13] Hadj-Alouane A, Bean J. A genetic algorithm for the multiple-choice integer program. Operations Research, 1997, 45(1): 92-101

    Qu Zhijian, born in 1980. He received his Ph.D degrees in Information and Communication Engineering Department of Beijing University of Posts and Telecommunications in 2011. He is currently an associate professor in the School of Computer Science and Technology, Shandong University of Technology. His research interests include network coding, intelligence algorithm, and optical multicast.

    10.3772/j.issn.1006-6748.2017.01.005

    ①Supported by the National Natural Science Foundation of China (No. 61473179), Shandong Province Higher Educational Science and Technology Program (No. J16LN20), Natural Science Foundation of Shandong Province (No. ZR2016FM18) and the Youth Scholars Development Program of Shandong University of Technology.

    ②To whom correspondence should be addressed. E-mail: zhijianqu@sdut.edu.cn Received on Feb. 22, 2016

    嫩草影院入口| 国产精品欧美亚洲77777| 有码 亚洲区| 国产男女内射视频| 交换朋友夫妻互换小说| 美女脱内裤让男人舔精品视频| 国产伦在线观看视频一区| 日日啪夜夜爽| 免费黄频网站在线观看国产| 日本欧美国产在线视频| 成人18禁高潮啪啪吃奶动态图 | 成人影院久久| freevideosex欧美| 亚洲成人av在线免费| 国产日韩欧美在线精品| 欧美一级a爱片免费观看看| 直男gayav资源| 新久久久久国产一级毛片| 国产一级毛片在线| 人妻系列 视频| 超碰97精品在线观看| 亚洲欧美日韩另类电影网站| 成年人午夜在线观看视频| 99国产精品一区二区三区| 色播在线永久视频| 啦啦啦视频在线资源免费观看| 日日爽夜夜爽网站| 91精品伊人久久大香线蕉| 午夜福利影视在线免费观看| 欧美成人午夜精品| 好男人视频免费观看在线| 校园人妻丝袜中文字幕| 国产精品一区二区免费欧美 | 国产精品秋霞免费鲁丝片| 国产欧美日韩综合在线一区二区| 男女下面插进去视频免费观看| 另类亚洲欧美激情| 国产亚洲精品第一综合不卡| 欧美+亚洲+日韩+国产| 国产欧美日韩一区二区三区在线| 国产亚洲av片在线观看秒播厂| 亚洲精品国产av蜜桃| 一个人免费看片子| 精品亚洲乱码少妇综合久久| 久久精品国产a三级三级三级| 亚洲伊人色综图| 国产av一区二区精品久久| 免费少妇av软件| 成人国产一区最新在线观看 | 亚洲天堂av无毛| 午夜福利免费观看在线| 亚洲欧美一区二区三区黑人| 性色av乱码一区二区三区2| 久久精品成人免费网站| 久久久久久久久久久久大奶| 久久女婷五月综合色啪小说| 精品免费久久久久久久清纯 | 成年美女黄网站色视频大全免费| 精品福利永久在线观看| 一级片免费观看大全| 夫妻性生交免费视频一级片| 成人亚洲欧美一区二区av| 成人亚洲欧美一区二区av| 永久免费av网站大全| 永久免费av网站大全| 只有这里有精品99| 香蕉国产在线看| 免费观看a级毛片全部| 99久久精品国产亚洲精品| 国产精品秋霞免费鲁丝片| av片东京热男人的天堂| 亚洲欧美成人综合另类久久久| 亚洲国产精品一区二区三区在线| 成在线人永久免费视频| 久久中文字幕一级| 亚洲国产精品一区二区三区在线| 日韩av在线免费看完整版不卡| 老汉色av国产亚洲站长工具| 国产三级黄色录像| 精品国产乱码久久久久久男人| 国产免费福利视频在线观看| 母亲3免费完整高清在线观看| 男女下面插进去视频免费观看| 熟女av电影| 亚洲国产日韩一区二区| 天天添夜夜摸| 欧美日韩视频精品一区| 色婷婷av一区二区三区视频| 一边摸一边抽搐一进一出视频| 国产真人三级小视频在线观看| 大型av网站在线播放| 自拍欧美九色日韩亚洲蝌蚪91| 成年人午夜在线观看视频| 在线观看免费视频网站a站| 天天操日日干夜夜撸| 美女扒开内裤让男人捅视频| 少妇 在线观看| 欧美变态另类bdsm刘玥| 亚洲精品自拍成人| 久久国产精品人妻蜜桃| 天天躁夜夜躁狠狠躁躁| 精品久久久久久久毛片微露脸 | 国产精品亚洲av一区麻豆| 婷婷色综合www| av在线老鸭窝| 国产成人精品久久二区二区91| 一级片'在线观看视频| 9热在线视频观看99| 国产午夜精品一二区理论片| 大香蕉久久成人网| 亚洲中文日韩欧美视频| 国产野战对白在线观看| 日韩av不卡免费在线播放| 免费不卡黄色视频| 老司机影院成人| 国产主播在线观看一区二区 | www.自偷自拍.com| 免费女性裸体啪啪无遮挡网站| 久久久久国产一级毛片高清牌| 老司机影院成人| 搡老岳熟女国产| 国产女主播在线喷水免费视频网站| 亚洲欧洲日产国产| 晚上一个人看的免费电影| 女性生殖器流出的白浆| 亚洲精品乱久久久久久| 一边摸一边做爽爽视频免费| 性高湖久久久久久久久免费观看| 自拍欧美九色日韩亚洲蝌蚪91| 97人妻天天添夜夜摸| 久久久欧美国产精品| 亚洲五月婷婷丁香| 午夜日韩欧美国产| 午夜免费男女啪啪视频观看| 女警被强在线播放| 一本久久精品| 国产精品久久久人人做人人爽| 欧美亚洲 丝袜 人妻 在线| 久久青草综合色| 自线自在国产av| 国产精品av久久久久免费| av又黄又爽大尺度在线免费看| a级毛片黄视频| 亚洲国产精品999| 日本一区二区免费在线视频| 欧美 亚洲 国产 日韩一| 青春草视频在线免费观看| 国产精品国产三级专区第一集| 国产成人av激情在线播放| 在线亚洲精品国产二区图片欧美| 国产av精品麻豆| 中文精品一卡2卡3卡4更新| 97精品久久久久久久久久精品| 人妻一区二区av| 国产成人一区二区三区免费视频网站 | 老司机亚洲免费影院| 午夜福利乱码中文字幕| av福利片在线| 美女国产高潮福利片在线看| 19禁男女啪啪无遮挡网站| 一区二区av电影网| 狂野欧美激情性bbbbbb| 国产免费现黄频在线看| 国产精品 欧美亚洲| 激情视频va一区二区三区| 国产精品九九99| 首页视频小说图片口味搜索 | 精品国产乱码久久久久久小说| netflix在线观看网站| 成年动漫av网址| 青草久久国产| 在线 av 中文字幕| 日韩,欧美,国产一区二区三区| 亚洲伊人久久精品综合| 久久人人爽人人片av| 视频区欧美日本亚洲| 久久久国产一区二区| 欧美日韩黄片免| 亚洲九九香蕉| 91老司机精品| 在线观看免费视频网站a站| 两性夫妻黄色片| 国产成人精品久久二区二区免费| 免费看不卡的av| 精品熟女少妇八av免费久了| 日本欧美国产在线视频| 国产精品九九99| 一级片'在线观看视频| 亚洲av综合色区一区| 国产高清不卡午夜福利| 一级毛片电影观看| 嫩草影视91久久| 交换朋友夫妻互换小说| 午夜日韩欧美国产| 亚洲精品一二三| 黄色片一级片一级黄色片| 久久精品亚洲熟妇少妇任你| 欧美激情 高清一区二区三区| 亚洲av成人精品一二三区| 国产片特级美女逼逼视频| 尾随美女入室| 婷婷丁香在线五月| 久久久久久久国产电影| 亚洲av国产av综合av卡| 亚洲精品国产av成人精品| 80岁老熟妇乱子伦牲交| 免费不卡黄色视频| 每晚都被弄得嗷嗷叫到高潮| 一级,二级,三级黄色视频| 国产99久久九九免费精品| 男女午夜视频在线观看| 久久99精品国语久久久| 国产精品久久久久成人av| 欧美老熟妇乱子伦牲交| 又粗又硬又长又爽又黄的视频| 婷婷成人精品国产| 国产成人精品久久二区二区91| 校园人妻丝袜中文字幕| 赤兔流量卡办理| 最黄视频免费看| 久久久久网色| 久久国产精品大桥未久av| 伦理电影免费视频| 国产真人三级小视频在线观看| 国产熟女午夜一区二区三区| 亚洲欧美一区二区三区国产| 美女脱内裤让男人舔精品视频| 欧美久久黑人一区二区| 久久狼人影院| 精品久久久久久电影网| 亚洲精品在线美女| 交换朋友夫妻互换小说| 真人做人爱边吃奶动态| 欧美老熟妇乱子伦牲交| 各种免费的搞黄视频| 一区二区三区激情视频| 亚洲一码二码三码区别大吗| 精品高清国产在线一区| 在线精品无人区一区二区三| 亚洲欧洲日产国产| 搡老岳熟女国产| 99香蕉大伊视频| 在线 av 中文字幕| 人体艺术视频欧美日本| 久久精品久久精品一区二区三区| 国产午夜精品一二区理论片| 国产一区亚洲一区在线观看| 伊人久久大香线蕉亚洲五| 日韩av在线免费看完整版不卡| 午夜91福利影院| 高清视频免费观看一区二区| 午夜久久久在线观看| 中文字幕制服av| av网站免费在线观看视频| 久久青草综合色| 一区二区日韩欧美中文字幕| 可以免费在线观看a视频的电影网站| 婷婷色av中文字幕| 久久99一区二区三区| 91精品伊人久久大香线蕉| 91麻豆精品激情在线观看国产 | 免费在线观看视频国产中文字幕亚洲 | videosex国产| 日本一区二区免费在线视频| 亚洲成人免费电影在线观看 | 免费看av在线观看网站| 婷婷色麻豆天堂久久| 一级毛片我不卡| 中文字幕人妻丝袜一区二区| 中文字幕最新亚洲高清| 一区二区日韩欧美中文字幕| 午夜激情久久久久久久| 国产亚洲精品第一综合不卡| 国产成人一区二区三区免费视频网站 | 少妇被粗大的猛进出69影院| 久久久精品国产亚洲av高清涩受| 免费看av在线观看网站| 十八禁人妻一区二区| 久久久久网色| 欧美xxⅹ黑人| 丰满少妇做爰视频| 女人久久www免费人成看片| 亚洲精品国产色婷婷电影| 国产亚洲精品第一综合不卡| 麻豆国产av国片精品| 亚洲欧美中文字幕日韩二区| 男女免费视频国产| 美国免费a级毛片| 久久鲁丝午夜福利片| svipshipincom国产片| videos熟女内射| 成人黄色视频免费在线看| 国产精品久久久久久精品电影小说| 夫妻性生交免费视频一级片| 少妇猛男粗大的猛烈进出视频| 欧美激情 高清一区二区三区| 中文精品一卡2卡3卡4更新| 乱人伦中国视频| 一区在线观看完整版| 亚洲欧美日韩另类电影网站| 日韩人妻精品一区2区三区| 不卡av一区二区三区| 五月开心婷婷网| 国产成人av激情在线播放| 成人午夜精彩视频在线观看| 婷婷丁香在线五月| 搡老岳熟女国产| 国产麻豆69| 久久久久久免费高清国产稀缺| 亚洲国产欧美一区二区综合| 五月天丁香电影| 欧美日韩综合久久久久久| 免费在线观看日本一区| 欧美激情 高清一区二区三区| 国产男女内射视频| 欧美在线黄色| 色综合欧美亚洲国产小说| 韩国精品一区二区三区| 精品熟女少妇八av免费久了| 午夜精品国产一区二区电影| 久久九九热精品免费| 亚洲五月色婷婷综合| 永久免费av网站大全| 最近手机中文字幕大全| 老司机影院毛片| 黄色毛片三级朝国网站| 国产精品二区激情视频| 久久综合国产亚洲精品| kizo精华| 国产视频首页在线观看| 亚洲精品一二三| 黑人猛操日本美女一级片| 日韩视频在线欧美| 欧美日韩亚洲国产一区二区在线观看 | 叶爱在线成人免费视频播放| 天天躁日日躁夜夜躁夜夜| www.av在线官网国产| 亚洲精品久久午夜乱码| 九草在线视频观看| 男男h啪啪无遮挡| 中文字幕人妻丝袜一区二区| 午夜免费鲁丝| 一本一本久久a久久精品综合妖精| 国产人伦9x9x在线观看| 另类亚洲欧美激情| 丰满人妻熟妇乱又伦精品不卡| 日本欧美视频一区| 大码成人一级视频| 国产日韩欧美亚洲二区| 亚洲精品乱久久久久久| 免费少妇av软件| 各种免费的搞黄视频| 亚洲av在线观看美女高潮| 精品熟女少妇八av免费久了| 伊人久久大香线蕉亚洲五| 亚洲熟女精品中文字幕| 国产成人欧美| 免费人妻精品一区二区三区视频| 一二三四在线观看免费中文在| 在线看a的网站| 久久青草综合色| 亚洲国产精品999| 欧美精品av麻豆av| 日韩欧美一区视频在线观看| 国产成人啪精品午夜网站| 91成人精品电影| 国产一区二区在线观看av| 亚洲专区中文字幕在线| 精品久久久久久电影网| 亚洲国产精品国产精品| 免费不卡黄色视频| 国产成人系列免费观看| 日韩av免费高清视频| 亚洲第一av免费看| 国产精品免费大片| 久久久欧美国产精品| 精品一区在线观看国产| 久久av网站| 9色porny在线观看| 欧美日本中文国产一区发布| 午夜日韩欧美国产| 中文字幕人妻丝袜制服| av不卡在线播放| 欧美激情高清一区二区三区| 色婷婷久久久亚洲欧美| 久久免费观看电影| 一级黄片播放器| 国产成人影院久久av| 久久久久国产精品人妻一区二区| 久久精品成人免费网站| 国产精品免费视频内射| 欧美精品一区二区免费开放| 中文字幕亚洲精品专区| 国产成人av教育| 国产爽快片一区二区三区| 亚洲欧美成人综合另类久久久| 韩国精品一区二区三区| 亚洲免费av在线视频| 日本91视频免费播放| 少妇的丰满在线观看| 天天影视国产精品| 国产精品 欧美亚洲| 另类亚洲欧美激情| 精品少妇久久久久久888优播| 国产在线视频一区二区| 色播在线永久视频| 亚洲欧美精品自产自拍| 曰老女人黄片| a级毛片在线看网站| 久久人人爽人人片av| 只有这里有精品99| 国产高清视频在线播放一区 | 国产成人a∨麻豆精品| 精品久久久久久久毛片微露脸 | 麻豆乱淫一区二区| 国产熟女午夜一区二区三区| av天堂在线播放| 首页视频小说图片口味搜索 | 高潮久久久久久久久久久不卡| 欧美黑人欧美精品刺激| 真人做人爱边吃奶动态| 大陆偷拍与自拍| 2021少妇久久久久久久久久久| 大型av网站在线播放| 欧美精品亚洲一区二区| 婷婷色麻豆天堂久久| 一级黄片播放器| 免费高清在线观看视频在线观看| 啦啦啦啦在线视频资源| 日本一区二区免费在线视频| 国产成人系列免费观看| 伦理电影免费视频| 亚洲国产日韩一区二区| 一本久久精品| 日韩av不卡免费在线播放| 性色av一级| 久9热在线精品视频| 亚洲图色成人| 中文精品一卡2卡3卡4更新| 赤兔流量卡办理| 午夜免费鲁丝| 美女脱内裤让男人舔精品视频| 亚洲精品日本国产第一区| 亚洲精品日韩在线中文字幕| 亚洲国产成人一精品久久久| 亚洲成国产人片在线观看| 欧美在线黄色| 9色porny在线观看| 午夜福利在线免费观看网站| 美女国产高潮福利片在线看| 欧美精品一区二区免费开放| 精品人妻1区二区| 久久久国产一区二区| 亚洲第一青青草原| 热99国产精品久久久久久7| 欧美激情高清一区二区三区| 久久久久国产精品人妻一区二区| 观看av在线不卡| 亚洲av在线观看美女高潮| 狂野欧美激情性xxxx| 久久亚洲精品不卡| 久久久久久久久免费视频了| 国产高清不卡午夜福利| 国产精品一区二区精品视频观看| 国产精品成人在线| 丝瓜视频免费看黄片| 日韩大片免费观看网站| 两个人免费观看高清视频| 精品少妇久久久久久888优播| 成人亚洲欧美一区二区av| 曰老女人黄片| 日本午夜av视频| 精品亚洲成国产av| 国产精品 欧美亚洲| 一二三四社区在线视频社区8| 丰满少妇做爰视频| 1024视频免费在线观看| 男人舔女人的私密视频| 成人三级做爰电影| 欧美黄色片欧美黄色片| 午夜日韩欧美国产| 日韩人妻精品一区2区三区| 人人澡人人妻人| 亚洲av日韩精品久久久久久密 | 蜜桃在线观看..| 啦啦啦视频在线资源免费观看| 国产伦人伦偷精品视频| 精品少妇一区二区三区视频日本电影| 国产国语露脸激情在线看| 免费少妇av软件| 久久人人爽av亚洲精品天堂| 亚洲九九香蕉| 欧美 亚洲 国产 日韩一| 大话2 男鬼变身卡| 欧美 亚洲 国产 日韩一| 老司机在亚洲福利影院| 亚洲 欧美一区二区三区| 一本综合久久免费| 亚洲成人免费av在线播放| 国产熟女午夜一区二区三区| 91老司机精品| 国产不卡av网站在线观看| 久久久久国产一级毛片高清牌| 国产一级毛片在线| 久久九九热精品免费| 国产精品久久久久成人av| 亚洲国产精品一区二区三区在线| 免费在线观看视频国产中文字幕亚洲 | 欧美日韩福利视频一区二区| 亚洲熟女毛片儿| www.av在线官网国产| 久久热在线av| 男女无遮挡免费网站观看| 亚洲色图 男人天堂 中文字幕| 狂野欧美激情性bbbbbb| 国产欧美日韩精品亚洲av| 久久青草综合色| 亚洲人成77777在线视频| 国产成人免费无遮挡视频| 精品国产一区二区三区久久久樱花| 一二三四在线观看免费中文在| 日本一区二区免费在线视频| 亚洲精品国产av蜜桃| 99精品久久久久人妻精品| 欧美成人精品欧美一级黄| 男的添女的下面高潮视频| 丝袜脚勾引网站| 免费在线观看黄色视频的| 天天影视国产精品| 脱女人内裤的视频| 99国产精品一区二区蜜桃av | 亚洲男人天堂网一区| 丰满少妇做爰视频| 久久99精品国语久久久| 极品少妇高潮喷水抽搐| 日本vs欧美在线观看视频| 亚洲精品一二三| 女人爽到高潮嗷嗷叫在线视频| 国产男女超爽视频在线观看| 国产精品国产三级国产专区5o| 七月丁香在线播放| 亚洲视频免费观看视频| 成人影院久久| 免费观看人在逋| 免费看av在线观看网站| 中文精品一卡2卡3卡4更新| 欧美在线黄色| 久久 成人 亚洲| 国产有黄有色有爽视频| 精品福利观看| 国产黄色免费在线视频| 在线观看人妻少妇| 9色porny在线观看| 国产在线观看jvid| 亚洲色图综合在线观看| a级毛片在线看网站| 亚洲伊人色综图| 国产一区二区在线观看av| 91麻豆精品激情在线观看国产 | 韩国高清视频一区二区三区| 汤姆久久久久久久影院中文字幕| 午夜福利视频在线观看免费| 黄色怎么调成土黄色| 99re6热这里在线精品视频| 天堂8中文在线网| 免费女性裸体啪啪无遮挡网站| 国产成人欧美| 国产极品粉嫩免费观看在线| 久久久欧美国产精品| 一本久久精品| 日本午夜av视频| 久久精品aⅴ一区二区三区四区| 亚洲成人手机| 丝袜人妻中文字幕| 国产无遮挡羞羞视频在线观看| 可以免费在线观看a视频的电影网站| 日本黄色日本黄色录像| 国产精品99久久99久久久不卡| 99久久精品国产亚洲精品| 高清视频免费观看一区二区| 国产片特级美女逼逼视频| 人人妻人人澡人人看| 亚洲少妇的诱惑av| 欧美久久黑人一区二区| 国产成人精品无人区| 国产深夜福利视频在线观看| 国产一区二区 视频在线| 久久99一区二区三区| 韩国精品一区二区三区| av天堂久久9| 91精品三级在线观看| 777久久人妻少妇嫩草av网站| 国产成人91sexporn| 99国产精品免费福利视频| 免费日韩欧美在线观看| 色精品久久人妻99蜜桃| 国产日韩欧美亚洲二区| 久久精品久久精品一区二区三区| 久久av网站| 又黄又粗又硬又大视频| 久久精品久久久久久噜噜老黄| 18禁国产床啪视频网站| 久久人人爽av亚洲精品天堂| 国产三级黄色录像| av电影中文网址| 日韩一本色道免费dvd| tube8黄色片| 久久国产亚洲av麻豆专区| 最新的欧美精品一区二区| 黑人巨大精品欧美一区二区蜜桃| 国产人伦9x9x在线观看| 大话2 男鬼变身卡| 国产深夜福利视频在线观看| 久久久国产一区二区| 男女床上黄色一级片免费看|