祁毓婷,鄭德聰,王璟,薛楠,高潔
(山西農(nóng)業(yè)大學(xué) 工學(xué)院,山西 太谷 030801)
基于FLUENT的滴灌條件下土壤水分入滲數(shù)值模擬
祁毓婷,鄭德聰*,王璟,薛楠,高潔
(山西農(nóng)業(yè)大學(xué) 工學(xué)院,山西 太谷 030801)
[目的]研究滴灌過程中土壤水分的入滲規(guī)律對合理滴灌與作物增產(chǎn)有重要意義。[方法]本文采用Fluent軟件對行距為50 cm的滴灌種植模式計算求解。[結(jié)果]通過模擬得到土壤水分入滲的速度分布云圖與各點水分分布云圖。模擬結(jié)果與實際試驗結(jié)果基本一致,入滲速度隨入滲深度和寬度的增加而減小,水平方向和垂直方向的平均入滲速度分別為2.73×10-4m·s-1、2.24×10-4m·s-1,水平方向入滲速度較大;水分到達距地面10 cm深處作物根部所需時間大約為100~120 min;入滲時各點土壤含水率增速隨時間下降,隨寬度和深度的增加而減小。[結(jié)論]模擬結(jié)果表明,數(shù)值模擬能夠較好地反映滴灌條件下土壤水分入滲規(guī)律,為確定最優(yōu)種植模式提供理論指導(dǎo)。
Fluent;滴灌;土壤;水分入滲;數(shù)值模擬
滴灌作為一種新型節(jié)水灌溉技術(shù)已廣泛應(yīng)用于各種作物灌溉當(dāng)中。合理的滴灌模式能夠提高作物產(chǎn)量,同時也能節(jié)省灌溉用水[1]。研究滴灌過程中水分在土壤中的入滲規(guī)律對優(yōu)化滴灌模式有重要意義。 王成武等[2]采用人工配置試驗土壤的方法,研究了不同滴灌條件下水分在土壤中的分布形式。冀榮華等[3]和李耀剛等[4]分別使用HYDRUS-2D和HYDRUS-3D軟件對負(fù)壓灌溉和涌泉根灌進行數(shù)值模擬,得到了不同灌水半徑和不同灌水定額下土壤水分入滲規(guī)律。但對于在一定行距和灌水定額下土壤水分入滲速度、水分到達作物根部所需時間以及水分入滲后各點土壤含水率的分布規(guī)律還鮮見報道。
本文采用Fluent軟件對行距50 cm、灌水定額每箱4 L條件下土壤水分入滲過程進行數(shù)值模擬和試驗,通過模擬得到土壤水分入滲的速度分布云圖以及入滲各點水分分布云圖,分析云圖中各點的土壤含水率,對照試驗所得數(shù)據(jù),研究滴灌后水分隨時間的入滲規(guī)律。
1.1 模擬基本理論
土壤是一種多孔介質(zhì),由無數(shù)形狀不規(guī)則且排列錯綜復(fù)雜的固體顆粒組成,水分在土壤中的運動是復(fù)雜且多變的[5],因此在模擬過程中采用多孔介質(zhì)模型。模擬原理為動量守恒原理,對于不可壓縮流體,要在模擬過程中啟用能量方程[6]。由于入滲過程是水在土壤孔隙中的流動,土壤介質(zhì)孔隙大小不一,分布錯綜復(fù)雜,故對流體產(chǎn)生較大阻力,F(xiàn)luent在對其模擬時應(yīng)在原有動量方程的基礎(chǔ)上增加一個動量源項,該項由粘性損失項和內(nèi)部損失項組成[7],能夠真實反映土壤介質(zhì)對水分流動的實際阻力。
1.2 模型建立
滴灌屬于點源入滲[8],假定土壤為均質(zhì)土壤,在各向同性的條件下可以將三維入滲模型簡化為二維入滲模型[9]。由于本試驗在室內(nèi)進行,故不考慮水分蒸發(fā)和降水對土壤水分入滲的影響。采用ICEM軟件建立數(shù)學(xué)模型,模型最大水平寬度為作物種植行距50 cm,最大垂直距離根據(jù)田間試驗所測數(shù)據(jù)選取40 cm。滴灌帶置于土壤水平面中心處,滴孔水源入滲寬度為4 cm。所建模型為二維模型,故將速度入口直徑簡化為入口寬度D。建立模型如圖1所示。
圖1 土壤水分入滲示意圖Fig.1 Diagram of water infiltration
圖1中O為坐標(biāo)原點,O'為滴灌帶中心,ABCD為數(shù)值模擬區(qū)域,ab為水源入滲寬度。數(shù)值模擬區(qū)域水平距離X/cm為閉區(qū)間[-25,25],垂直距離OO'=40 cm,ab=4 cm。
1.3 邊界條件設(shè)置
分別設(shè)置進口速度(velocity-inlet)、出口壓力(pressure-outlet)和溫度(temperature)等邊界條件。由于滴灌過程較緩慢,且滴孔較小,所以采用試驗測量的方法來確定模型的進口速度。在水頭壓力為0.04 MPa的條件下,分別選取3處滴孔測量其60 s內(nèi)的滴灌量Q/m3,根據(jù)滴灌量Q/m3,以及水源入滲寬度D/m由公式(1)計算其進口速度v,每處滴孔測量3次,共測9次。測量結(jié)果如表1所示。
v=4Q/πD2t
(1)
表1 各點滴灌速度測量值
由表1中各點進口速度取其平均值可得,進口速度v=4.23×10-4m·s-1。
出口壓力為標(biāo)準(zhǔn)大氣壓P=1.01×105Pa,溫度為室內(nèi)溫度T=298 K。
1.4 數(shù)值模擬
本次模擬的區(qū)域條件為多孔介質(zhì)(porous),均勻劃分模型區(qū)域網(wǎng)格。多孔介質(zhì)模型粘性阻力系數(shù)和慣性阻力系數(shù)由土壤特性確定其值,土壤孔隙率[10]為0.4。模擬采用時間步長為0.01 s,共模擬120 min。
2.1 試驗材料與裝置
選取山西省太谷縣侯城鄉(xiāng)楊家莊試驗區(qū)石灰型褐土為試驗土壤,其質(zhì)地為中壤土,配比為有機質(zhì)含量約18.7 g·kg-1,全氮含量約1.56 g·kg-1,速鉀含量約0.15 g·kg-1。
試驗裝置主要包括:滴灌帶灌水系統(tǒng),由滴灌帶、水泵、控制測量儀表、干管、精密壓力表、閘閥、流量調(diào)節(jié)器和滴頭組成;DHG-9023A型電熱恒溫鼓風(fēng)干燥箱;土鉆;鋁盒;電子天平,量程500 g,精度0.01 g;塑料土箱,80 cm×60 cm×40 cm(長×寬×高),土箱內(nèi)放置土壤深度為40 cm。
2.2 試驗方案
本試驗于室內(nèi)進行,試驗前將所取土壤風(fēng)干,使其初始含水率保持在5.1%~5.3%之間[11]。在塑料土箱中裝土,滴灌帶置于土壤上表面,位于土箱中央,調(diào)節(jié)滴灌帶灌水系統(tǒng),設(shè)置試驗初始參數(shù),水頭壓力為0.04 MPa,滴灌帶流量大約為2 L·h-1。開始滴灌后,分別在距滴灌帶滴孔水平方向雙側(cè)5、10、15、20、25 cm處取點,其俯視圖如圖2所示。每隔30 min用土鉆在各點取土,每點取土深度為20 cm。分別取出土鉆中深度為5、10、15、20 cm處的相同質(zhì)量土壤,通過公式(2)計算土壤含水率并記錄數(shù)據(jù)。試驗通過測量滴灌后不同時間各點土壤含水率大小,確定土壤水分的運移情況。
(2)
式中:θ為土壤含水率/%;ω1為濕土與鋁盒重量/g;ω2為干土與鋁盒重量/g;ω為鋁盒重量/g。
圖2 試驗測試點分布俯視圖Fig.2 Distribution of testing points in top view 注:1.塑料土箱 2.取土樣點 3.滴灌帶 4.滴孔Note:1.Soil box of plastic 2.The point of sample soil 3.Drip tape 4.The hole of drip tape
3.1 模擬結(jié)果分析
圖3為100 min時水分入滲速度分布云圖,表示滴灌100 min時各點的水分入滲速度。由圖3可見,在距滴孔相同距離的水平方向與垂直方向上,距滴孔越遠(yuǎn),入滲速度越??;比較其速度大小,并根據(jù)不同速度所占比例計算速度平均值,得到水平方向的平均入滲速度vx=2.73×10-4m·s-1,垂直方向的平均入滲速度vy=2.24×10-4m·s-1,水平方向的入滲速度總體大于垂直方向。滴灌初期,土壤初始含水率較低,土壤入滲能力大,入滲較快。隨著水分的不斷入滲,土壤含水率增大,其滲透力減小,入滲變慢。
圖3 入滲速度分布云圖Fig.3 The counter of infiltration velocity
圖4(a)~(d)分別為開始滴灌30、60、90、120 min后土壤水分入滲的水分分布云圖。由圖4可見,水分入滲范圍隨時間逐漸變大,30 min時水分到達水平方向約8 cm處,入滲深度約5 cm;60 min時水分到達水平方向約15 cm處,入滲深度約10 cm;90 min時水分到達水平方向約20 cm處,入滲深度約15 cm;120 min時水分到達水平方向約25 cm處,入滲深度約20 cm。由此可估計,在行距為50 cm的種植模式下,作物位于距滴灌帶滴孔水平距離25 cm處,經(jīng)過100~120 min水分可到達作物根部。
在滴灌過程中,入滲各點的土壤含水率隨時間不斷增大[12],根據(jù)圖中土壤含水率的變化梯度可得,水平方向的土壤含水率增速大于垂直方向。隨著種植深度和寬度的增加,土壤含水率增速減小。由此可得,種植行距越大,水分到達作物根部所需時間越長。
3.2 實測結(jié)果分析
圖5為不同深度各點土壤含水率隨時間變化的曲線圖,其中的5條曲線分別代表距滴灌帶滴孔水平距離5、10、15、20、25 cm處的土壤含水率變化。由圖5可見,隨著滴灌進行,土壤各處的含水率均明顯增大,但增速沒有明顯規(guī)律;滴灌100~120 min后,水分能到達距滴灌帶滴孔水平方向
圖4 不同時間水分入滲分布云圖Fig.4 Contours of water infiltration in different time(a)t=30 min;(b)t=60 min;(c)t=90 min;(d)t=120 min
圖5 不同深度各點土壤含水率隨時間變化曲線Fig.5 Soil moisture content variation with time in different depth
25 cm、深度為10 cm處,因此在行距為50 cm、種植深度為10 cm的種植模式下,滴灌100~120 min后水分能到達作物根部。
3.3 結(jié)果有效性驗證
由模擬結(jié)果與實測結(jié)果的分析比較可知,模擬值與實測值較為接近。其結(jié)論基本一致,因此模擬結(jié)果能夠較好的反映實際入滲過程。造成誤差的原因與土壤初始含水率及試驗過程中取土準(zhǔn)確性等因素有關(guān)。且本次試驗為室內(nèi)試驗,未種植作物,所以模擬過程中不考慮水分蒸發(fā)、降雨以及作物根部對水分的吸收等因素影響,在今后的研究中需進一步討論。
(1)各點土壤水分入滲模擬值和實際試驗值基
本一致,所建模型能夠較好地模擬滴灌條件下土壤水分入滲規(guī)律,可以用于研究滴灌條件下的土壤水分入滲規(guī)律。
(2)滴灌時水分在水平方向的入滲速度總體大于垂直方向的入滲速度,水平方向和垂直方向的平均入滲速度分別為vx=2.73×10-4m·s-1和vy=2.24×10-4m·s-1。
(3)滴灌100~120 min后,水分能夠初步到達水平方向25 cm、垂直方向10 cm處。行距為50 cm的種植模式下水分到達作物根部10 cm處所需時間大約為100~120 min。
[1]王成武,戈振揚.滴灌條件下土壤滲流分形特性研究[J].昆明理工大學(xué)學(xué)報,2007,32(1):105-107.
[2]張志剛,李宏,李疆,等.地表滴灌條件下滴灌量對土壤水分入滲再分布過程的影響[J].農(nóng)業(yè)現(xiàn)代化研究,2016,37(1):174-181.
[3]冀榮華,王婷婷,祁力鈞,等.基于HYDRUS-2D的負(fù)壓灌溉水分入滲數(shù)值模擬[J].農(nóng)業(yè)機械學(xué)報,2015,46(4):113-119.
[4]李耀剛,王文娥,胡笑濤.基于HYDRUS-3D的涌泉根灌土壤入滲數(shù)值模擬[J].排灌機械工程學(xué)報,2015,31(6):546-552.
[5]黃昌勇.土壤學(xué)[M].北京:中國農(nóng)業(yè)出版社,2005:78-79.
[6]韓占中.FLUENT—流體工程仿真計算實例與分析[M].北京:北京理工大學(xué)出版社,2009:84-85.
[7]唐家鵬.FLUENT14.0超級學(xué)習(xí)手冊[M].北京:人民郵電出版社,2013:434-435.
[8]鄭園萍.滴灌條件下土壤水分入滲過程模擬試驗研究[D].楊凌:西北農(nóng)林科技大學(xué),2008.
[9]雷志棟,楊詩秀.非飽和土壤水一維流動的數(shù)值計算[J].土壤學(xué)報,1982,19(2):141-152.
[10]李曉斌,孫海燕.不同土壤質(zhì)地的滴灌點源入滲規(guī)律研究[J].科學(xué)技術(shù)與工程,2008,8(15):4292-4295.
[11]趙西寧,吳發(fā)啟.土壤水分入滲的研究進展和評述[J].西北林學(xué)院學(xué)報,2004,19(1):42-45.
[12]Zhang Zhenhua, Cai Huanjie,Guo Yongchang, et al. Experimental study on factors effecting soil wetted volume of clay loam under drip irrigation[J].Transactios of the CSAE,2002,18(2):17-20.
(編輯:李曉斌)
Numerical simulation of drip irrigation soil water infiltration laws on Fluent
Qi Yuting, Zheng Decong*, Wang Jing, Xue Nan, Gao Jie
(CollegeofEngineering,ShanxiAgriculturalUniversity,TaiguShanxi030801,China)
[Objective]Research in the process of the drip irrigation infiltration laws of soil water infiltration has important significance for reasonable drip irrigation and crop yield increase.[Methods]This text used Fluent software to simulate the drip irrigation planting patterns of 50 cm space to calculate the soil water infiltration.[Results]It got the contours of velocity distribution and moisture distribution. Simulation results and actual test results were in agreement.Infiltration velocity decreased with the increase of infiltration depth and width. The average infiltration rate of horizontal direction and vertical direction were 2.73×10-4m·s-1and 2.24×10-4m·s-1, horizontal infiltration rate was greater than the vertical infiltration rate; it needed about 100~120 min for water to arrive the depth of 10cm at crop roots; the soil moisture content in each point decreased over time, and with the increase of width and depth, the soil moisture content decreased. [Conclusion]The results showed that the numerical simulation can reflect the rule of soil water infiltration under drip irrigation. It provided theoretical guidance for determining the optimal planting pattern.
Fluent, Drip irrigation, Soil, Infiltration, Numerical simulation
2016-06-20
2016-10-18
祁毓婷(1992-),女(漢),山西忻州人,碩士研究生,研究方向:節(jié)水灌溉理論與技術(shù)
*通信作者:鄭德聰,教授,碩士生導(dǎo)師。Tel:0354-6288906;E-mail:Zhengdecong@126.com
S275.6
A
1671-8151(2017)02-0141-05
山西農(nóng)業(yè)大學(xué)學(xué)報(自然科學(xué)版)2017年2期