何 川齊 春封 坤,3)肖明清
?(西南交通大學(xué)交通隧道工程教育部重點(diǎn)實(shí)驗(yàn)室,成都610031)
?(中鐵第四勘察設(shè)計(jì)院集團(tuán)有限公司,武漢430063)
基于D-P準(zhǔn)則的盾構(gòu)隧道圍巖與襯砌結(jié)構(gòu)相互作用分析1)
何 川?,2)齊 春?封 坤?,3)肖明清?,4)
?(西南交通大學(xué)交通隧道工程教育部重點(diǎn)實(shí)驗(yàn)室,成都610031)
?(中鐵第四勘察設(shè)計(jì)院集團(tuán)有限公司,武漢430063)
在進(jìn)行盾構(gòu)隧道管片襯砌結(jié)構(gòu)載荷計(jì)算時(shí),常采用全土柱或壓力拱理論計(jì)算圍巖松動(dòng)壓力,但當(dāng)盾構(gòu)隧道面臨深埋條件且需計(jì)入形變壓力時(shí),該方法難以適用.鑒于此,基于Drucker-Prager屈服準(zhǔn)則,推導(dǎo)了考慮滲流效應(yīng)影響下圍巖與襯砌結(jié)構(gòu)相互作用的彈塑性解析解,給出了圍巖彈、塑性區(qū)應(yīng)力與位移、塑性區(qū)半徑等關(guān)鍵參數(shù)與支護(hù)阻力間關(guān)系的解析式.闡述了上述解析結(jié)果在確定襯砌結(jié)構(gòu)載荷中的應(yīng)用,即建立圍巖與襯砌結(jié)構(gòu)靜力平衡狀態(tài)并求二者對(duì)應(yīng)曲線的交點(diǎn).進(jìn)一步地,考慮接頭引起管片襯砌結(jié)構(gòu)整體剛度降低對(duì)圍巖與襯砌結(jié)構(gòu)相互作用的影響,引入剛度折減系數(shù),并在襯砌結(jié)構(gòu)圍巖壓力確定中對(duì)施工期流固耦合效應(yīng)的影響和滲流力對(duì)襯砌結(jié)構(gòu)支護(hù)特性曲線的影響進(jìn)行了簡(jiǎn)化處理.最后,通過(guò)算例將解析解與水下盾構(gòu)隧道載荷實(shí)測(cè)值和數(shù)值計(jì)算值進(jìn)行了比較.結(jié)果表明:用解析方法得到的施工期和穩(wěn)定期的管片襯砌結(jié)構(gòu)圍巖壓力比現(xiàn)場(chǎng)實(shí)測(cè)值分別大28%和12%,穩(wěn)定期圍巖壓力比數(shù)值計(jì)算值大5%,可為類(lèi)似工程的設(shè)計(jì)施工提供一定的參考價(jià)值.
盾構(gòu)隧道,圍巖,襯砌結(jié)構(gòu),相互作用,圍巖壓力,D-P準(zhǔn)則,收斂約束法
管片襯砌作為盾構(gòu)隧道的永久支護(hù)結(jié)構(gòu),在盾構(gòu)機(jī)進(jìn)行洞室開(kāi)挖后通常作為主要承載單元承載.在進(jìn)行盾構(gòu)隧道管片襯砌結(jié)構(gòu)載荷分析時(shí),常采用全土柱法或壓力拱法計(jì)算圍巖松動(dòng)壓力[1].但當(dāng)盾構(gòu)隧道面臨深埋條件且需計(jì)入形變壓力時(shí),該方法難以適用,尤其是在當(dāng)前盾構(gòu)工法廣泛應(yīng)用于我國(guó)城市“排水深隧”、深埋交通隧道、深埋油氣管道及煤礦深長(zhǎng)井巷建設(shè)[2-8]的前提下,深埋盾構(gòu)隧道的載荷理論亟待深入探討.
深埋條件下盾構(gòu)隧道的載荷,也即圍巖與襯砌結(jié)構(gòu)的相互作用,取決于施工開(kāi)挖對(duì)圍巖的擾動(dòng)及其引起圍巖中原始應(yīng)力場(chǎng)的調(diào)整和重新分布,最終形成次生應(yīng)力場(chǎng)的力學(xué)狀態(tài).然而,由于施工方式的特殊性,其力學(xué)過(guò)程極為復(fù)雜,施工期流固耦合效應(yīng)對(duì)圍巖應(yīng)力場(chǎng)的影響不可忽略[9-11].當(dāng)盾構(gòu)機(jī)通過(guò)時(shí),刀盤(pán)掘削、開(kāi)挖排土,擾動(dòng)地層初始應(yīng)力場(chǎng),在此過(guò)程中施工引起圍巖滲流場(chǎng)的變化,進(jìn)一步影響圍巖應(yīng)力的變化;當(dāng)盾構(gòu)機(jī)通過(guò)后,管片襯砌脫環(huán)后支護(hù)圍巖,圍巖與管片襯砌結(jié)構(gòu)相互作用、協(xié)調(diào)變形,形成圍巖次生應(yīng)力場(chǎng).在此過(guò)程中圍巖滲流場(chǎng)漸趨穩(wěn)定,圍巖的力學(xué)狀態(tài)隨之發(fā)生變化.可見(jiàn),盾構(gòu)隧道施工過(guò)程的特殊性決定了管片襯砌脫環(huán)后圍巖與管片襯砌相互作用力學(xué)過(guò)程的復(fù)雜性,并決定了最終作用在管片襯砌結(jié)構(gòu)上的圍巖壓力.而要探求盾構(gòu)隧道圍巖與管片襯砌相互作用關(guān)系,必須合理考慮施工過(guò)程的特殊性,對(duì)其力學(xué)過(guò)程加以分析,主要包括:(1)開(kāi)挖過(guò)程中圍巖滲流場(chǎng)變化對(duì)應(yīng)力場(chǎng)的影響;(2)施工過(guò)程中開(kāi)挖與襯砌支護(hù)對(duì)于圍巖應(yīng)力場(chǎng)的影響.
目前,對(duì)于第1個(gè)問(wèn)題的求解,蔡勇平等[12]指出了用Mohr-Coulomb(M-C)破壞條件表達(dá)式計(jì)算水工壓力隧洞彈塑性應(yīng)力的載荷條件,并推導(dǎo)了含水圍巖與襯砌應(yīng)力的計(jì)算式.李宗利等[13]以承受內(nèi)水壓的深埋圓形隧洞為對(duì)象,通過(guò)考慮和不考慮滲流場(chǎng)影響兩種方法對(duì)隧洞開(kāi)展了彈塑性解析,結(jié)果表明隨著洞內(nèi)外水頭差的逐漸增大,滲流場(chǎng)對(duì)應(yīng)力場(chǎng)的影響將顯著增大.張常光[14]基于平面應(yīng)變狀態(tài)下統(tǒng)一強(qiáng)度理論和彈脆塑性軟化模型,推導(dǎo)了水工隧洞施工期和運(yùn)行期不同載荷條件下圍巖和襯砌應(yīng)力、位移的統(tǒng)一解.從上述研究來(lái)看,圍巖與襯砌結(jié)構(gòu)間的相互作用受滲流場(chǎng)變化的影響有明顯差異,可見(jiàn)施工方式、施工過(guò)程導(dǎo)致圍巖滲流場(chǎng)變化對(duì)應(yīng)力場(chǎng)的影響不可忽略.
在第2個(gè)問(wèn)題的求解中,M-C和Hoek-Brown(HB)準(zhǔn)則被廣泛采用.如吳順川等[15]對(duì)圍巖和襯砌分別采用M-C屈服準(zhǔn)則和雙線性本構(gòu)模型,推導(dǎo)了廣義載荷作用下深埋圓形巷道中圍巖和襯砌相互作用的彈塑性解析解.孫闖等[16]基于M-C應(yīng)變軟化模型采用數(shù)值模擬手段將收斂約束法應(yīng)用于高應(yīng)力軟巖巷道圍巖與支護(hù)結(jié)構(gòu)的相互作用.鄒金鋒等[17]基于M-C屈服準(zhǔn)則和應(yīng)力應(yīng)變軟化模型并考慮軸向應(yīng)力和滲透力的共同作用,采用微小徑向應(yīng)力增量逐步求解法推導(dǎo)出軟化圍巖應(yīng)力應(yīng)變的解,結(jié)果表明滲流力對(duì)隧道圍巖應(yīng)力應(yīng)變分布及塑性半徑和圍巖位移的影響不可忽略.Carranza-Torres等[18-19]基于H-B準(zhǔn)則對(duì)收斂約束法(convergence-confinemen method,CCM)的三大基本要素——圍巖縱向變形曲線(longitudinal deformation profile LDP)、圍巖收斂曲線(ground reaction curve,GRC)和支護(hù)特性曲線(support characteristic curve,SCC)進(jìn)行理論解析,并應(yīng)用該方法進(jìn)行了某圓形斷面隧道的支護(hù)結(jié)構(gòu)設(shè)計(jì).蘇永華等[20]基于H-B失效準(zhǔn)則,根據(jù)開(kāi)挖空間圍巖變形壓力與收斂的關(guān)系導(dǎo)出了圓形隧道圍巖載荷計(jì)算公式.
然而,M-C準(zhǔn)則和H-B準(zhǔn)則均忽略了中間主應(yīng)力的影響,對(duì)圍巖屈服或破壞的解釋與實(shí)際情況難免存在較大偏差.Drucker-Prager(D-P)準(zhǔn)則引入了中間主應(yīng)力的影響,使得對(duì)此類(lèi)問(wèn)題的求解結(jié)果更符合實(shí)際.侯公羽等[21]基于 Levy-Mises本構(gòu)關(guān)系及D-P屈服準(zhǔn)則對(duì)軸對(duì)稱(chēng)圓巷進(jìn)行了理想彈塑性條件的求解.張小波等[22]考慮不同程度中間主應(yīng)力的影響,采用D-P屈服準(zhǔn)則對(duì)圓形巷道圍巖進(jìn)行彈塑性區(qū)分析,并與M-C準(zhǔn)則解、統(tǒng)一強(qiáng)度準(zhǔn)則解和FLAC3D軟件數(shù)值解的結(jié)果進(jìn)行了對(duì)比,認(rèn)為適當(dāng)?shù)膽?yīng)用D-P屈服準(zhǔn)則更能保證工程實(shí)踐的安全性.
鑒于此,本文基于Drucker-Prager準(zhǔn)則,推導(dǎo)了盾構(gòu)隧道圍巖的滲流力及滲流影響下圍巖與襯砌結(jié)構(gòu)相互作用的彈塑性解析解,包括圍巖彈、塑性區(qū)應(yīng)力與位移、塑性區(qū)半徑等.在此基礎(chǔ)上,以收斂約束法為載體對(duì)大埋深水下盾構(gòu)隧道施工期和穩(wěn)定期的載荷開(kāi)展了分析,并與現(xiàn)場(chǎng)實(shí)測(cè)和數(shù)值計(jì)算結(jié)果進(jìn)行了對(duì)比驗(yàn)證.
運(yùn)用滲流場(chǎng)基本理論推導(dǎo)隧道從襯砌拼裝完成至水壓穩(wěn)定期間圍巖和襯砌結(jié)構(gòu)的滲透水壓力,作為等效考慮滲流效應(yīng)影響下圍巖與襯砌結(jié)構(gòu)相互作用分析的邊界條件.
對(duì)于深埋隧道,為簡(jiǎn)化計(jì)算,只考慮開(kāi)挖面為圓形的情況.假設(shè)圍巖在半徑r2的范圍內(nèi)形成的穩(wěn)定滲流場(chǎng),水頭為h2(相應(yīng)水壓為pw0),襯砌的內(nèi)徑為r0,外徑為r1,圍巖和襯砌的滲透系數(shù)分別為kr和kc.分析模型如圖1所示.由于隧道的長(zhǎng)度遠(yuǎn)大于斷面尺寸,可以認(rèn)為是無(wú)限長(zhǎng)的圓柱,兩端受約束,按平面問(wèn)題求解.
圖1 隧道--圍巖滲流分析模型Fig.1 Model of tunnel-surrounding rock seepage analysis
襯砌內(nèi)任一半徑r處的滲流量為
式(1)的邊界條件為
聯(lián)立式(1)和式(2)可解得
同理可解得圍巖內(nèi)任一半徑r處的滲流量為
由于隧道襯砌和圍巖處于穩(wěn)定的滲流場(chǎng)內(nèi),流過(guò)每一斷面的滲流量都相等,即Qc=Qr,聯(lián)立式(3)和式(4)可解得襯砌、圍巖任一半徑處的滲透水壓力
上式為隧道開(kāi)挖穩(wěn)定后的滲流狀態(tài).對(duì)于采用盾構(gòu)法修建的水下隧道而言,盾構(gòu)施工過(guò)程中流固耦合效應(yīng)引起的水壓滯后導(dǎo)致施工期管片襯砌所受水壓小于穩(wěn)定期[10-11,23-25].該降低程度受地層條件和盾構(gòu)施工參數(shù)等多種因素影響,但具體降低多少,目前的研究成果均未量化.為簡(jiǎn)化起見(jiàn),本文采用將式(5)乘以折減系數(shù)的方法作近似處理,折減系數(shù)取值見(jiàn)后文第5節(jié).
圍巖掘進(jìn)后,由于邊界條件的改變和水壓作用,圍巖應(yīng)力狀態(tài)發(fā)生了變化,如果該應(yīng)力狀態(tài)大于圍巖的抗壓強(qiáng)度,會(huì)在一定范圍內(nèi)形成塑性區(qū).當(dāng)襯砌施作后,襯砌的支護(hù)阻力會(huì)對(duì)圍巖的塑性區(qū)范圍產(chǎn)生影響.
為方便計(jì)算,作如下假定:(1)巖體為連續(xù)、均質(zhì)、各向同性的理想彈塑性材料;(2)忽略圍巖自重對(duì)塑性區(qū)的影響;(3)圍巖側(cè)壓系數(shù)為1,隧道各向承受等壓;(4)隧道斷面為圓形,縱向水平延伸且長(zhǎng)度無(wú)限大.基于以上假設(shè),問(wèn)題簡(jiǎn)化為幾何結(jié)構(gòu)和載荷都軸對(duì)稱(chēng)的平面應(yīng)變厚壁圓筒問(wèn)題,其力學(xué)分析模型如圖2所示.
圖2 隧道--圍巖彈塑性力學(xué)分析模型Fig.2 Mechanical model of tunnel-surrounding rock elasto-plastic analysis
2.1 圍巖塑性區(qū)應(yīng)力
在半徑r處取一個(gè)微小的單元體,由于為軸對(duì)稱(chēng)問(wèn)題,在單元體上只作用徑向和環(huán)向正應(yīng)力而無(wú)剪應(yīng)力,其力學(xué)模型如圖2所示,其中滲透水壓力以體積力的形式作用在單元體上.利用平衡條件可建立含水圍巖單元體的平衡方程,即
式中,σr和σθ分別為徑向和環(huán)向有效應(yīng)力,拉應(yīng)力為正,壓應(yīng)力為負(fù).后文中應(yīng)力若無(wú)特別說(shuō)明均為有效應(yīng)力,正負(fù)號(hào)規(guī)定相同.β為滲透水壓力的面積作用系數(shù),與材料的孔隙率有關(guān).對(duì)于混凝土,β一般取2/3~1;對(duì)于接近破壞的巖石,β值接近于1[23].
當(dāng)圍巖在支承壓力作用下達(dá)到屈服狀態(tài)時(shí),應(yīng)滿足Drucker-Prager準(zhǔn)則,即
I為第一應(yīng)力不變量,J2為第二偏應(yīng)力不變量;α和k是Drucker-Prager準(zhǔn)則系數(shù).對(duì)于地下工程平面應(yīng)變問(wèn)題,可采用三維應(yīng)力狀態(tài)下的壓縮錐擬合條件確定[21,26],即
式中,c和φ為圍巖的黏聚力和內(nèi)摩擦角.
圍巖中間主應(yīng)力方向?yàn)樗淼揽v向,根據(jù)平面應(yīng)變條件,得到在含水條件下圍巖的各主應(yīng)力
式中 μ為圍巖泊松比,因假設(shè)圍巖應(yīng)力為各向等壓,所以有μ=0.5.將式(10)代入式(8)中,得到
將式(11)代入式(7),可以求得
將式(5)第2式和式(12)代入式(6),得到關(guān)于σr的一階線性非齊次微分方程
代入邊界條件
2.2 圍巖彈性區(qū)應(yīng)力
設(shè)圍巖彈性區(qū)和塑性區(qū)交界處的半徑為R0,界面上作用有徑向應(yīng)力σR0;圍巖和襯砌的交界的半徑為r1,在r1處作用有支護(hù)阻力pa.將圍巖彈性區(qū)視為一厚壁圓筒,其無(wú)窮遠(yuǎn)處作用有初始地應(yīng)力q0,內(nèi)半徑R0處承受徑向應(yīng)力σR0,滲透水壓pw作用在整個(gè)區(qū)域內(nèi),則由Kirsch公式可得圍巖彈性區(qū)的總應(yīng)力表達(dá)式為
2.3 圍巖塑性區(qū)半徑與支護(hù)阻力的關(guān)系
圍巖在彈、塑性區(qū)交界面處(r=R0)的總應(yīng)力連續(xù),即
上式左右兩側(cè)分別相加,將式(12)和式(16)代入并化簡(jiǎn),可得
將式(15)代入式(18)并注意到r=R0,可求得洞周徑向支護(hù)阻力關(guān)于圍巖塑性區(qū)半徑的關(guān)系式
式(19)表達(dá)了在圍巖巖性特征參數(shù)已知時(shí),徑向支護(hù)阻力pa與塑性區(qū)大小R0之間的關(guān)系.
取q0=10MPa,pw0=1MPa,c=0.5MPa,φ分別為10°,20°,30°,40°,則pa與R0/r1的關(guān)系如圖3(a)所示.可以看出,在同樣R0/r1的條件下,所需支護(hù)阻力隨著φ的減小而增大;反之,當(dāng)pa一定時(shí),隨著φ的減小,塑性區(qū)范圍將逐漸增大.
取q0=10MPa,pw0=1MPa,φ=30°,c分別為0.25MPa,0.505MPa,0.75MPa,1.00MPa,pa與R0/r1的關(guān)系如圖3(b)所示.可以看出,R0/r1一定時(shí),所需支護(hù)阻力隨著c的減小而增大;反之,當(dāng)pa一定時(shí),隨著c的減小,塑性區(qū)范圍將逐漸增大.
圖3說(shuō)明,徑向支護(hù)阻力限制了塑性區(qū)域的發(fā)展,這是支護(hù)阻力一個(gè)很重要的作用.
圖3 徑向支護(hù)阻力與圍巖塑性區(qū)大小的關(guān)系Fig.3 Relationship between radical support pressure and radius of plastic zone of surrounding rock
2.4 圍巖的位移分析
彈性區(qū)內(nèi)的圍巖位移可采用彈性力學(xué)中厚壁圓筒的公式確定,即
式中,μr為圍巖泊松比,Er為圍巖彈性模量.將圍巖視為在彈、塑性邊界上承受內(nèi)壓力σR0的厚壁圓筒,則彈性區(qū)的位移為
由圍巖彈、塑性邊界上的位移協(xié)調(diào)條件可知
假定圍巖在塑性區(qū)內(nèi)產(chǎn)生變形的過(guò)程中體積不變,則圍巖周邊產(chǎn)生的位移近似等于
聯(lián)立式(15)、式(19)和式(23),可得隧道周邊位移關(guān)于支護(hù)阻力pa的關(guān)系式
由于式(19)為關(guān)于R0的超越方程,無(wú)法寫(xiě)出R0關(guān)于pa的顯式表達(dá)式,故式(24)也無(wú)法寫(xiě)出與pa的顯式表達(dá)式.對(duì)于此類(lèi)問(wèn)題,一般可由式(19)采用迭代法或試算法先求得某一pa作用時(shí)的R0,再代入式(15)求得σR0,最后代入式(23)求得此pa作用時(shí)的由于采用迭代法或試算法求解較為繁瑣,因此本文擬采用更簡(jiǎn)捷的方法進(jìn)行求解,即將R0作為溝通pa和的“橋梁”,先對(duì)R0賦某一值,通過(guò)式(19)、式(15)求得相應(yīng)的pa和σR0,再通過(guò)式(23)求得當(dāng)R0取值的增量足夠小時(shí),對(duì)應(yīng)的數(shù)值解趨近于精確解,從而使計(jì)算過(guò)程得到簡(jiǎn)化.
3.1 圍巖彈塑性收斂曲線
圍巖收斂曲線(GRC)是對(duì)不同支護(hù)阻力作用下洞周?chē)鷰r變形的描述,反映了洞周?chē)鷰r位移隨支護(hù)力減小而增大的關(guān)系,其典型形態(tài)如圖4所示[27-28].
圖4 圍巖收斂曲線和襯砌支護(hù)特性曲線Fig.4 Ground reaction curve(GRC)and support characteristic curve(SCC)
若定義隧道開(kāi)挖后圍巖周邊不出現(xiàn)塑性破裂的最低支護(hù)阻力為臨界阻力,則當(dāng)支護(hù)結(jié)構(gòu)能夠提供的支護(hù)阻力不小于臨界阻力時(shí),開(kāi)挖后圍巖仍處于彈性狀態(tài),洞周位移與支護(hù)阻力的關(guān)系曲線可用式(21)描述.當(dāng)支護(hù)結(jié)構(gòu)能夠提供的支護(hù)阻力小于臨界阻力時(shí),開(kāi)挖后圍巖出現(xiàn)塑性區(qū),若考慮滲流效應(yīng)并基于D-P屈服準(zhǔn)則,此時(shí)洞周位移與支護(hù)阻力的關(guān)系可用式(24)描述,其對(duì)應(yīng)的曲線可通過(guò)2.4節(jié)介紹的簡(jiǎn)化方法處理.
3.2 支護(hù)特性曲線
支護(hù)特性曲線(SCC)是指作用在支護(hù)結(jié)構(gòu)上的載荷與支護(hù)結(jié)構(gòu)變形的關(guān)系曲線,當(dāng)不考慮支護(hù)結(jié)構(gòu)與圍巖的接觸狀態(tài)對(duì)支護(hù)結(jié)構(gòu)剛度的影響時(shí),可認(rèn)為作用在支護(hù)結(jié)構(gòu)上的徑向壓力和它的徑向位移成正比.通常支護(hù)結(jié)構(gòu)都是在隧道圍巖已經(jīng)發(fā)生一定量值的收斂變形后才施設(shè)的,并一直作用到支護(hù)結(jié)構(gòu)強(qiáng)度為止,如上圖4所示.支護(hù)特性曲線可用下式表示
式中,ur0為支護(hù)結(jié)構(gòu)的徑向位移,u0為支護(hù)結(jié)構(gòu)的初始徑向位移,pa為作用在支護(hù)結(jié)構(gòu)上的徑向壓力,Kc為支護(hù)結(jié)構(gòu)剛度.
當(dāng)混凝土支護(hù)結(jié)構(gòu)厚度ds較小時(shí) (ds≤0.04r1),可采用薄壁圓筒公式計(jì)算,其支護(hù)剛度和可提供的最大支護(hù)阻力pamax分別為
式中,pamax為支護(hù)結(jié)構(gòu)的最大支護(hù)阻力;Ec為混凝土彈性模量;μc為混凝土泊松比;fc為混凝土抗壓強(qiáng)度.當(dāng)混凝土支護(hù)結(jié)構(gòu)厚度ds(ds≥0.04r1)較大時(shí),可采用厚壁圓筒公式計(jì)算,其支護(hù)剛度和可提供的最大支護(hù)阻力pamax分別為[5]
對(duì)于裝配式管片襯砌結(jié)構(gòu),其厚度約為外徑的4%~6%[29-30],屬厚壁圓筒問(wèn)題.由于接頭的存在,管片襯砌結(jié)構(gòu)整體抗彎性能有所降低,可通過(guò)引入結(jié)構(gòu)橫向剛度有效率η(剛度折減系數(shù))[31]來(lái)表征這一特性,于是式(28)可修正為下式
需要指出,前文對(duì)圍巖進(jìn)行彈塑性分析時(shí),考慮了滲流作用,得到的圍巖收斂曲線方程中含有滲透水壓力項(xiàng).然而在得出管片襯砌支護(hù)特性曲線時(shí)采用的是傳統(tǒng)的分析方法,尚未考慮滲透水壓力的影響,這顯然不盡合理.因此此處采用簡(jiǎn)化方法考慮這一作用,認(rèn)為滲透水壓力使管片結(jié)構(gòu)產(chǎn)生初始位移,即其擴(kuò)大了圍巖與管片結(jié)構(gòu)相互作用前二者的“間隙”.
文獻(xiàn)[32]指出,由于襯砌厚度相對(duì)較小,可以把以體積力形式作用在襯砌范圍內(nèi)的滲流力以合力的形式表達(dá)為作用在襯砌背后的表面力.對(duì)于本文,其值可通過(guò)對(duì)式(5)第2式積分得到
由厚壁圓筒僅受外壓作用時(shí)的位移公式可得,滲透水壓作用下管片襯砌的附加徑向位移為
將上式計(jì)算結(jié)果疊加到式(25)的u0中,即可在管片襯砌支護(hù)特性曲線中考慮滲流作用的影響.
3.3 圍巖與襯砌結(jié)構(gòu)靜力平衡狀態(tài)的建立
圍巖開(kāi)挖剛完成時(shí),若要保持圍巖穩(wěn)定,需要很大的支護(hù)阻力才能夠?qū)崿F(xiàn),往往遠(yuǎn)大于支護(hù)結(jié)構(gòu)所能提供的最大支護(hù)力,因此,圍巖會(huì)繼續(xù)發(fā)生收斂變形.與此同時(shí),由于支護(hù)結(jié)構(gòu)徑向變形逐漸增大,所能提供的支護(hù)阻力也隨之增大.最終,圍巖收斂曲線將與管片襯砌的支護(hù)特性曲線相交于一點(diǎn),達(dá)到平衡狀態(tài).交點(diǎn)橫坐標(biāo)對(duì)應(yīng)平衡體系形成時(shí)的協(xié)調(diào)位移,也即洞周發(fā)生的位移;交點(diǎn)縱坐標(biāo)為管片襯砌結(jié)構(gòu)承擔(dān)的載荷,其以上部分為圍巖自身需要承擔(dān)的載荷.
獅子洋隧道位于廣深港客運(yùn)專(zhuān)線東涌站至虎門(mén)站之間,穿越珠江入??诘莫{子洋.隧道工程范圍全長(zhǎng)10800m,其中盾構(gòu)段9340m.隧道主體結(jié)構(gòu)采用單層裝配式管片襯砌結(jié)構(gòu),內(nèi)徑9.8m,外徑10.8m,管片厚度50cm,平均幅寬為2m,采用“7+1”分塊方式的通用楔形環(huán)鋼筋混凝土管片錯(cuò)縫襯砌,混凝土強(qiáng)度等級(jí)為C50,抗?jié)B等級(jí)為P12[33].
在右線基巖淺埋段設(shè)置試驗(yàn)斷面測(cè)試襯砌承受的水土壓力.試驗(yàn)斷面隧道大范圍通過(guò)弱風(fēng)化泥質(zhì)粉砂巖,隧道埋深約為38m(超過(guò)2倍隧道外直徑),水頭約為38m.實(shí)測(cè)施工期和穩(wěn)定后作用在管片襯砌上的水壓力分別為0.33MPa,0.39MPa,圍巖壓力分別為0.10MPa,0.16MPa[25].因此,施工期流固耦合效應(yīng)引起的水壓折減系數(shù)可暫取0.85.
監(jiān)測(cè)斷面處圍巖及管片襯砌結(jié)構(gòu)的幾何和力學(xué)參數(shù)根據(jù)文獻(xiàn)[33-35]取值.管片結(jié)構(gòu)橫向剛度有效率η根據(jù)文獻(xiàn)[31]取0.70;管片襯砌混凝土抗?jié)B等級(jí)為P12,可認(rèn)為管片不透水;支護(hù)施設(shè)時(shí)圍巖徑向收斂值u0未知,暫由刀盤(pán)開(kāi)挖直徑和管片外徑確定,取u0=191mm[36].
綜上,計(jì)算所取參數(shù)分別為
根據(jù)式(21)、式(24)、式(29)和式(30)求解并在同一坐標(biāo)系中繪制圍巖彈塑性收斂曲線和支護(hù)特性曲線,如圖5所示.從圖中可以看出,對(duì)于本例,由于管片襯砌剛度大,而滲透水壓相對(duì)較小,產(chǎn)生的管片襯砌附加變形很小.分別求出施工期和穩(wěn)定期圍巖收斂曲線與支護(hù)特性曲線的交點(diǎn),其橫坐標(biāo)即為管片結(jié)構(gòu)所承擔(dān)的圍巖載荷.本算例中,計(jì)算結(jié)果分別為0.128MPa,0.179MPa.
圖5 圍巖與襯砌結(jié)構(gòu)的相互作用Fig.5 Interaction between surrounding rock and lining structure
為進(jìn)一步驗(yàn)證本文方法的有效性,采用FLAC3D建立數(shù)值分析模型,計(jì)算隧道開(kāi)挖后作用在管片襯砌上的圍巖壓力.計(jì)算所取幾何參數(shù)及材料物理力學(xué)參數(shù)均與理論分析取值相同.對(duì)于理論解析中未考慮的管片壁后注漿材料,數(shù)值分析模型中也采用“彈性等代層”,等代層參數(shù)見(jiàn)表1.
計(jì)算按平面應(yīng)變問(wèn)題考慮,模型中地層、管片襯砌和注漿材料均采用實(shí)體單元模擬,地層材料采用D-P模型,其他材料采用彈性模型.模型上表面為自由邊界,取實(shí)際埋深38m,其他邊界取4D(D為管片外徑),并施加法向約束.初始地應(yīng)力取自重應(yīng)力,初始水壓取靜水壓力,水位與地表平齊.
表1 等代層參數(shù)Table 1 Parameters of equivalent layer
由于施工過(guò)程中漿液逐漸硬化,其材料參數(shù)會(huì)產(chǎn)生較大變化,加之漿液在周?chē)貙又辛鲃?dòng)、擴(kuò)散,施工中某一時(shí)刻的漿液參數(shù)很難確定,因此僅列出穩(wěn)定后作用在管片襯砌的圍巖壓力,計(jì)算結(jié)果為0.170MPa.
采用本文方法計(jì)算得到的結(jié)果與現(xiàn)場(chǎng)實(shí)測(cè)值相比,施工期和穩(wěn)定期分別偏大28%和12%;與數(shù)值計(jì)算結(jié)果相比,穩(wěn)定期偏大5%.初步分析導(dǎo)致差異的因素有4點(diǎn):(1)本文推導(dǎo)時(shí)假定圍巖與襯砌結(jié)構(gòu)緊密接觸,而現(xiàn)場(chǎng)實(shí)際并不能保證二者完全密貼,因此測(cè)得的接觸壓力偏小;(2)現(xiàn)場(chǎng)測(cè)試時(shí)管片壁后注漿漿液容易包裹在土壓力盒周?chē)箛鷰r壓力不能完全傳遞至傳感器受力面,造成實(shí)測(cè)壓力值小于實(shí)際值;(3)推導(dǎo)時(shí)假定圍巖初始應(yīng)力場(chǎng)均勻分布,且圍巖為各項(xiàng)同性的理想彈塑性材料,而實(shí)際很難保證;(4)數(shù)值分析模型所取等代層參數(shù)為經(jīng)驗(yàn)值,條件所限而未能根據(jù)實(shí)測(cè)結(jié)果進(jìn)行參數(shù)反演,與實(shí)際情況可能存在偏差.因此,可認(rèn)為本文解析方法得到的結(jié)果可信,并具有較高的精度.但由于施工期流固耦合效應(yīng)造成的水壓降低程度不易量化,采用本文方法計(jì)算施工期管片襯砌承擔(dān)的圍巖壓力有一定偏差,尚需作進(jìn)一步研究.
本文基于 Drucker-Prager準(zhǔn)則,針對(duì)盾構(gòu)隧道施工的力學(xué)過(guò)程,等效考慮滲流效應(yīng)影響推導(dǎo)了圍巖與襯砌結(jié)構(gòu)相互作用的彈塑性解析解,包括圍巖彈、塑性區(qū)應(yīng)力與位移、塑性區(qū)半徑等,并通過(guò)建立圍巖與襯砌結(jié)構(gòu)靜力平衡狀態(tài)得到管片襯砌結(jié)構(gòu)承擔(dān)的圍巖壓力,最后通過(guò)算例與典型大埋深水下盾構(gòu)隧道載荷實(shí)測(cè)及數(shù)值計(jì)算值進(jìn)行比較分析,得到以下結(jié)論:
(1)等效考慮滲流效應(yīng)影響并基于 Drucker-Prager屈服準(zhǔn)則,推導(dǎo)了無(wú)限均質(zhì)各項(xiàng)同性圍巖受等壓作用平面應(yīng)變問(wèn)題的解析解,得到了圍巖彈、塑性區(qū)應(yīng)力與位移、塑性區(qū)半徑等與支護(hù)壓力間的關(guān)系式,彌補(bǔ)了以往研究成果未能反映滲流力影響的缺憾.
(2)闡述了圍巖與支護(hù)結(jié)構(gòu)靜力平衡狀態(tài)的建立方法,并作為特例,介紹了盾構(gòu)隧道管片襯砌支護(hù)特性曲線的處理方法,即采用結(jié)構(gòu)橫向剛度有效率η對(duì)整環(huán)剛度進(jìn)行折減,以反映接頭對(duì)結(jié)構(gòu)整體剛度的影響.
(3)選取廣深港客運(yùn)專(zhuān)線獅子洋穿越基巖段水下盾構(gòu)隧道為對(duì)象,采用本文解析方法計(jì)算了施工期和穩(wěn)定期作用在管片襯砌上的圍巖水土壓力.與現(xiàn)場(chǎng)實(shí)測(cè)結(jié)果相比,施工期和穩(wěn)定期的計(jì)算值分別大28%和12%.
(4)本文解析方法與現(xiàn)場(chǎng)實(shí)測(cè)及數(shù)值計(jì)算結(jié)果存在差異的原因?yàn)椋含F(xiàn)場(chǎng)圍巖與襯砌間并不能完全滿足計(jì)算假定的緊密接觸條件;現(xiàn)場(chǎng)測(cè)試時(shí)管片壁后注漿的包裹作用使測(cè)試結(jié)果只能反映實(shí)際圍巖壓力的一部分;實(shí)際情況很難保證圍巖為無(wú)限均質(zhì)各項(xiàng)同性介質(zhì),并受等壓作用;數(shù)值計(jì)算模型采用的等代層參數(shù)與實(shí)際情況可能存在偏差.
1 Ita WG.Guidelines for the design of shield tunnel lining.Tunnelling and Underground Space Technology,2000,15(3):303-331
2 2020年前廣州將新建多條排水防澇深隧支隧.http://www.zgsz.org. cn/2014/0612/11205.html. 2014-6-12(Guangzhou will build a number of deep buried drainage tunnels and anti-waterlogging branch tunnels until 2020.http://news.xinhuanet.com/energy/2016-01/18/c_1117801885.htm.2014-6-12(in Chinese))
3 黃鵬程.武漢地下將建首條污水深隧.http://news.xinhuanet.com/ energy/2016-01/18/c1117801885.htm. 2016-1-8(Huang Pengcheng.Wuhan will build its firs deep buried sewage tunnel.http:// news.xinhuanet.com/energy/2016-01/18/c1117801885.htm.2016-1-8(in Chinese))
4 賴(lài)芳杰.掘地30米成都將建78.8公里污水深隧防內(nèi)澇.http:// www.sc.gov.cn/10462/12771/2016/4/3/10374826.shtml.2016-4-3 (Lai Fangjie.Digging 30 m,Chengdu will build 78.8 km of deep buried sewage tunnel to prevent urban waterlogging.http:// www.sc.gov.cn/10462/12771/2016/4/3/10374826.shtml.2016-4-3 (in Chinese))
5 何川,封坤,方勇.盾構(gòu)法修建地鐵隧道的技術(shù)現(xiàn)狀與展望.西南交通大學(xué)學(xué)報(bào),2015,50(1):97-109(He Chuan,Feng Kun,Fang Yong.Review and prospect on the constructing technologies of metro tunnel using shield tunneling method.Journal of Southwest Jiaotong University,2015,50(1):97-109(in Chinese))
6 何川.盾構(gòu)/TBM施工煤礦長(zhǎng)距離斜井的技術(shù)挑戰(zhàn)與展望.隧道建設(shè),2014,34(4):287-297(He Chuan.Challenges and prospectives of construction of long distance inclined shafts of coal mines by shield/TBM.Tunnel Construction,2014,34(4):287-297(in Chinese))
7 《中國(guó)公路學(xué)報(bào)》編輯部.中國(guó)隧道工程學(xué)術(shù)研究綜述·2015.中國(guó)公路學(xué)報(bào),2015,28(5):1-65(Editorial Office of China Journal of Highway and Transport.Review on China’s tunnel engineering research:2015.China Journal of Highway and Transport,2015, 28(5):1-65(in Chinese))
8 洪開(kāi)榮.我國(guó)隧道及地下工程發(fā)展現(xiàn)狀與展望.隧道建設(shè),2015, 35(2):95-107(Hong Kairong.State-of-art and prospect of tunnels and underground works in China.Tunnel Construction,2015,35(2):95-107(in Chinese))
9 何川,封坤.大型水下盾構(gòu)隧道結(jié)構(gòu)研究現(xiàn)狀與展望.西南交通大學(xué)學(xué)報(bào),2011,46(1):1-11(He Chuan,Feng Kun.Review and prospect of structure research of underwater shield tunnel with large cross-section.Journal of Southwest Jiaotong University,2011, 46(1):1-11(in Chinese))
10 齊春,何川,封坤.考慮流固耦合效應(yīng)的水下盾構(gòu)隧道受力特性.西南交通大學(xué)學(xué)報(bào),2015,50(2):306-311,330(Qi Chun,He Chuan,Feng Kun.Fluid-solid interaction-based mechanical characteristics of underwater shield tunnel.Journal of Southwest Jiaotong University,2015,50(2):306-311,330(in Chinese))
11 夏煒洋.盾構(gòu)法隧道施工期流固耦合問(wèn)題研究.[博士論文].成都:西南交通大學(xué),2012(Xia Weiyang.Study on coupled solidflui problemofshieldtunnelduringconstructionperiod.[PhDThesis].Chengdu:Southwest Jiaotong University,2012(in Chinese))
12 蔡勇平,蔡曉鴻.水工壓力隧洞結(jié)構(gòu)應(yīng)力計(jì)算.北京:中國(guó)水利水電出版社,2004(Cai Yongping,Cai Xiaohong.Stress Calculation of Hydraulic Pressure Tunnel Structure.Beijing:China Water &Power Press,2004(in Chinese))
13 李宗利,任青文,王亞紅.考慮滲流場(chǎng)影響深埋圓形隧洞的彈塑性解.巖石力學(xué)與工程學(xué)報(bào),2004,23(8):1291-1295(Li Zongli, Ren Qingwen,Wang Yahong.Elasto-plastic analytical solution of deep-buried circle tunnel considering flui fl w fieldChinese Journal of Rock Mechanics and Engineering,2004,23(8):1291-1295 (in Chinese))
14 張常光.圓形壓力隧洞彈塑性應(yīng)力和位移分析.[碩士論文].西安:長(zhǎng)安大學(xué),2008.(Zhang Changguang.Analysis of elasticplastic stress and displacement for circular pressure tunnel.[Master Thesis].Xi’an:Chang’an University,2008(in Chinese))
15 吳順川,潘旦光,高永濤.深埋圓形巷道圍巖和襯砌相互作用解析解.工程力學(xué),2011,28(3):136-142(Wu Shunchuan,Pan Danguang,Gao Yongtao.Analytic solution for rock-liner interaction of deep circular tunnel.Engineering Mechanics,2011,28(3):136-142 (in Chinese))
16 孫闖,張向東,李永靖.高應(yīng)力軟巖巷道圍巖與支護(hù)結(jié)構(gòu)相互作用分析.巖土力學(xué),2013,34(9):2601-2607(Sun Chuang,Zhang Xiangdong,Li Yongjing.Analysis of interaction between surrounding rock and support structure in high stressed soft rock roadway.Rock and Soil Mechanics,2013,34(9):2601-2607(in Chinese))
17 鄒金鋒,李帥帥,張勇等.考慮軸向力和滲透力時(shí)軟化圍巖隧道解析.力學(xué)學(xué)報(bào),2014,46(5):747-755(Zou Jinfeng,Li Shuaishuai, Zhang Yong,et al.Solution and analysis of circular tunnel for the strain-softening rock masses considering the axial in situ stress and seepage force.Chinese Journal of Theoretical and Applied Mechanics,2014,46(5):747-755(in Chinese))
18 Carranza-Torres C,Fairhurst C.The elasto-plastic response of underground excavations in rock masses that satisfy the Hoek-Brown failure criterion.International Journal of Rock Mechanics and Mining Sciences,1999,36(6):777-809
19 Carranza-Torres C,Fairhurst C.Application of the convergenceconfinemen method of tunnel design to rock masses that satisfy the hoek-brown failure criterion.Tunnelling and Underground Space Technology,2000,15(2):187-213
20 蘇永華,劉少峰,王凱旋等.基于收斂--約束原理的地下結(jié)構(gòu)穩(wěn)定性分析.巖土工程學(xué)報(bào),2014,36(11):2002-2009(Su Yonghua, Liu Shaofeng,Wang Kaixuan,et al.Stability analysis of underground structures based on convergence-confinemen method.Chinese Journal of Geotechnical Engineering,2014,36(11):2002-2009(in Chinese))
21侯公羽,牛曉松.基于Levy-Mises本構(gòu)關(guān)系及D-P屈服準(zhǔn)則的軸對(duì)稱(chēng)圓巷理想彈塑性解.巖土力學(xué),2009,30(6):1555-1562(Hou Gongyu,NiuXiaosong.Perfectelastoplasticsolutionofaxisymmetric circular openings in rock mass based on Levy-Mises constitutive relation and D-P yield criterion.Rock and Soil Mechanics,2009, 30(6):1555-1562(in Chinese))
22張小波,趙光明,孟祥瑞.基于Drucker-Prager屈服準(zhǔn)則的圓形巷道圍巖彈塑性分析.煤炭學(xué)報(bào),2013,38(S1):30-37(Zhang Xiaobo,Zhao Guangming,Meng Xiangrui.Elastoplastic analysis of surrounding rock on circular roadway based on Drucker-Prager yield criterion.Journal of China Coal Society,2013,38(S1):30-37 (in Chinese))
23 謝紅強(qiáng).隧道工程熱液固多場(chǎng)耦合效應(yīng)研究.[博士論文].成都:西南交通大學(xué),2006(Xie Hongqiang.Study on multi-fiel coupled ef f ects of heat,liquid and solid in tunnel works.[PhD Thesis]. Chengdu:Southwest Jiaotong University,2006(in Chinese))
24 何川,謝紅強(qiáng).多場(chǎng)耦合分析在隧道工程中的應(yīng)用.成都:西南交通大學(xué)出版社,2007(He Chuan,Xie Hongqiang.Application of Analysis of Multi-fiel Coupled Ef f ects in Tunnel Works.Chengdu:Southwest Jiaotong University Press,2007(in Chinese))
25 肖明清.大型水下盾構(gòu)隧道結(jié)構(gòu)設(shè)計(jì)關(guān)鍵問(wèn)題研究.[博士論文].成都:西南交通大學(xué),2014(Xiao Mingqing.Research on key issues of segmental lining structure design for underwater shield tunnel with large cross-section.[PhD Thesis].Chengdu:Southwest Jiaotong University,2014(in Chinese))
26 鄭穎人,沈珠江,龔曉南.巖土塑性力學(xué)原理——廣義塑性力學(xué).北京:中國(guó)建筑工業(yè)出版社,2002(Zheng Yingren,Shen Zhujiang, Gong Xiaonan.Principle of Plastic Mechanics of Rock and Soil——Generalized Plastic Mechanics.Beijing:China Building Industry Press,2002(in Chinese))
27 Alejano LR,Alonso E,Rodr′?guez-Dono A,et al.Application of the convergence-confinemen method to tunnels in rock masses exhibiting Hoek-Brown strain-softening behaviour.International Journal of Rock Mechanics and Mining Sciences,2010,47(1):150-160
28 Gonz′alez-Nicieza C,′alvarez-Vigil AE,Men′endez-D′?az A,et al.Influencof the depth and shape of a tunnel in the application of theconvergence-confinemen method.TunnellingandUnderground Space Technology,2008,23(1):25-37
29 劉建航,侯學(xué)淵.盾構(gòu)法隧道.北京:中國(guó)鐵道出版社,1991(Liu Jianhang,Hou Xueyuan.Shield Tunnel.Beijing:China Railway Publishing House,1991(in Chinese))
30 日本土木學(xué)會(huì).盾構(gòu)隧道管片設(shè)計(jì)——從容許應(yīng)力法到極限狀態(tài)法.官林星譯.北京:中國(guó)建筑工業(yè)出版社,2012(JSCE.Design of Shield Tunnel Segment——From Allowable Stresses Method to Limit State Method.Guan LX transl.Beijing:China Building Industry Press,2012(in Chinese))
31 封坤,何川,夏松林.大斷面盾構(gòu)隧道結(jié)構(gòu)橫向剛度有效率的原型試驗(yàn)研究.巖土工程學(xué)報(bào),2011,33(11):1750-1758(Feng Kun, He Chuan,Xia Songlin.Prototype tests on ef f ective bending rigidity ratios of segmental lining structure for shield tunnel with large cross-section.Chinese Journal of Geotechnical Engineering,2011, 33(11):1750-1758(in Chinese))
32 王建宇.隧道圍巖滲流和襯砌水壓力載荷.鐵道建筑技術(shù),2008, (2):1-6(Wang Jianyu.Problems on external water pressure on tunnel lining.Railway Construction Technology,2008,(2):1-6(in Chinese))
33 鐵道第四勘察設(shè)計(jì)院.廣深港客運(yùn)專(zhuān)線廣州至深圳段獅子洋隧道盾構(gòu)隧道結(jié)構(gòu)設(shè)計(jì).武漢:鐵道第四勘察設(shè)計(jì)院,2006(China Railway Siyuan Survey and Design Group Co.,Ltd.Structure design of Shiziyang shield tunnel of Guangzhou-Shenzhen section of Guangzhou-Shenzhen-Hong Kong PDL.Wuhan:China Railway Siyuan Survey and Design Group Co.,Ltd,2006(in Chinese))
34 鐵道第四勘察設(shè)計(jì)院.廣深港客運(yùn)專(zhuān)線廣州至深圳段獅子洋隧道工程地質(zhì)勘察報(bào)告.武漢:鐵道第四勘察設(shè)計(jì)院,2006(China Railway Siyuan Survey and Design Group Co.,Ltd.Geological survey report of Shiziyang shield tunnel of Guangzhou-Shenzhen section of Guangzhou-Shenzhen-Hong Kong PDL.Wuhan:China Railway Siyuan Survey and Design Group Co.,Ltd,2006(in Chinese))
35 中華人民共和國(guó)鐵道部.TB10003-2005,J449-2005鐵路隧道設(shè)計(jì)規(guī)范.北京:中國(guó)鐵道出版社,2005(Ministry of Railways of the PRC.TB10003-2005,J449-2005 Code for design of Railway Tunnels.Beijing:China Railway Publishing House,2005(in Chinese))
36 洪開(kāi)榮.高速鐵路特長(zhǎng)水下盾構(gòu)隧道施工技術(shù).北京:中國(guó)鐵道出版社,2013(Hong Kairong.Construction Technologies of Extra Long Underwater Shield-Bored High Speed Railway Tunnels.Beijing:China Railway Publishing House,2013(in Chinese))
THEORETICAL ANALYSIS OF INTERACTION BETWEEN SURROUNDING ROCKS AND LINGING STRCTURE OF SHIELD TUNNEL BASED ON DRUCKER-PRAGER YIELD CRITERIA1)
He Chuan?,2)Qi Chun?Feng Kun?,3)Xiao Mingqing?,4)
?(Key Laboratory of Transportation Tunnel Engineering,Ministry of Education,Southwest Jiaotong University,Chengdu610031,China)
?(China Railway Siyuan Survey and Design Group Co.,Ltd,Wuhan430063,China)
In calculating the load for segment lining structure of shield tunnel,the soil column or pressure arch theory are often used to describe surrounding rock loosening pressure.But when it comes to the deep-buried condition and the deformation pressure should be calculated,this method is considered as unreasonable and is difficult to apply.In view ofthis,based on the Drucker-Prager yield criterion,an analytical elasto plastic solution is derived for the interaction between surrounding rock and lining structure considering the influenc of seepage ef f ect,and the formula of the relationship between the support pressure and some key parameters such as the stress and displacement of surrounding rock elastic and plastic zone as well as the radius of the plastic zone is given.The analytical results can be applied in the determination oftheloadoftheliningstructurebyestablishingthestaticequilibriumstateofthesurroundingrockandtheliningstructure and findin the intersection point of the two curves.Further,rigidity reduction factor is induced to equivalent considering the influenc of the overall rigidity decrease of assembled segment liner for the existence of joints to the interaction of surrounding rock and lining structure.In the load determination,the influenc of the fluid-soli coupling ef f ect during construction and seepage force on support characteristic curve of lining structure is also simplifie considered.Finally, an engineering instance of underwater shield tunnel is introduced to compare the calculated load with the measured value and numerical simulated value.The results show that the caculated analytical load values of segment lining structure are greater by 28%and 12%comparing to measured values during the construction period and the stable period,and are greater by 5%comparing to numerical simulated value during the stable period,respectively.The research results of this paper can provide some reference for the design and construction of similar projects.
shield tunnel,surrounding rock,lining structure,interaction,surrounding rock pressure,Drucker-Prager criterion,convergence-confinemen method
U25,U451
A doi:10.6052/0459-1879-16-344
2016-11-25收稿,2016-12-04錄用,2016-12-04網(wǎng)絡(luò)版發(fā)表.
1)國(guó)家自然科學(xué)基金(U1361210,51578462)、國(guó)家重點(diǎn)研發(fā)計(jì)劃(2016YFC0802200)、中央高校基本科研業(yè)務(wù)費(fèi)專(zhuān)項(xiàng)資金(2682015CX077)和中國(guó)鐵路總公司科技研究開(kāi)發(fā)計(jì)劃(2014G004-0)資助項(xiàng)目.
2)何川,教授,主要研究方向:地鐵及水下盾構(gòu)隧道結(jié)構(gòu)理論、大型及復(fù)雜交通隧道結(jié)構(gòu)安全及長(zhǎng)大交通隧道運(yùn)營(yíng)控制等. E-mail:chuanhe21@163.com
3)封坤,副教授,主要研究方向:現(xiàn)代盾構(gòu)隧道技術(shù)與結(jié)構(gòu)設(shè)計(jì)理論.E-mail:windfeng813@163.com
4)肖明清,教授級(jí)高級(jí)工程師,主要研究方向:水下隧道及高速鐵路隧道設(shè)計(jì).E-mail:tsyxmq@163.com
何川,齊春,封坤,肖明清.基于D-P準(zhǔn)則的盾構(gòu)隧道圍巖與襯砌結(jié)構(gòu)相互作用分析.力學(xué)學(xué)報(bào),2017,49(1):31-40
He Chuan,Qi Chun,Feng Kun,Xiao Mingqing.Theoretical analysis of interaction between surrounding rocks and linging strcture of shield tunnel based on Drucker-Prager yield criteria.Chinese Journal of Theoretical and Applied Mechanics,2017,49(1):31-40