• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Segments-based progressive TIN densification filter for DTM generation from airborne LIDAR data①

    2017-03-28 09:47:33XuYingYueDongjieQiuZhiwei
    High Technology Letters 2017年1期

    Xu Ying (許 穎), Yue Dongjie, Qiu Zhiwei

    (*Ministry of Water Resources Key Laboratory for the Process and Control of Soil and Water Loss in Loess Plateau, Zhengzhou 450003, P.R.China) (**School of Earth Sciences and Engineering, Hohai University, Nanjing 211100, P.R.China)

    Segments-based progressive TIN densification filter for DTM generation from airborne LIDAR data①

    Xu Ying (許 穎)***, Yue Dongjie②**, Qiu Zhiwei**

    (*Ministry of Water Resources Key Laboratory for the Process and Control of Soil and Water Loss in Loess Plateau, Zhengzhou 450003, P.R.China) (**School of Earth Sciences and Engineering, Hohai University, Nanjing 211100, P.R.China)

    Airborne light detection and ranging (LIDAR) has revolutionized conventional methods for digital terrain models (DTMs) acquisition. Ground filtering for airborne LIDAR is one of the core steps taken to obtain a high quality DTM. This paper presents a segments-based progressive TIN (triangulated irregular network) densification (SPTD) filter that can automatically separate ground points from non-ground points. The SPTD method is composed of two key steps: point cloud segmentation and clustering by iterative judgement. The clustering method uses the dual distance to obtain a set of seed points as a coarse spatial clustering process. Then the rest of the valid point clouds are classified iteratively. Finally, the datasets provided by ISPRS are utilized to test the filtering performance. In comparison with the commercial software TerraSolid, the experimental results show that the SPTD method in this paper can avoid single threshold restrictions. The expected accuracy of ground point determination is capable of producing reliable DTMs in the discontinuous areas.

    airborne light detection and ranging (LIDAR), point cloud, ground filtering, triangulated irregular network (TIN), digital terrain models (DTMs)

    0 Introduction

    Airborne light detection and ranging (LIDAR) technology makes it possible to acquire the Earth’s 3D surface information more directly and conveniently. Compared with photogrammetric systems and field surveys, a LIDAR system provides an accurate and fast alternation for obtaining information over large areas at high resolution and is more and more popular in generating digital terrain models (DTMs)[1]. So far, the applications of airborne LIDAR mainly include 3D reconstruction of a digital city[2], building reconstruction[3], coastline monitoring[4], power line reconstruction[5], forest inventorying[6], and so on. Among them, the extraction of accurate ground points, that is, ground filtering, is a key step of this process for the generation of the DTM. Airborne LIDAR technology is now used to produce regional and national DEM products in USA and European countries[7].

    So far, many ground filtering approaches to airborne LIDAR data have been proposed in the existing literature[8]. Generally speaking, the ground filtering methods can be divided into four categories. For a slope-based filter, it is assumed that slopes between terrain and objects in a landscape are distinctively different. If the difference in elevation exceeds the preset threshold, the point with the lower elevation will be recognized as the terrain in generating the DTM[9]. In the interpolation-based approach, the best-fitting surface of the ground is generated by linear regression. Iterative computation can restrain high frequency data, nevertheless it may give rise to excessive erosion of terrain[10,11]. The morphology-based approach is based on a series of morphological operations to obtain the approximate terrain surface, such as openings and closings. Different window sizes provide a method of choosing these parameters when considering height differences. In general, a suitable structuring element plays an important role when considering filtering accuracy[12,13]. In the clustering-based approach, the structural differences between two points will not be the only criterion of terrain structure. This approach involves the relations among the set of points in the same class[14]. Thus it can be seen that the clustering segmentation-based approach is more suitable for distinguishing ground and non-ground points.

    A segmentation method with local characteristics of point clouds is put forward by Sithole George, and later another method based on scan line segmentation is presented, respectively[15,16]. Under the assumption that the non-ground segments are higher than the ground segments, the clustering is implemented on the basis of the heights between different neighboring segments. In general, if only the topological relationship of the segments and the height information are considered in the process of clustering, unreasonable clustering results may be obtained or the loss of effective information may occur, so it is more reasonable to involve the characteristic information for clustering.

    To generate high quality DTMs in complex terrain, this article develops a segments-based progressive TIN densification (SPTD) filtering algorithm by combining it with a clustering method. The SPTD method first analyses raw LIDAR data by removing outliers and multiple echo analysis. Ground seed segments are acquired through a clustering method considering the spatial attribute and the non-spatial attribute. The remaining segments are selected as the basic processing unit for the progressive TIN densification. The reliability and effectiveness of the algorithm proposed in this paper are verified by the corresponding experiments.

    1 Segments-based progressive TIN densification filter

    In this section, SPTD filter for distinguishing ground points and non-ground points for the generation of DTM from airborne LIDAR data is proposed. Firstly, point cloud data are described as an octree index structure and then segmented based on plane fitting. Secondly, a coarse spatial clustering process is implemented to obtain a set of seed points. Thirdly, instead of a single point, the segment region is selected as the basic processing unit for the densification of the terrain segments.

    1.1 Obtaining the seed segments

    1.1.1 Point cloud segmentation

    The purpose of point cloud segmentation is to divide the input data into several clusters with the characteristics of connection and coherence. The segmentation method in this paper is based on the octree, and the concrete steps are described as follows:

    a) A point cloud index vector is set up to store the point clouds index information; that is, every detected point cloud cluster will be preserved here.

    b) In the process of segmentation, discrete points will be divided continuously until all subsets contain a plane only. That is to say, the segment points extracted from the whole point cloud data belong to the plane corresponding to the estimated parameters or the planar distance does not exceed a preset threshold. The estimation of the plane characteristic is finished by plane fitting, and PCA (principal component analysis) is used for plane fitting.

    c) At last, it is necessary to generate connected graphs which are used to describe the adjacency relations between segment regions.

    1.1.2 Integrative clustering

    Point cloud clustering is to combine different groups on the basis of segmentation. The similarity of point data should be kept as weak as possible for different groups and as high as possible for the same group. As inherent dual attributes of spatial data, the spatial attribute requires a spatial adjacency for the similar elements, and the non-spatial attribute requires that the greatest similarity is maintained between the elements. When both of these attributes are considered, the approach is called integrative clustering. The normal vector, Gaussian curvature, and mean curvature, which indirectly reflect the non-spatial attribute characteristics of the points, are the geometric representation of the surface shape, so they can be accepted as the feature vector in the clustering process.

    In this paper, let P be the set of 3D spatial elements denoted as pi(xi, yi, zi) and let P={p1, p2,…, pn}(n≥2); the dimension of non-space is m. According to the characteristics of the airborne LIDAR point cloud, the eigenvector ri=(xi, yi, zi, ai, bi, ci, Ki, Hi) obtained by PCA estimation is adopted, where (ai, bi, ci), Ki, Hiare normal vectors, and as the Gaussian curvature and mean curvature parameter of the point. Then, for 1≤i, j≤n, the distance between piand pjis expressed in

    d(i, j)=

    (1)

    where ‖·‖ represents the two-norm, ppis the coordinate value of all points, pnis the normal vector of the corresponding points, and pcis the curvature of the corresponding points.

    The detection of seed segments based on the integrative clustering is specified as follows:

    (1) According to the results of octree segmentation, the initial k categories are obtained, and then the clustering centres are calculated and denoted as m1(0), m2(0),…, mk(0).

    (2) The distance between each category and the adjacent categories is calculated on the basis of Eq.(1). If the distance is less than a certain threshold, the category and its adjacent category are merged; else, the process proceeds to the next step.

    (3) In the light of step 1, the centres of each category are updated, and then the updated clustering centres denoted as m1(t), m2(t),…,mk(t) are obtained.

    (4) Step 2 is repeated until the values of the category remain unchanged.

    1.2 Densification of the terrain based on segments

    For the rough classification, this paper proposes an iterative refinement judgment methodology with ground triangulation densification based on segment blocks. The progressive TIN densification proposed by Axelsson gradually generates triangulations with the original LIDAR point clouds data, preserving the corrective points as ground points in accordance with certain conditions and removing the other non-ground points[10]. This method has been successfully applied to the commercial software TerraSolid. However, the deficiency of the classic filtering algorithm inevitably leads to the misclassification of ground points and non-ground points. In order to overcome this shortcoming, this article generates a TIN with segment regions instead of single points. The ground clusters are selected on the basis of larger clusters.

    1.3 Process of DTM generation

    A flow chart of the main steps of the SPTD method is shown in Fig.1.

    Firstly, the outliers of the LIDAR point clouds are removed by statistical analysis techniques. Secondly, the single and the last echo signals are selected as the experimental data based on multiple-echo information analysis[17]. Then the selected points are processed by the SPTD method. The advantage of this method is that the TIN generation uses segment regions instead of single points.

    2 Experiments and analysis of results

    2.1 Test data

    The test data and reference data were acquired with an Optech ALTM scanner over the Vaihingen/Enz test field and Stuttgart city centre as part of the second phase of the OEEPE project[16]. These data from ISPRS Commission III, Working Group III, are employed to test the filtering effect of the SPTD method and to compare the DTMs with the classic filtering method in the meantime. In this paper, CSite2, sample 23, and sample 24, which include discontinuous terrain, are selected as the test data. The reference data generated by manually filtering the datasets contain some discontinuous terrain for testing the filtering accuracy, such as steep slopes and ridges, high frequency of relief, discontinuous ditches, and so on. In the datasets, all points are labelled as “ground points” or “non-ground points”. Detailed descriptions of the landscape features included are given in Ref.[18].

    Fig.1 Flow chart of DTM generation by the SPTD method

    2.2 Filtering

    CSite2 is located in an urban area.Fig.2(a)-(d) shows the filtering procedure of the proposed filtering method. The LIDAR data are preprocessed before SPTD. In this process, the outliers are removed by the statistical analysis technique, as they are one of the circumstances that restrict the SPTD accuracy, and as the last and the first echoes are collected in the experimental data, the paper selects the last echoes for the next step by analysing the multiple echo information[17].

    Fig.2(a) shows the pre-processing results. A rough classification identified as ground points is obtained as shown in Fig.2(b) in the filtering process of the SPTD method. The construction of TIN by the points in Fig.2(b) is shown in Fig.2(c). Finally, through the densification of the terrain based on segments, the airborne LIDAR point clouds classification is finished, as shown in Fig.2(d). The result of the filter on CSite2 suggests that the SPTD method is capable of removing a large proportion of object measurements. Obviously, the ground area consists of many major clusters, while the distribution of other points is scattered.

    Fig.2 Filtering process for CSite2

    2.3 DTM production

    The terrain point clouds are obtained according to the point clouds classification. Three DTMs are computed: one with reference data, the second using the proposed method, and the last using the commercial software Terrasolid.Fig.3 and Fig.4 show the digital surface model (DSM) and the DTMs obtained by several filters of sample 23 and sample 24 respectively. From the difference between Fig.3(c) and Fig.3(d), it is obvious that the advantage of the SPTD method is that it can preserve the ground characteristics in areas with discontinuous terrain compared with Fig.3(b), as shown in the ellipse regions.

    DTM of sample 23 generated by SPTD is closer to reference DTM than that obtained by the software. At the same time,Fig.4 reveals that there is less difference between the DTMs produced by the reference data and the Terrasolid method. The DTM generated by Terrasolid expresses a small difference in the discontinued areas, as shown in the black ellipse regions.

    2.4 Performance analysis

    The above qualitative assessments are carried out by visually comparing the SPTD results and the DTMs. The quantitative assessment of the filtering results is of the greatest importance for the generation of a high quality DTM. As described in the literature, the error is divided into three types, respectively: type I error (classify ground points as object points), type II error (classify non-ground points as ground points), and the total error is the percentage of any misclassified points[15]. The three types of errors of the SPTD method for all the samples from ISPRS benchmark dataset are listed in Table 1. Three kinds of errors can be obtained using Eq.(2):

    Fig.3 Difference between reference DTM and generated DTM for sample

    Fig.4 Difference between reference DTM and generated DTM for sample 24

    (2)

    Fig.3 and Fig.4 show the qualitative assessments for sample 23 and sample 24. In order to obtain the filtering results of quantitative assessment, Table 2 and Table 3 show the comparison of three errors of SPTD and the eight classical filtering for sample 23 and sample 24. The total errors of SPTD and the well-known filters (including MHC method) for the 15 reference samples are listed in Fig.5.

    Table 1 Quantitative evaluation of filtering effect

    Table 2 Comparison of three errors of SPTD and the eight classical filtering for sample 23

    Table 3 Comparison of three errors of SPTD and the eight classical filtering for sample 24

    Fig.5 Total error (%) of the filtering results compared with the data of 15 ISPRS samples

    SPTD errors are shown in Table 1. Table 2 and Table 3 show the comparison of three errors of SPTD and the eight classical filtering. The results show that SPTD has the best classification results for sample 23 in terms of type II error, the type I error and total error are slightly higher than that of Axelsson, but much lower than those of the other seven methods (Table 2). In terms of total error, SPTD has the best classification results in most test sites (Fig.5). The suggested method can achieve high accuracies and the total errors are less than that obtained by the classical algorithm and the MHC (multiresolution hierarchical classification) algorithm proposed by Ref.[18] in most cases. SPTD has a heavy bias towards type II errors for sample 24 (Table 3), it still needs to be improved in areas of sparse vegetation. Therefore, the SPTD method is more suitable for high quality DTM generation.

    3 Conclusions

    In automatic DTM generation, many ground filtering methods have been developed to tackle the difficulty of separating terrain from non-terrain points, which is one of the important issues in LIDAR applications. The paper introduces a segments-based filtering algorithm dedicated to DTM generation in disconnected terrain. The filtering procedure is carried out using ISPRS CSite2. The resulting DTM is evaluated using the reference DTM and compared with the software DTM. A further performance evaluation is carried out using three types of errors. According to the study of the SPTD method, the improvement of integrative clustering and segments-based iteration can reduce the type I error, such result appears promising for computing high-quality DTMs in complex environments. Further researches will focus on the efficiency and robustness of SPTD based on the combination of GPU and image to complex landscapes.

    [1] Guan H, Li J, Yu Y, et al. Dem generation from lidar data in wooded mountain areas by cross-section-plane analysis. International Journal of Remote Sensing, 2014, 35(3): 927-948

    [2] Chen Z, Devereux B, Gao B, et al. Upward-fusion urban DTM generating method using airborne LIDAR data. Isprs Journal of Photogrammetry & Remote Sensing, 2012, 72(3):121-130

    [3] Stal C, Tack F, Maeyer P D, et al. Airborne photogrammetry and LIDAR for DSM extraction and 3D change detection over an urban area: a comparative study. International Journal of Remote Sensing, 2013, 34: 1087-1110

    [4] Chen X Y, Lai Z L, Li W H, et al. Research on some key technologies of features extraction from LIDAR data in coastal zone. In: Proceedings of the IEEE International Conference on Information Engineering & Computer Science, Wuhan, China, 2009. 1-3

    [5] Jwa Y, Sohn G B, Kim H. Automatic 3d powerline reconstruction using airborne lidar data. International Archives of the Photogrammetry & Remote Sensing and Spatial Information Sciences, 2009, 38(P3/W8):105-110

    [6] Liu Q W, Li Z Y, Chen E X, et al. Estimating biomass of individual trees using point cloud data of airborne LIDAR. Chinese High Technology Letters, 2010, 20(7): 765-770 (In Chinese)

    [7] Lee I. A feature based approach to automatic extraction of ground points for DTM generation from LIDAR data. In: Proceedings of the ASPRS Annual Conference, Denver, USA, 2004. 23-28

    [8] Li F. A Research on Filtering and Classification of Airborne LiDAR Point Clouds: [Ph.D dissertation]. Beijing: College of Geoscience and Surveying Engineering, China University of Mining and Technology, 2013. 65-75 (In Chinese)

    [9] Susaki J. Adaptive slope filtering of airborne LiDAR data in urban areas for digital terrain model generation. Remote Sensing, 2012, 4:1804-1819

    [10] Axelsson P. DEM generation from laser scanner data using adaptive TIN models. International Archives of Photogrammetry and Remote Sensing, 2000, 33:111-118

    [11] Zhang X H. Theory and Method of Airborne LiDAR Measurement. Wuhan: Wuhan University Press, 2007. 96-99 (In Chinese)

    [12] Chen C, Li Y, Li W, et al. A multiresolution hierarchical classification algorithm for filtering airborne LiDAR data. Isprs Journal of Photogrammetry & Remote Sensing, 2013, 82(82): 1-9

    [14] Tóvári D, Pfeifer N. Segmentation based robust interpolation-a new approach to laser data filtering. International Archives of the Photogrammetry & Remote Sensing and Spatial Information Sciences, 2005, 36(W19): 12-16

    [15] Sithole G, Vosselman G. Experimental comparison of filter algorithms for bare earth extraction from airborne laser scanning point clouds. ISPRS Journal of Photogrammetry and Remote Sensing, 2004, 59(1-2): 85-101

    [16] Sithole G, Vosselman G. Filtering of airborne laser scanner data based on segmented point clouds. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 2005, 36(3/W19): 66-71

    [17] Darmawati A T. Utilization of Multiple Echo Information for Classification of Airborne Laser Scanning Data: [M. S. Dissertation]. Enschede: International Institute for Geo-information Science and Observation, 2008.35-40

    [18] Sithole G, Vosselman G. The full report: ISPRS Comparison of Filters. International Society for Photogrammetry and Remote Sensing commission III, 2003, 6:1-29

    Xu Ying, born in 1986. She received her B.S. and M.S. degrees from Henan polytechnic University in 2007 and 2010 respectively. Her research focuses on the point cloud data post-processing and feature detection from airborne LIDAR data.

    10.3772/j.issn.1006-6748.2017.01.003

    ①Supported by the National Natural Science Foundation of China (No. 41174002), the Opening Fund of Key Laboratory of the Ministry of Water Resources(No. 2015003), and the Fundamental Research Funds for the Central Universities(No. 2014B38614)

    ②To whom correspondence should be addressed. E-mail: yuedongjie@163.com Received on Mar. 4, 2016

    香蕉久久夜色| 久久精品国产亚洲av高清一级| 91字幕亚洲| 国产精品一区二区精品视频观看| 最近最新中文字幕大全电影3 | 午夜两性在线视频| 法律面前人人平等表现在哪些方面| 午夜精品在线福利| 一区福利在线观看| 欧美人与性动交α欧美软件| 久久午夜综合久久蜜桃| 国产男女内射视频| 午夜福利在线观看吧| 美女高潮喷水抽搐中文字幕| 午夜视频精品福利| 精品久久久精品久久久| 亚洲综合色网址| 亚洲精品乱久久久久久| 19禁男女啪啪无遮挡网站| 国产在线一区二区三区精| 免费在线观看视频国产中文字幕亚洲| 国产男女内射视频| 男人操女人黄网站| 中文字幕另类日韩欧美亚洲嫩草| av在线播放免费不卡| 精品国产亚洲在线| 美女福利国产在线| 久久久久国产一级毛片高清牌| 久久久国产成人免费| 日韩欧美免费精品| 国产精品九九99| 亚洲av成人av| 老汉色av国产亚洲站长工具| 亚洲视频免费观看视频| 精品国产一区二区三区四区第35| 午夜福利视频在线观看免费| 亚洲色图av天堂| 亚洲成人手机| 成人18禁高潮啪啪吃奶动态图| 国产男女内射视频| 国产精品久久久久久人妻精品电影| 韩国精品一区二区三区| 欧美乱色亚洲激情| 国产成人av激情在线播放| 99久久综合精品五月天人人| 亚洲欧美激情综合另类| 如日韩欧美国产精品一区二区三区| 丝袜人妻中文字幕| 中国美女看黄片| 少妇裸体淫交视频免费看高清 | 人妻一区二区av| 午夜免费观看网址| 国产免费av片在线观看野外av| 黄片大片在线免费观看| 新久久久久国产一级毛片| av天堂在线播放| 人人妻,人人澡人人爽秒播| 午夜影院日韩av| 少妇裸体淫交视频免费看高清 | 热99国产精品久久久久久7| 精品午夜福利视频在线观看一区| 天堂中文最新版在线下载| 久久中文看片网| 精品人妻1区二区| 一级黄色大片毛片| 亚洲av片天天在线观看| 色尼玛亚洲综合影院| 国产精品秋霞免费鲁丝片| av网站免费在线观看视频| 亚洲av日韩精品久久久久久密| 久久精品国产亚洲av香蕉五月 | 桃红色精品国产亚洲av| 黄色视频,在线免费观看| 欧美黄色片欧美黄色片| 日韩免费av在线播放| 亚洲色图av天堂| 欧美性长视频在线观看| 亚洲欧美激情在线| 国产高清视频在线播放一区| 亚洲一区二区三区不卡视频| 国产激情欧美一区二区| 中文字幕av电影在线播放| 91老司机精品| 精品国产乱子伦一区二区三区| 一级毛片女人18水好多| 精品国产国语对白av| 一本大道久久a久久精品| www日本在线高清视频| xxxhd国产人妻xxx| 叶爱在线成人免费视频播放| 亚洲av欧美aⅴ国产| 日日摸夜夜添夜夜添小说| 精品久久久久久电影网| 曰老女人黄片| 午夜久久久在线观看| 91精品三级在线观看| 91精品国产国语对白视频| a级片在线免费高清观看视频| av不卡在线播放| 极品人妻少妇av视频| 午夜成年电影在线免费观看| 亚洲五月色婷婷综合| 美女午夜性视频免费| 国产精品av久久久久免费| 99热国产这里只有精品6| 午夜免费鲁丝| av线在线观看网站| 51午夜福利影视在线观看| 精品久久久久久电影网| 亚洲午夜精品一区,二区,三区| 涩涩av久久男人的天堂| 国产成人精品无人区| 女人精品久久久久毛片| 又黄又爽又免费观看的视频| 午夜福利乱码中文字幕| 一级,二级,三级黄色视频| 午夜成年电影在线免费观看| 999久久久精品免费观看国产| 精品一区二区三卡| 国产精品久久久av美女十八| 亚洲一卡2卡3卡4卡5卡精品中文| 成年版毛片免费区| 色综合婷婷激情| 亚洲七黄色美女视频| 久久久久久久国产电影| 国产精品98久久久久久宅男小说| 高潮久久久久久久久久久不卡| 国产人伦9x9x在线观看| 如日韩欧美国产精品一区二区三区| 在线播放国产精品三级| 一级a爱视频在线免费观看| 国产av一区二区精品久久| 视频在线观看一区二区三区| 精品一区二区三区av网在线观看| 自线自在国产av| 成人免费观看视频高清| 国产国语露脸激情在线看| 自拍欧美九色日韩亚洲蝌蚪91| 欧美大码av| 啦啦啦视频在线资源免费观看| 99国产精品一区二区三区| 亚洲欧美精品综合一区二区三区| 亚洲成人免费av在线播放| 80岁老熟妇乱子伦牲交| 免费观看人在逋| 色精品久久人妻99蜜桃| 精品国产一区二区久久| xxx96com| 成年版毛片免费区| 色在线成人网| 亚洲精品美女久久av网站| 亚洲九九香蕉| 男人操女人黄网站| √禁漫天堂资源中文www| 亚洲精品久久午夜乱码| 麻豆成人av在线观看| 999久久久国产精品视频| 国产xxxxx性猛交| 亚洲av美国av| 欧美在线一区亚洲| 正在播放国产对白刺激| 黄网站色视频无遮挡免费观看| 99热只有精品国产| 亚洲一区高清亚洲精品| 在线观看66精品国产| 99精品欧美一区二区三区四区| 欧美日韩一级在线毛片| 欧美日韩瑟瑟在线播放| 午夜福利,免费看| 在线观看日韩欧美| 在线十欧美十亚洲十日本专区| 久热这里只有精品99| 香蕉国产在线看| 亚洲国产欧美网| 国产在线观看jvid| 如日韩欧美国产精品一区二区三区| 一区二区三区国产精品乱码| 久久久精品免费免费高清| 国产精品成人在线| 亚洲一区二区三区不卡视频| 久久精品国产清高在天天线| aaaaa片日本免费| 免费在线观看视频国产中文字幕亚洲| 人妻一区二区av| 久久香蕉激情| 9热在线视频观看99| 欧美激情 高清一区二区三区| 99精品久久久久人妻精品| 欧美乱码精品一区二区三区| 国产91精品成人一区二区三区| 女警被强在线播放| 亚洲精品一卡2卡三卡4卡5卡| 99re6热这里在线精品视频| 日韩一卡2卡3卡4卡2021年| 美女国产高潮福利片在线看| 五月开心婷婷网| 久久草成人影院| 久久香蕉精品热| 久久久国产精品麻豆| 一级片'在线观看视频| 在线观看www视频免费| 午夜福利在线免费观看网站| 国产aⅴ精品一区二区三区波| ponron亚洲| www日本在线高清视频| av视频免费观看在线观看| 免费观看a级毛片全部| 韩国av一区二区三区四区| 久久久精品免费免费高清| av福利片在线| 国产亚洲av高清不卡| 久久久久久久午夜电影 | 亚洲欧美激情在线| 久久人妻熟女aⅴ| 91大片在线观看| 男人舔女人的私密视频| 18在线观看网站| 男男h啪啪无遮挡| 久久精品熟女亚洲av麻豆精品| 两性夫妻黄色片| 日韩免费高清中文字幕av| 国产精品久久久人人做人人爽| 欧美日韩福利视频一区二区| 国产精品免费视频内射| 少妇裸体淫交视频免费看高清 | 国产精品一区二区在线不卡| 国产一区有黄有色的免费视频| 国产精品偷伦视频观看了| 韩国av一区二区三区四区| 少妇被粗大的猛进出69影院| 中文字幕色久视频| 午夜精品国产一区二区电影| 亚洲人成电影观看| 国产精品久久久久成人av| 18禁国产床啪视频网站| 精品久久蜜臀av无| www.自偷自拍.com| 18禁裸乳无遮挡免费网站照片 | 午夜福利,免费看| 欧美黄色淫秽网站| 一进一出抽搐gif免费好疼 | 久久久久精品国产欧美久久久| 三上悠亚av全集在线观看| 交换朋友夫妻互换小说| 一级毛片高清免费大全| 久热这里只有精品99| 亚洲黑人精品在线| 亚洲欧洲精品一区二区精品久久久| 曰老女人黄片| 久久中文看片网| 亚洲一区二区三区欧美精品| 亚洲情色 制服丝袜| 国产精品亚洲一级av第二区| 亚洲成av片中文字幕在线观看| 欧美亚洲 丝袜 人妻 在线| 一级片'在线观看视频| 免费日韩欧美在线观看| 国产精品久久久人人做人人爽| 电影成人av| 国产精品欧美亚洲77777| a级毛片黄视频| 在线观看一区二区三区激情| 欧美精品人与动牲交sv欧美| 精品久久久久久久久久免费视频 | 国产免费男女视频| 国产精品久久久人人做人人爽| 中亚洲国语对白在线视频| 免费观看精品视频网站| 亚洲视频免费观看视频| 成熟少妇高潮喷水视频| 国产在线一区二区三区精| 亚洲人成电影观看| 又紧又爽又黄一区二区| 99国产精品一区二区蜜桃av | 啪啪无遮挡十八禁网站| 韩国av一区二区三区四区| 91精品三级在线观看| 国产精品欧美亚洲77777| 亚洲美女黄片视频| 亚洲欧美激情综合另类| 午夜精品国产一区二区电影| 欧美日韩成人在线一区二区| 下体分泌物呈黄色| 大陆偷拍与自拍| 夜夜躁狠狠躁天天躁| 国产主播在线观看一区二区| 色综合欧美亚洲国产小说| 好男人电影高清在线观看| 中文欧美无线码| 国产精品国产高清国产av | 成年人午夜在线观看视频| 亚洲av日韩精品久久久久久密| av天堂久久9| 亚洲国产精品sss在线观看 | 亚洲国产中文字幕在线视频| 亚洲伊人色综图| 欧美精品一区二区免费开放| 国产精品亚洲一级av第二区| 亚洲av熟女| 国产1区2区3区精品| 国产日韩欧美亚洲二区| 少妇被粗大的猛进出69影院| 一a级毛片在线观看| 久久中文字幕人妻熟女| 久久久久视频综合| 下体分泌物呈黄色| 国产免费av片在线观看野外av| 十八禁人妻一区二区| 精品一区二区三区av网在线观看| 精品国产超薄肉色丝袜足j| 五月开心婷婷网| 中文字幕色久视频| 变态另类成人亚洲欧美熟女 | 啦啦啦在线免费观看视频4| 乱人伦中国视频| 天堂中文最新版在线下载| 久久久久精品国产欧美久久久| 国产高清视频在线播放一区| 18禁美女被吸乳视频| 高清在线国产一区| 日韩免费av在线播放| 日韩欧美免费精品| 高清在线国产一区| 久久久久久久国产电影| 最近最新中文字幕大全免费视频| 黄片播放在线免费| 欧美老熟妇乱子伦牲交| 久久影院123| 在线观看免费视频网站a站| 久久久久视频综合| 日本欧美视频一区| 欧美一级毛片孕妇| 久久国产精品男人的天堂亚洲| 欧美丝袜亚洲另类 | 国产精品99久久99久久久不卡| 少妇裸体淫交视频免费看高清 | 亚洲专区国产一区二区| 最近最新免费中文字幕在线| 无限看片的www在线观看| 一个人免费在线观看的高清视频| 亚洲av片天天在线观看| 亚洲性夜色夜夜综合| 久久国产亚洲av麻豆专区| 国产一区二区三区综合在线观看| 久久青草综合色| 免费在线观看完整版高清| 色尼玛亚洲综合影院| 美女午夜性视频免费| 亚洲第一欧美日韩一区二区三区| 丁香欧美五月| 欧美日韩亚洲国产一区二区在线观看 | 国产亚洲精品久久久久久毛片 | 大型黄色视频在线免费观看| 国产欧美日韩综合在线一区二区| av线在线观看网站| 久久久久久亚洲精品国产蜜桃av| 亚洲欧美色中文字幕在线| 日本vs欧美在线观看视频| 老熟女久久久| 日本vs欧美在线观看视频| 亚洲精品在线观看二区| 99热网站在线观看| 黑人巨大精品欧美一区二区蜜桃| 免费不卡黄色视频| 国产在线观看jvid| 国产激情久久老熟女| 国产xxxxx性猛交| 91麻豆av在线| 久久狼人影院| 欧洲精品卡2卡3卡4卡5卡区| 黄色女人牲交| 亚洲情色 制服丝袜| 高清视频免费观看一区二区| 窝窝影院91人妻| 日本黄色日本黄色录像| 精品高清国产在线一区| 丝袜美腿诱惑在线| 在线十欧美十亚洲十日本专区| 久久精品国产亚洲av高清一级| 国产成+人综合+亚洲专区| 叶爱在线成人免费视频播放| 欧美精品啪啪一区二区三区| 夜夜爽天天搞| 国产亚洲av高清不卡| 嫁个100分男人电影在线观看| 国产视频一区二区在线看| 18在线观看网站| 建设人人有责人人尽责人人享有的| 91国产中文字幕| 亚洲精品在线美女| 欧美色视频一区免费| 欧美日韩亚洲高清精品| 国产成人一区二区三区免费视频网站| 老熟女久久久| 久久草成人影院| 精品国产一区二区三区四区第35| 国内久久婷婷六月综合欲色啪| 他把我摸到了高潮在线观看| 两个人看的免费小视频| 亚洲精品国产精品久久久不卡| 国产激情欧美一区二区| 国产一区二区三区在线臀色熟女 | 亚洲成人免费av在线播放| 中文字幕色久视频| 久久久精品免费免费高清| 伦理电影免费视频| 日本精品一区二区三区蜜桃| 丁香六月欧美| 日韩欧美免费精品| 九色亚洲精品在线播放| 国产成人影院久久av| 亚洲熟女毛片儿| 一区二区三区精品91| 欧美日韩黄片免| 国产熟女午夜一区二区三区| 欧美+亚洲+日韩+国产| 精品国产一区二区久久| 在线观看一区二区三区激情| 丰满人妻熟妇乱又伦精品不卡| 久久中文看片网| 精品国产乱子伦一区二区三区| 久久香蕉国产精品| 午夜91福利影院| 中文字幕另类日韩欧美亚洲嫩草| 777久久人妻少妇嫩草av网站| 亚洲精品自拍成人| 悠悠久久av| 热99re8久久精品国产| 久久久久久久久久久久大奶| 在线观看免费视频日本深夜| 欧美色视频一区免费| 好男人电影高清在线观看| av片东京热男人的天堂| 国产淫语在线视频| 91大片在线观看| 天堂√8在线中文| 窝窝影院91人妻| 91精品三级在线观看| 久久午夜综合久久蜜桃| 午夜福利乱码中文字幕| 色婷婷av一区二区三区视频| 天堂俺去俺来也www色官网| 免费人成视频x8x8入口观看| 色综合婷婷激情| 黄色视频不卡| 两个人看的免费小视频| 国产精品国产av在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 男女午夜视频在线观看| 在线观看日韩欧美| 女同久久另类99精品国产91| 亚洲aⅴ乱码一区二区在线播放 | 日韩一卡2卡3卡4卡2021年| 亚洲国产欧美日韩在线播放| 18禁裸乳无遮挡免费网站照片 | 少妇 在线观看| 亚洲一码二码三码区别大吗| 91九色精品人成在线观看| 国产三级黄色录像| 久久99一区二区三区| 国产精品av久久久久免费| 无限看片的www在线观看| 51午夜福利影视在线观看| 免费日韩欧美在线观看| 99国产综合亚洲精品| 高清在线国产一区| 一区福利在线观看| 免费av中文字幕在线| 少妇被粗大的猛进出69影院| 国产成人啪精品午夜网站| 婷婷精品国产亚洲av在线 | netflix在线观看网站| 欧美日韩中文字幕国产精品一区二区三区 | 人人妻人人添人人爽欧美一区卜| 国产又色又爽无遮挡免费看| 成人国语在线视频| 久久精品国产a三级三级三级| 久久性视频一级片| 少妇 在线观看| 99国产精品一区二区蜜桃av | 国产亚洲精品久久久久5区| 中文字幕高清在线视频| 国产一区二区三区综合在线观看| 国产精品一区二区免费欧美| 亚洲精品一二三| 成人18禁在线播放| 人妻 亚洲 视频| 亚洲综合色网址| 欧美av亚洲av综合av国产av| av片东京热男人的天堂| 人人妻,人人澡人人爽秒播| 热99re8久久精品国产| 亚洲专区中文字幕在线| 欧美色视频一区免费| 国产成人欧美| 久久久国产成人免费| 超碰97精品在线观看| 午夜精品在线福利| 免费黄频网站在线观看国产| 久久午夜综合久久蜜桃| 99精国产麻豆久久婷婷| 侵犯人妻中文字幕一二三四区| 免费在线观看黄色视频的| 巨乳人妻的诱惑在线观看| 欧美久久黑人一区二区| 久久人妻福利社区极品人妻图片| 变态另类成人亚洲欧美熟女 | 人人妻人人澡人人爽人人夜夜| 色婷婷久久久亚洲欧美| 制服诱惑二区| 国产在线观看jvid| 人人妻人人添人人爽欧美一区卜| 黄频高清免费视频| 国产亚洲一区二区精品| 日本vs欧美在线观看视频| 国产蜜桃级精品一区二区三区 | 国产有黄有色有爽视频| 又紧又爽又黄一区二区| 免费在线观看亚洲国产| 久久天堂一区二区三区四区| 91在线观看av| 十八禁人妻一区二区| 精品人妻1区二区| 黄色丝袜av网址大全| 成人亚洲精品一区在线观看| 老司机在亚洲福利影院| 人人妻人人澡人人看| 一区福利在线观看| 在线观看免费高清a一片| 母亲3免费完整高清在线观看| 午夜精品国产一区二区电影| 国产激情久久老熟女| 亚洲精品国产精品久久久不卡| 国产精品国产高清国产av | 日本欧美视频一区| 看免费av毛片| 亚洲av日韩在线播放| 999久久久精品免费观看国产| 午夜老司机福利片| 日韩欧美一区二区三区在线观看 | 亚洲av成人av| 欧美 亚洲 国产 日韩一| 国产精华一区二区三区| 久久国产乱子伦精品免费另类| 最近最新中文字幕大全电影3 | 看免费av毛片| 久久久久久久精品吃奶| 男人舔女人的私密视频| 久久久久精品国产欧美久久久| 国产一区二区三区在线臀色熟女 | 亚洲男人天堂网一区| 无限看片的www在线观看| 午夜精品在线福利| 国产一区在线观看成人免费| 怎么达到女性高潮| 欧美在线一区亚洲| 91字幕亚洲| 黄色丝袜av网址大全| 国产精品自产拍在线观看55亚洲 | 99热网站在线观看| 欧美黄色片欧美黄色片| 一本大道久久a久久精品| 成人黄色视频免费在线看| 午夜福利欧美成人| 一区二区三区国产精品乱码| 丝袜人妻中文字幕| 男女午夜视频在线观看| 亚洲欧美日韩高清在线视频| 满18在线观看网站| 少妇粗大呻吟视频| 免费久久久久久久精品成人欧美视频| 久久精品人人爽人人爽视色| 国产亚洲精品久久久久久毛片 | 黄片小视频在线播放| 99久久99久久久精品蜜桃| 最新的欧美精品一区二区| 新久久久久国产一级毛片| 人人澡人人妻人| 国产成人精品久久二区二区91| 999久久久国产精品视频| 伦理电影免费视频| 中文字幕另类日韩欧美亚洲嫩草| 飞空精品影院首页| 色尼玛亚洲综合影院| 国产精品av久久久久免费| 亚洲精品中文字幕在线视频| www.精华液| 国产精品一区二区在线观看99| 建设人人有责人人尽责人人享有的| 精品久久蜜臀av无| 成人免费观看视频高清| 亚洲熟女毛片儿| 精品欧美一区二区三区在线| 女性生殖器流出的白浆| 国产亚洲精品久久久久久毛片 | 男女床上黄色一级片免费看| 国产精品国产高清国产av | 日韩欧美一区视频在线观看| 丝袜美足系列| 桃红色精品国产亚洲av| 99re在线观看精品视频| 在线国产一区二区在线| 欧美精品一区二区免费开放| 亚洲精品久久成人aⅴ小说| 搡老熟女国产l中国老女人| 欧美乱妇无乱码| 亚洲精品久久成人aⅴ小说| 精品久久久精品久久久| 久久香蕉激情| 国产欧美日韩一区二区三| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲av日韩精品久久久久久密| 欧美日韩av久久| 最新在线观看一区二区三区| 国产一区二区三区综合在线观看|