陳向煒張 曄梅鳳翔
?(商丘師范學(xué)院物理與電氣信息學(xué)院,河南商丘476000)
?(蘇州科技大學(xué)數(shù)理學(xué)院,江蘇蘇州215009)
??(北京理工大學(xué)宇航學(xué)院,北京100081)
用具有負定非對稱矩陣的梯度系統(tǒng)構(gòu)造穩(wěn)定的廣義Birkhof f系統(tǒng)1)
陳向煒?,2)張 曄?梅鳳翔??
?(商丘師范學(xué)院物理與電氣信息學(xué)院,河南商丘476000)
?(蘇州科技大學(xué)數(shù)理學(xué)院,江蘇蘇州215009)
??(北京理工大學(xué)宇航學(xué)院,北京100081)
Birkhof f系統(tǒng)是一類比Hamilton系統(tǒng)更廣泛的約束力學(xué)系統(tǒng),可在原子與分子物理,強子物理中找到應(yīng)用.非定常約束力學(xué)系統(tǒng)的穩(wěn)定性研究是重要而又困難的課題,用構(gòu)造Lyapunov函數(shù)的直接方法來研究穩(wěn)定性問題有很大難度,其中如何構(gòu)造Lyapunov函數(shù)是永遠的開放問題.本文給出一種間接方法,即梯度系統(tǒng)方法.提出一類梯度系統(tǒng),其矩陣是負定非對稱的,這類梯度系統(tǒng)的解可以是穩(wěn)定的或漸近穩(wěn)定的.梯度系統(tǒng)特別適合用Lyapunov函數(shù)來研究,其中的函數(shù)V通常取為Lyapunov函數(shù).列出廣義Birkhof f系統(tǒng)的運動方程,廣義Birkhof f系統(tǒng)是一類廣泛約束力學(xué)系統(tǒng).當(dāng)其中的附加項取為零時,它成為Birkhof f系統(tǒng),完整約束系統(tǒng)和非完整約束系統(tǒng)都可納入該系統(tǒng).給出廣義Birkhof f系統(tǒng)的解可以是穩(wěn)定的或漸近穩(wěn)定的條件,進一步利用矩陣為負定非對稱的梯度系統(tǒng)構(gòu)造出一些解為穩(wěn)定或漸近穩(wěn)定的廣義Birkhof f系統(tǒng).該方法也適合其他約束力學(xué)系統(tǒng).最后用算例說明結(jié)果的應(yīng)用.
廣義Birkhof f系統(tǒng),梯度系統(tǒng),負定矩陣,穩(wěn)定性
1927年Birkhof f在其名著《動力系統(tǒng)》中提出了一類新型的積分變分原理和運動微分方程[1],被分別稱為Pfaf f-Birkhof f原理和Birkhof f方程.近年來對Birkhof f系統(tǒng)動力學(xué)的研究已取得一些重要進展,這些進展主要集中在該系統(tǒng)的積分理論[2]、動力學(xué)逆問題[3]、穩(wěn)定性[4]、對稱性[5]等.1993年梅鳳翔研究了Birkhof f方程增加一個附加項的情形,稱為廣義Birkhof f方程[6].廣義Birkhof f系統(tǒng)動力學(xué)的研究也非常活躍,主要集中在該系統(tǒng)的動力學(xué)逆問題[7]、積分理論[8]、對稱性攝動[9]、平衡穩(wěn)定性[10]等.
梯度系統(tǒng)特別適合用 Lyapunov 函數(shù)來研究[11-12].文獻 [11-12]主要涉及定常梯度系統(tǒng).實際上,也可研究非定常梯度系統(tǒng),其中矩陣或函數(shù)可包括時間.有關(guān)約束力學(xué)系統(tǒng)與梯度系統(tǒng)的關(guān)聯(lián)研究已取得重要進展,如文獻[13-32].專著[32]涉及通常梯度系統(tǒng),斜梯度系統(tǒng),具有對稱負定矩陣的和半負定矩陣的梯度系統(tǒng)等.本文提出一類梯度系統(tǒng),其矩陣是負定非對稱的.適當(dāng)選取負定矩陣使這類梯度系統(tǒng)能夠較好地研究解的穩(wěn)定性.由這類梯度系統(tǒng)來構(gòu)造解為穩(wěn)定的或漸近穩(wěn)定的廣義Birkhof f系統(tǒng).
微分方程寫成形式
其中aμ為變量,V為某函數(shù),cμν為系數(shù)矩陣.這里相同指標表示求和,矩陣cμν是負定非對稱的,按方程(1)求,得
為研究解的穩(wěn)定性,如果V=V(t,a)在解的鄰域內(nèi)正定,總希望負定或半負定,這首先希望二次型
是負定的或半負定的.因為矩陣cμν是負定的,不能保證二次型(3)負定或半負定.例如,對m=2的情形
其次,函數(shù)V應(yīng)選為正定的.對m=2的情形,可選
其中式(5)正定,式(6)正定非漸減,式(7)正定漸減.
廣義Birkhof f系統(tǒng)的微分方程為[33]
其中B=B(t,a)為Birkhof f函數(shù),Rρ=Rρ(t,a)(ρ=1,2,··,2n)為Birkhof f函數(shù)組,Λρ=Λρ(t,a)(ρ=1,2,··,2n)為附加項,而
廣義Birkhof f系統(tǒng)是相當(dāng)廣泛一類約束力學(xué)系統(tǒng).當(dāng)取Λρ=0(ρ=1,2,··,2n)時,它成為Birkhof f系統(tǒng),而完整約束系統(tǒng)和非完整約束系統(tǒng)都可納入Birkhof f系統(tǒng).
對給定的矩陣(cμν)和函數(shù)V,如果存在函數(shù)B,Rρ,Λρ(ρ=1,2,··,2n)滿足條件
則求得的廣義Birkhof f系統(tǒng)的解可以是穩(wěn)定的或漸近穩(wěn)定的.方程(10)是對4n+1個變量的2n個方程,解不是唯一的.當(dāng)n=1時,方程(10)成為
例1已知梯度系統(tǒng)為
試求與之相應(yīng)的廣義Birkhof f系統(tǒng).
解:方程(1)給出
它是常負的,因此解a1=a2=0是穩(wěn)定的.于是所構(gòu)造出的廣義Birkhof f系統(tǒng)的解也是穩(wěn)定的.式(11)給出
廣義Birkhof f系統(tǒng)(13)和(14)的解a1=a2=0是穩(wěn)定的.
例2已知梯度系統(tǒng)為
試求與之相應(yīng)的廣義Birkhof f系統(tǒng).
解:方程(1)給出
它在a1=a2=0的鄰域內(nèi)負定,而V正定且漸減,因此,解a1=a2=0是一致漸近穩(wěn)定的.于是所構(gòu)造出的廣義Birkhof f系統(tǒng)的解也是一致漸近穩(wěn)定的.式(11)給出
等等.廣義Birkhof f系統(tǒng)(16)和(17)的解a1=a2=0是一致漸近穩(wěn)定的.
例3已知梯度系統(tǒng)為
試求與之相應(yīng)的廣義Birkhof f系統(tǒng).
解:方程(1)給出
它在a1=a2=0的鄰域內(nèi)是負定的,而V正定且漸減,因此,解a1=a2=0是一致漸近穩(wěn)定的.于是所構(gòu)造出的廣義Birkhof f系統(tǒng)的解也是一致漸近穩(wěn)定的.方程(11)給出
它有解
當(dāng)然,還有其他解.
對非定常力學(xué)系統(tǒng)用構(gòu)造Lyapunov函數(shù)的方法來研究穩(wěn)定性問題有很大困難,其中如何構(gòu)造Lyapunov函數(shù)是永遠的開放問題.梯度系統(tǒng)特別適合用Lyapunov函數(shù)來研究,其中的函數(shù)V通常取為Lyapunov函數(shù).本文利用矩陣為負定非對稱的梯度系統(tǒng)構(gòu)造出一些解為穩(wěn)定或漸近穩(wěn)定的廣義Birkhof f系統(tǒng).所舉例子是簡單低階的.對復(fù)雜高階的,構(gòu)造起來要困難得多,但方法是一樣的.本文的方法也適合其他約束力學(xué)系統(tǒng).
1 Birkhof fGD.Dynamical Systems.Providence:AMS College Publisher,1927
2 Zhang HB,Chen LQ,Gu SL,et al.The discrete variational principle and the firs integrals of Birkhof fsystems.Chinese Physics B,2007, 16(3):582-587
3 張永發(fā),梅鳳翔.Birkhof f系統(tǒng)動力學(xué)逆問題的兩種提法和解法.北京理工大學(xué)學(xué)報,1996,16(4):352-356(Zhang Yongfa,Mei Fengxiang.Two ways of formulation and solutions of the inverse problem of the dynamics of birkhoffian system.Transactions of Beijing Institute of Technology,1996,16(4):352-356(in Chinese))
4 傅景禮,陳立群,薛紜等.相對論Birkhof f系統(tǒng)的平衡穩(wěn)定性.物理學(xué)報,2002,51(12):2683-2689(Fu Jingli,Chen Liqun,Xue Yun, et al.Stability of the equilibrium state in relativistic Birkhof fsystems.Acta Physica Sinica,2002,51(12):2683-2689(in Chinese))
5 張毅.相對論性力學(xué)系統(tǒng)的Birkhof f對稱性與守恒量.物理學(xué)報, 2012,61(21):214501(Zhang Yi.Symmetry of Birkhoffians and conserved quantity for a relativistic mechanical system.Acta Phys Sin,2012,61(21):214501(in Chinese))
6 梅鳳翔.Birkhof f系統(tǒng)的Noether理論.中國科學(xué)(A輯),1993, 23(7):709-717(Mei Fengxiang.Noether theory of Birkhof fsystem.Scientia Sinica(Series A),1993,23(7):709-717(in Chinese))
7 梅鳳翔,解加芳,冮鐵強.廣義Birkhof f系統(tǒng)動力學(xué)的一類逆問題.物理學(xué)報,2008,57(8):4649-4651(MeiFengxiang,XieJiafang, Gang Tieqiang.An inverse problem of dynamics of a generalized Birkhof fsystem.Acta Physica Sinica,2008,57(8):4649-4651(in Chinese))
8葛偉寬,梅鳳翔.廣義Birkhof f系統(tǒng)的時間積分定理.物理學(xué)報, 2009,58(2):699-702(Ge Weikuan,Mei Fengxiang.Time-integral theorems for generalized Birkhof fsystem.Acta Physica Sinica, 2009,58(2):699-702(in Chinese))
9 Li YM.Lie symmetries,perturbation to symmetries and adiabatic invariants of a generalized Birkhof fsystem.Chinese Physics Letters,2010,27(1):010202
10 張毅.自治廣義Birkhof f系統(tǒng)的平衡穩(wěn)定性.物理學(xué)報,2010, 59(1):20-24(Zhang Yi.Stability of equilibrium for the autonomous generalized Birkhoffian system.Acta Physica Sinica,2010,59(1):20-24(in Chinese))
11 Hirsch MW,Smale S.Dif f erential Equations,Dynamical System, and Liner Algebra.New York:Academic Press,1974
12 McLachlan RI,Quispel GRW,Robidoux N.Geometric integration using discrete gradients.Philosophical Transactions of the Royal Society A,1999,357(1754):1021-1045
13 樓智美,梅鳳翔.力學(xué)系統(tǒng)的二階梯度表示.物理學(xué)報,2012, 61(2),024502(Lou Zhimei,Mei Fengxiang.A second order gradient representation of mechanics system.Acta Physica Sinica,2012, 61(2),024502(in Chinese))
14 Chen XW,Zhao GL,Mei FX.A fractional gradient representation of the Poincar′e equations.Nonlinear Dynamics,2013,73(1):579-582
15 梅鳳翔,吳惠彬.一階Lagrange系統(tǒng)的梯度表示.物理學(xué)報,2013, 62(21):214501(Mei Fengxiang,Wu Huibin.A gradient representation of first-orde Lagrange system.Acta Physica Sinica,2013, 62(21):214501(in Chinese))
16 Mei FX,Wu HB.Skew-gradient representation of generalized Birkhoffian system.Chinese Physics B,2015,24(10):104502
17 梅鳳翔,吳惠彬.廣義Birkhof f系統(tǒng)與一類組合梯度系統(tǒng).物理學(xué)報,2015,64(18),184501(Mei Fengxiang,Wu Huibin.Generalized Birkhof fsystem and a kind of combined gradient system.Acta Physica Sinica,2015,64(18):184501(in Chinese))
18 吳惠彬,梅鳳翔.事件空間中完整力學(xué)系統(tǒng)的梯度表示.物理學(xué)報,2015,64(23):0234501(Wu Huibin,Mei Fengxiang.A gradient representation of holonomic system in the event space.Acta Physica Sinica,2015,64(23):0234501(in Chinese))
19 Mei FX,Wu HB.Two kinds of generalized gradient representations for holonomic mechanical systems.Chinese Physics B,2016,25(1):014502
20 Chen XW,Zhang Y,Mei FX.An application of a combined gradient system to stabilize a mechanical system.Chinese Physics B,2016, 25(10):100201
21 Hirsch MW,Smale S,Devaney RL.Dif f erential Equations,Dynamical Systems,and an Introduction to Chaos.Singapore:Elsevier, 2008
22 梅鳳翔.關(guān)于梯度系統(tǒng).力學(xué)與實踐,2012,34:89-90(Mei Fengxiang.On gradient system.Mechanics in Engineering,2012,34:89-90(in Chinese))
23 梅鳳翔.分析力學(xué)下卷.北京:北京理工大學(xué)出版社,2013(Mei Fengxiang.Analytical Mechanics II.Beijing:Beijing Institute of Technology Press,2013(in Chinese))
24 Tom′a?sB,RalphC,EvaF.Everyordinarydif f erentialequationwitha strict Lyapunov function is a gradient system.Monatsh Math,2012, 166:57-72
25 Marin AM,Ortiz RD,Rodriguez JA.A generalization of a gradient System.International Mathematical Forum,2013,8:803-806
26 陳向煒,李彥敏,梅鳳翔.雙參數(shù)對廣義Hamilton系統(tǒng)穩(wěn)定性的影響.應(yīng)用數(shù)學(xué)和力學(xué),2014,35(12):1392-1397(Chen Xiangwei, Li Yanmin,Mei Fengxiang.Dependance of stability of equilibrium of generalized Hamilton system on two parameters.Applied Mathematics and Mechanics,2014,35(12):1392-1397(in Chinese))
27 梅鳳翔,吳惠彬.廣義Birkhof f系統(tǒng)的梯度表示.動力學(xué)與控制學(xué)報,2012,10(4):289-292(Mei Fengxiang,Wu Huibin.A gradient representation for generalized Birkhof fsystem.J of Dynam and Control,2012,10(4):289-292(in Chinese))
28 梅鳳翔,吳惠彬.廣義Hamilton系統(tǒng)與梯度系統(tǒng).中國科學(xué):物理學(xué)力學(xué)天文學(xué),2013,43(4):538-540(Mei Fengxiang,Wu Huibin. Generalized Hamilton system and gradient system.Scientia Sinica Physica,Mechanica&Astronomica,2013,43(4):538-540(in Chinese))
29 Lin L,Luo SK.Fractional generalized Hamiltonian mechanics.Acta Mechanica,2013,224(8):1757-1771
30 Luo SK,He JM,Xu YL.Fractional Birkhoffian method for equilibrium stability of dynamical systems.International Journal of Non-Linear Mechanics,2016,78(1):105-111
31 陳向煒,曹秋鵬,梅鳳翔.切塔耶夫型非完整系統(tǒng)的廣義梯度表示.力學(xué)學(xué)報,2016,48(3):684-691(Chen Xiangwei,Cao Qiupeng,Mei Fengxiang.Generalized gradient representation of nonholonomicsystemofChetaev’stype.ChineseJournalofTheoretical and Applied Mechanics,2016,48(3):684-691(in Chinese))
32 梅鳳翔,吳惠彬.約束力學(xué)系統(tǒng)的梯度表示(上下).北京:科學(xué)出版社,2016(Mei Fengxiang,Wu Huibin.Gradient Representations of Constrained Mechanical System Vol 1,2.Beijing:Science Press, 2016(in Chinese))
33 梅鳳翔.廣義Birkhof f系統(tǒng)動力學(xué).北京:科學(xué)出版社,2013(Mei Fengxiang.Dynamics of Generalized Birkhof fSystem.Beijing:Science Press,2013(in Chinese))
STABLE GENERALIZED BIRKHOFF SYSTEMS CONSTRUCTED BY USING A GRADIENT SYSTEM WITH NON-SYMMETRICAL NEGATIVE-DEFINITE MATRIX1)
Chen Xiangwei?,2)Zhang Ye?Mei Fengxiang??
?(Department of Physics and Information Engineering,Shangqiu Normal University,Shangqiu476000,Henan,China)
?(School of Mathematics and Physics,Suzhou University of Science and Technology,Suzhou215009,Jiangsu,China)
??(School of Aerospace,Beijing Institute of Technology,Beijing100081,China)
The Birkhof fsystem is a more extensive constrained mechanical system than Hamilton system,which can be applied to atomic and molecular physics,and hadron physics.It is an important and difficult project to study the stability of non-steady mechanical system,and it is very difficult to study the stability by using the direct method of constructing Lyapunov function,here how to construct the Lyapunov function is always an open question.This paper gives an indirect method which is called the gradient system method.A kind of gradient systems with non-symmetrical negative-definit matrix is proposed,and the solution of the gradient system can be stable or asymptotic stable.The study of the gradientsystem is particularly suitable by using the method of Lyapunov functions,in which the functionVis usually taken as the Lyapunov function.Firstly the equations of motion of the generalized Birkhof fsystem are listed.The generalized Birkhof fsystem is a kind of extensive constrained mechanical system,holonomic and nonholonomic constraint systems can be incorporated into the system.When the additional terms of the system are equal to zero,it becomes the Birkhof f system.Then the conditions under which the solutions of the generalized Birkhof fsystem can be stable or asymptotically stable are given.Further the generalized Birkhof fsystems whose solution is stable are constructed by using the gradient system with non-symmetrical negative-definit matrix.The method is also suitable for the study of other constrained mechanical systems.Lastly some examples are given to illustrate the application of the results.
generalized Birkhof fsystem,gradient system,negative-definit matrix,stability
O316
A doi:10.6052/0459-1879-16-280
2016-10-10收稿,2016-11-16錄用,2016-11-24網(wǎng)絡(luò)版發(fā)表.
1)國家自然科學(xué)基金資助項目(11372169,11572034,11272050).
2)陳向煒,教授,主要研究方向:分析力學(xué).E-mail:hnchenxw@163.com
陳向煒,張曄,梅鳳翔.用具有負定非對稱矩陣的梯度系統(tǒng)構(gòu)造穩(wěn)定的廣義Birkho ff系統(tǒng).力學(xué)學(xué)報,2017,49(1):149-153
Chen Xiangwei,Zhang Ye,Mei Fengxiang.Stable generalized Birkho ffsystems constructed by using a gradient system with nonsymmetrical negative-definit matrix.Chinese Journal of Theoretical and Applied Mechanics,2017,49(1):149-153