鄭云梅,和晨辰,王世忠,沈萬(wàn)秋,李海東
(1天津醫(yī)科大學(xué)基礎(chǔ)醫(yī)學(xué)院,天津300070;2天津醫(yī)科大學(xué)藥學(xué)院)
·論著·
樹(shù)突狀細(xì)胞與黑色素瘤細(xì)胞體外共培養(yǎng)體系對(duì)小鼠黑色素瘤形成的影響
鄭云梅1,和晨辰2,王世忠1,沈萬(wàn)秋2,李海東1
(1天津醫(yī)科大學(xué)基礎(chǔ)醫(yī)學(xué)院,天津300070;2天津醫(yī)科大學(xué)藥學(xué)院)
目的 探討樹(shù)突狀細(xì)胞(DC)與黑色素瘤細(xì)胞(B16)體外共培養(yǎng)后對(duì)小鼠黑色素瘤形成的影響。方法 提取小鼠骨髓細(xì)胞,分化DC,培養(yǎng)至第6天,將細(xì)胞分為4組,脂多糖(LPS)組、聚肌胞[Poly(IC)]組、Melan-A抗原肽(Melan-A)組分別加入DC佐劑LPS(終濃度100 ng/mL)、Poly(IC)(終濃度20 ng/mL)、Melan-A抗原肽(終濃度5 μmol/L)進(jìn)行處理,未處理組未進(jìn)行干預(yù)。采用流式細(xì)胞術(shù)檢測(cè)DC成熟狀態(tài)。B16細(xì)胞與培養(yǎng)第6天的DC共培養(yǎng)2 d。取C57BL/6J小鼠皮下注射B16細(xì)胞(8只),DC+B16細(xì)胞(8只),LPS(8只)、poly(IC)(8只)、Melan-A抗原肽激活(8只)的DC+B16細(xì)胞,接種B16細(xì)胞1周再接種DC+B16細(xì)胞(5只),對(duì)照組(3只)不接種細(xì)胞。于接種第14天取部分小鼠處死,取脾臟,鏡下觀察其組織形態(tài);接種第28天測(cè)算腫瘤體積。結(jié)果 LPS組、Poly(IC)組、Melan-A組成熟DC多于未處理組。接種DC+B16細(xì)胞的小鼠未見(jiàn)腫瘤生長(zhǎng);接種第28天,與接種B16細(xì)胞的小鼠比較,接種LPS、poly(IC)、Melan-A抗原肽激活的DC+B16細(xì)胞及接種B16細(xì)胞1周再接種DC+B16細(xì)胞的小鼠腫瘤體積減小(P均<0.05)。與對(duì)照組比較,第14天接種DC+B16細(xì)胞小鼠脾臟濾泡結(jié)構(gòu)無(wú)明顯變化,而接種B16細(xì)胞及LPS、poly(IC)、Melan-A抗原肽激活的DC+B16細(xì)胞小鼠,脾臟濾泡結(jié)構(gòu)增加。結(jié)論 DC與B16共培養(yǎng)可抑制小鼠黑色素瘤的形成。
黑色素瘤;樹(shù)突狀細(xì)胞;免疫治療;小鼠
黑色素瘤惡性程度高,轉(zhuǎn)移發(fā)生早,病死率高[1]。目前臨床無(wú)有效根治方法。免疫治療是繼手術(shù)、放療、化療之后的治療方式,在提高腫瘤治愈率、改善患者生活質(zhì)量、延長(zhǎng)生存期方面起重要作用[2]。樹(shù)突狀細(xì)胞(DC)是功能最強(qiáng)的抗原呈遞細(xì)胞(APC),在免疫識(shí)別、免疫應(yīng)答和免疫調(diào)控過(guò)程中發(fā)揮重要作用,是啟動(dòng)T細(xì)胞介導(dǎo)免疫反應(yīng)的關(guān)鍵[3]。以DC為基礎(chǔ)的免疫療法已被應(yīng)用于惡性腫瘤(如黑色素瘤)的治療[4]。目前用于免疫治療的靶向抗原主要是腫瘤特異性抗原或腫瘤相關(guān)抗原。將負(fù)載腫瘤抗原的DC輸回體內(nèi),誘導(dǎo)產(chǎn)生有效的抗腫瘤免疫應(yīng)答[5]。2014年9月~2016年10月,本研究建立體外黑色素瘤B16細(xì)胞與DC的共培養(yǎng)體系,探討其對(duì)小鼠體內(nèi)黑色素瘤生長(zhǎng)的影響,為以DC為基礎(chǔ)的腫瘤免疫療法提供新的思路。
1.1 動(dòng)物、試劑及儀器 6周齡雌性C57BL/6J小鼠(北京華阜康生物科技有限公司、中國(guó)醫(yī)學(xué)科學(xué)院血液學(xué)研究所實(shí)驗(yàn)動(dòng)物中心)55只。RPMI-1640培養(yǎng)基(北京索萊寶科技有限公司);胎牛血清和Melan-A抗原肽(上海生工生物工程股份有限公司);脂多糖(LPS)、聚肌胞[Poly(IC)](美國(guó)Sigma-Aldrich);粒細(xì)胞-巨噬細(xì)胞集落刺激因子(GM-CSF)、IL-4(美國(guó)PeproTech);PE標(biāo)記的大鼠抗小鼠CD40、CD80、CD86單克隆抗體(美國(guó)BioLegend);小鼠黑色素瘤B16-F10(B16)細(xì)胞(美國(guó)ATCC細(xì)胞庫(kù));Accuri C6流式細(xì)胞儀(美國(guó)BD Biosciences)。
1.2 小鼠樹(shù)突狀細(xì)胞(DC)分化及培養(yǎng) 取6周齡雌性C57BL/6J小鼠7只。頸椎脫位法處死,取股骨和脛骨,以RPMI1640培養(yǎng)基將骨髓沖洗出,收集于離心管中,離心洗滌后獲得骨髓細(xì)胞,計(jì)數(shù)。將細(xì)胞用含10%胎牛血清的RPMI1640完全培養(yǎng)基懸浮,加入(終濃度25 ng/mL)GM-CSF、(終濃度20 ng/mL)IL-4,于37 ℃、5% CO2培養(yǎng)箱中培養(yǎng),每隔2 d換液,分化得DC。根據(jù)文獻(xiàn)[6],將DC培養(yǎng)至第6天,隨機(jī)分為4組:LPS組、Poly(IC)組、Melan-A抗原肽組及對(duì)照組,前3組分別加入LPS(終濃度100 ng/mL)、Poly(IC)(終濃度20 ng/mL)、Melan-A抗原肽(終濃度5 μmol/L),未處理組未干預(yù),各設(shè)6個(gè)復(fù)孔。
1.3 成熟DC檢測(cè) 采用流式細(xì)胞術(shù)。取各組DC,重懸于含1%牛血清白蛋白(BSA)的PBS緩沖液,加入熒光標(biāo)記的抗CD40、CD80、CD86抗體,4 ℃孵育30 min,以PBS洗滌2次。采用流式細(xì)胞儀進(jìn)行檢測(cè),用FlowJo軟件對(duì)數(shù)據(jù)進(jìn)行分析。CD80、CD86高表達(dá)的細(xì)胞為成熟DC,CD40高表達(dá)的細(xì)胞為活化的DC。
1.4 小鼠B16細(xì)胞培養(yǎng) 小鼠B16細(xì)胞培養(yǎng)于含10%胎牛血清的RPMI-1640培養(yǎng)基中。培養(yǎng)條件為37 ℃、5% CO2。共培養(yǎng)時(shí)B16細(xì)胞與分化至第6天的DC按照1∶4混合培養(yǎng)2 d。
1.5 小鼠黑色素瘤模型制備 取C57BL/6J小鼠進(jìn)行接種。取對(duì)數(shù)生長(zhǎng)期B16細(xì)胞或DC與B16細(xì)胞共培養(yǎng)細(xì)胞,重懸于無(wú)菌PBS緩沖液,調(diào)整B16細(xì)胞或共培養(yǎng)液中B16細(xì)胞為5×106/mL,皮下注射于小鼠后腿背側(cè);每只小鼠5×105個(gè)B16細(xì)胞。將小鼠分別接種B16細(xì)胞(8只),DC+B16細(xì)胞(8只),LPS(8只)、poly(IC)(8只)、Melan-A抗原肽激活(8只)的DC+B16細(xì)胞,接種B16細(xì)胞1周再接種DC+B16細(xì)胞(5只),對(duì)照組(3只)不接種細(xì)胞。除接種B16細(xì)胞1周再接種DC+B16細(xì)胞的小鼠其余各組分別取3只小鼠,于接種第14天后頸椎脫位法將其處死,取脾臟,固定于4%甲醛中,石蠟包埋、4 μm厚切片,組織切片經(jīng)脫蠟水化后,蘇木精-伊紅染色,再脫水透明,中性樹(shù)膠封片,顯微鏡下觀察細(xì)胞和組織形態(tài),拍照,放大100倍。除對(duì)照組外其余各組分別取5只小鼠,于接種第28天肉眼觀察小鼠腫瘤生長(zhǎng)情況,并用游標(biāo)卡尺測(cè)量腫瘤長(zhǎng)徑、短徑,計(jì)算腫瘤體積,體積=1/2×長(zhǎng)徑×短徑2。
2.1 DC成熟狀態(tài) LPS組、Poly(IC)組、Melan-A組處理2 d后,其表面抗原CD80、CD86表達(dá)高于未處理組。即LPS組、Poly(IC)組、Melan-A組成熟DC多于對(duì)照組。
2.2 小鼠黑色素瘤體積比較 接種DC+B16細(xì)胞的小鼠未見(jiàn)腫瘤生長(zhǎng)。接種第28天,接種B16細(xì)胞的小鼠腫瘤體積為(7.100±0.604)cm3,接種LPS、poly(IC)、Melan-A抗原肽激活的DC+B16細(xì)胞的小鼠腫瘤體積分別為(2.640±0.601)、(4.440±0.384)、(4.440±0.373)cm3,與接種B16細(xì)胞的小鼠比較腫瘤體積減小(P均<0.05)。接種B16細(xì)胞1周再接種DC+B16細(xì)胞的小鼠腫瘤體積(3.375±0.800)cm3,與接種B16細(xì)胞的小鼠比較腫瘤體積減小(P<0.05)。
2.3 荷瘤小鼠脾臟組織形態(tài)變化 與對(duì)照組比較,接種第14天接種DC+B16細(xì)胞小鼠脾臟濾泡結(jié)構(gòu)無(wú)明顯變化,而接種B16細(xì)胞及LPS、poly(IC)、Melan-A抗原肽激活的DC+B16細(xì)胞小鼠,脾臟濾泡結(jié)構(gòu)增加。
DC是機(jī)體中功能最強(qiáng)的專職APC,它能高效攝取、加工處理和遞呈抗原,未成熟DC具有較強(qiáng)的遷移和內(nèi)吞抗原能力,成熟DC能有效激活初始型T淋巴細(xì)胞,處于啟動(dòng)、調(diào)控、維持免疫應(yīng)答的中心環(huán)節(jié),在機(jī)體的抗腫瘤免疫中發(fā)揮重要作用[3]。
將黑色素瘤細(xì)胞B16接種到小鼠體內(nèi),會(huì)迅速生長(zhǎng)形成腫瘤。本研究發(fā)現(xiàn),DC和B16細(xì)胞共培養(yǎng)后再接種到C57小鼠體內(nèi),并不會(huì)形成肉眼可見(jiàn)的腫瘤。在體外共培養(yǎng)過(guò)程中,B16細(xì)胞碎片和表面抗原會(huì)被未成熟DC吞噬,在細(xì)胞內(nèi)加工處理并由主要組織相容性復(fù)合體遞呈在細(xì)胞表面。接種到體內(nèi)后,這些DC將可能激活T淋巴細(xì)胞,對(duì)腫瘤細(xì)胞產(chǎn)生抑制和殺傷作用。另一方面,在體外共培養(yǎng)過(guò)程中加入DC的激活因子可能會(huì)對(duì)DC內(nèi)吞抗原以及隨后其在體內(nèi)的抗腫瘤功能產(chǎn)生抑制作用。有研究認(rèn)為,佐劑的使用可能會(huì)誘導(dǎo)DC耐受性的形成[7],這與我們的研究結(jié)果一致。
DC免疫耐受性產(chǎn)生的機(jī)制是抗腫瘤免疫研究的一個(gè)重要方面。有研究結(jié)果顯示,低劑量的LPS刺激DC,可以使小鼠對(duì)腫瘤產(chǎn)生一定的免疫作用;但使用高劑量的LPS或多次用LPS刺激DC,則會(huì)使小鼠體內(nèi)的吲哚胺2,3-雙加氧酶水平上調(diào),而這種物質(zhì)的高表達(dá)會(huì)使小鼠產(chǎn)生腫瘤的免疫耐受[8]。Poly(IC)對(duì)小鼠黑色素瘤的作用也正在深入研究中[9]。DC是聯(lián)系機(jī)體天然免疫反應(yīng)和適應(yīng)性免疫反應(yīng)的關(guān)鍵細(xì)胞。DC的免疫特異性通過(guò)激活T淋巴細(xì)胞來(lái)實(shí)現(xiàn)。DC和被激活的T淋巴細(xì)胞釋放一系列細(xì)胞因子如IL-2等,進(jìn)一步促進(jìn)T淋巴細(xì)胞的增殖、活化。T淋巴細(xì)胞可轉(zhuǎn)化為效應(yīng)T細(xì)胞和記憶T細(xì)胞。前者直接對(duì)腫瘤細(xì)胞產(chǎn)生殺傷作用,并且CD4+T細(xì)胞可以刺激B淋巴細(xì)胞的增殖、活化,促使B淋巴細(xì)胞產(chǎn)生腫瘤特異性的抗體;后者可使得機(jī)體保持較為持久的抗腫瘤免疫能力[10]。
小鼠接種B16細(xì)胞后,脾臟結(jié)構(gòu)發(fā)生了顯著變化,其濾泡結(jié)構(gòu)增多,提示其淋巴細(xì)胞增殖和活化;小鼠體內(nèi)產(chǎn)生了一定的免疫反應(yīng),但是不能夠有效控制腫瘤的生長(zhǎng)。由于實(shí)驗(yàn)設(shè)計(jì)和條件所限,未能觀察接種B16細(xì)胞1周再接種DC+B16細(xì)胞的小鼠脾臟變化。與經(jīng)LPS、Poly(IC)和Melan-A抗原肽處理的共培養(yǎng)細(xì)胞比較,單純將DC和B16細(xì)胞共培養(yǎng)對(duì)腫瘤的抑制作用較好。有研究表明,單純采用一種黑色素瘤抗原進(jìn)行抗腫瘤免疫治療的作用效果有限,并且不能有效抑制惡性腫瘤的快速生長(zhǎng)[11]。將黑色素瘤抗原與單克隆抗體[11]或者IL-2[12]聯(lián)合使用會(huì)有較好的治療腫瘤的效果。
[1] 黑色素瘤專家委員會(huì).中國(guó)黑色素瘤診治指南:2015版[M].北京:人民衛(wèi)生出版社,2015:1.
[2] 孟冉冉,張躍偉,趙廣生,等.樹(shù)突狀細(xì)胞腫瘤疫苗抗腫瘤研究進(jìn)展[J].中華腫瘤防治雜志,2012,19(20):1597-1600.
[3] Palucka K, Banchereau J. Cancer immunotherapy via dendritic cells[J]. Nat Rev Cancer, 2012,12(4):265-277.
[4] Dashti A, Ebrahimi M, Hadjati J, et al. Dendritic cell based immunotherapy using tumor stem cells mediates potent antitumor immune responses[J]. Cancer Lett, 2016,374(1):175-185.
[5] 司春楓,魯美鈺,周玲,等.腫瘤疫苗免疫策略研究進(jìn)展[J].現(xiàn)代腫瘤醫(yī)學(xué),2016,24(15):2478-2482.
[6] Inaba K, Inaba M, Romani N, et al. Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor[J]. J Exp Med, 1992,176(6):1693-1702.
[7] Flacher V, Tripp CH, Mairhofer DG, et al. Murine Langerin+dermal dendritic cells prime CD8+T cells while Langerhans cells induce cross-tolerance[J]. EMBO Mol Med, 2014,6(9):1191-1204.
[8] Fallarino F, Pallotta MT, Matino D, et al. LPS-conditioned dendritic cells confer endotoxin tolerance contingent on tryptophan catabolism[J]. Immunobiology, 2015,220(2):315-321.
[9] Shime H, Kojima A, Maruyama A, et al. Myeloid-derived suppressor cells confer tumor-suppressive functions on natural killer cells via polyinosinic:polycytidylic acid treatment in mouse tumor models[J]. J Innate Immun, 2014,6(3):293-305.
[10] Sevko A, Kremer V, Falk C, et al. Application of paclitaxel in low non-cytotoxic doses supports vaccination with melanoma antigens in normal mice[J]. J Immunotoxicol, 2012,9(3):275-281.
[11] Ly LV, Sluijter M, van der Burg SH, et al. Effective cooperation of monoclonal antibody and peptide vaccine for the treatment of mouse melanoma[J]. J Immunol, 2013,190(1):489-496.
[12] Schwartzentruber DJ, Lawson DH, Richards JM, et al. gp100 peptide vaccine and interleukin-2 in patients with advanced melanoma[J]. N Engl J Med, 2011,364(22):2119-2127.
Effect of co-culturing dendritic cells with melanoma cells on formation of melanoma in mice
ZHENGYunmei1,HEChenchen,WANGShizhong,SHENWanqiu,LIHaidong
(1SchoolofBasicMedicalSciences,TianjinMedicalUniversity,Tianjin300070,China)
Objective To investigate the effect of co-culturing dendritic cells (DC) with melanoma cells (B16) on growth of melanoma in mice.Methods We extracted the bone marrow cells. Mouse DC were cultured for 6 days and then were divided into 4 groups: lipopolysaccharide (LPS) group, Poly (IC) group, and Melan-A group and the control group. Cells in the LPS group, Poly (IC) group, Melan-A group were incubated with LPS (LPS with final concentration of 100 ng/mL), poly-inosinic-cytidylic acid [Poly(IC) with final concentration of 20 ng/mL] and Melan-A peptide (with final concentration of 5 μmol/L), respectively. The control group was not treated. Flow cytometry was used to study the maturation and activation state of DC. B16-F10 (B16) melanoma cells were co-cultured with DC for 2 days and then were used for inoculation of mice. For melanoma model, C57BL/6J mice were inoculated subcutaneously. Some mice were killed at 14 days after inoculation and their spleens were taken to study the structural changes by histochemistry. Tumor size was measured at 28 days after inoculation.Results More mature DC were produced after LPS, Poly(IC) or Melan-A peptide treatment as compared with that of the control group (P<0.05). There was no tumor growth after DC+B16 cell inoculation. Compared with the mice inoculated with B16 cells only, the tumor volume was smaller in the mice inoculated with LPS, Poly(IC) or Melan-A peptide-activated DC+B16 cells or the mice inoculated with B16 cells one week later followed by another inoculation of DC+B16 cells (allP<0.05). Compared with the control group, there was no structural change of the spleen follicles in the mice inoculated with DC+B16, but the number of spleen follicles was increased in the mice inoculated with B16 or with LPS, Poly (IC), or Melan-A peptide-activated DC+B16 cells.Conclusion DC co-cultured with B16 can inhibit the growth of melanoma in mice.
melanoma; dendritic cells; immunotherapy; mice
國(guó)家自然科學(xué)基金資助項(xiàng)目(21373151)。
鄭云梅(1990-),女,在讀碩士,主要研究方向?yàn)闃?shù)突狀細(xì)胞在腫瘤免疫治療中的作用。E-mail:1573237770@qq.com
李海東(1971-),男,博士,教授,主要研究方向?yàn)槟[瘤免疫。E-mail:yxswhx@qq.com
10.3969/j.issn.1002-266X.2017.05.001
R739.5
A
1002-266X(2017)05-0001-03
2016-11-02)