• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Acoustic Scattering Performance for Sources in Arbitrary Motion

    2017-03-13 05:02:07YunpengMaLifengWangandMingxuYi

    Yunpeng Ma, Lifeng Wang * and Mingxu Yi

    Nomenclature

    n : normal vector

    ρ0: fluid density

    ω: rotational angular velocity

    c0: sound speed

    G(x,y,t ?τ): Green function in time domain

    G(x,y,ω): Green function in frequency domain

    t : observe time

    τ: emission time

    x : observer position

    y : source position

    r : distance between observer and source

    k : wave number

    S : duct surface

    s : imaginary surface

    1 Introduction

    In recent decades, noise pollution has become a major issue of concern and the noise generation mechanisms have been investigated widely. Noise generated by aircraft, fans and others has great influence on the aeroacoustic research [Huang, Zhang and Xiang et al. (2015); Qian, Han and Atluri (2013); Kingan (2014); Johnson (1980); Mao, Zhang,Xu and Qi (2015)]. In these applications, the direct sound field and scattering effect are always considered to assess the acoustic impact of sound sources.

    The aerodynamic noise is based on the distinction between noise generation and propagation. The acoustic analogy and Kirchhoff method are two of the most popular noise computation method. Calculation of the acoustic field radiated by rotating sources is a meaningful problem in the prediction of noise of aircraft rotors. The main techniques for noise prediction are based on acoustic analogy Curle equation, FW-H (Ffowcs Williams-Hawkings) equation and the generalized treatment of Goldstein [Ffowcs Williams and Hawkings (1969); Farassat and Brentner (1988); Farassat and Brentner(1998)]. The inhomogeneous acoustic wave equation divides the aeroacoustic source into three types: monopole source, dipole source and quadruple source.

    The ability to solve the velocity components of a sound by a solid object is one of the most important goals in aeroacoustic research. They are used to deal with scattering problems, such as noise scattering by fuselage and noise scattering in rotating machines and wings in aircraft [Mao and Qi (2009); McAlpine, Astley and Hii et al. (2006)]. To evaluate the acoustic velocity, the common method is to use the acoustic pressure gradient through the linearized momentum equation. However, the evaluation of the pressure gradient may cost a lot of computing time and storage space. Recently, Lee et al.[Lee, Brentner and Farassat et al. (2009)] have proposed an efficient formulation for computation of the pressure gradient. Ghorbaniasl et al. [Ghorbaniasl and Hirsch et al.(2015)] used it to obtain an analytical formulation for the acoustic velocity. This formulation makes it easy and convenient to solve the velocity components of a sound wave.

    Since scattering sound wave may be greater amplitude than the incident sound wave,several methods have been proposed to calculate the acoustic scattering [Tausch and Xiao(2010); Dunn and Tinetti (2008); Lee, Brentner and Morris (2010)]. The evaluation of the acoustic velocity on the scattering surface is required in order to meet the boundary conditions [Kingan, Powles and Self (2010); Swift, Blaisdell and Lyrintzis (1983)]. The acoustic boundary element method (BEM) is usually applied to predict the sound radiating and scattering filed in the exterior and interior closed domain [Ciskowski and Brebbia (1991); Wu (2000)]. Wu and Wang [Wu and Wan (1992)] proposed a thin-body BEM, in which an imaginary interface is constructed to divide the domain into interior and exterior subdomains, and the imaginary surface is not discretized in the numerical implementation.

    In this paper, the analytical formulation of the acoustic velocity computation is also derived for sources in arbitrary motion. In order to consider the scattering effect of the thin duct, the newly developed FW-H-Helmholtz boundary elements method is introduced. The derived velocity analytical formulation is used as the Neumann boundary condition for the thin-body BEM. This method is not only simple to operation, but also easy to implement.

    The layout of this work is as follows: In Section 2, the mathematical background of sound radiation is introduced. In Section 3, the formulation to calculate acoustic velocity is derived. In Section 4, the thin-body BEM is developed. Some examples are provided to clarify the approach in Section 5. The conclusion is given in Section 6.

    2 Radiated sound field

    2.1 Ffowcs Williams-Hawkings equation

    In 1969, Williams Ffowcs and Hawkings [Ffowcs Williams and Hawkings (1969)] used the generalized function theory to derive the sound equation of the control plane in arbitrary motion in static fluid, that is, the famous FW-H equation. The FW-H equation can offer acoustic scatterings and reflections of turbulence over a solid wall boundary with simple shape, such as an infinite half-plane, by involving an acoustic Green’s function. The FW-H equation is given by

    for inviscid flow,is wave operator,uiis velocity,f denotes a moving Kirchhoff surface,p'is acoustic pressure,vnis normal component of surface velocity.denotes the compressive stress tensor,denotes a component of the Lighthill tensor,δ(f)is Dirac delta function,H (f)is Heaviside function and satisfied

    As f ( xi,t)=0, according to non penetration condition,un=vn, FW-H equation can be reduced as below

    2.2 Farassat method

    From the end of 1970s to the beginning of 1980s, basing on the integral of Green Function, conversion of the spatial derivatives and time derivatives, Farassat published the famous Farassat 1 and Farassat 1A formulations which are the solution of time domain integral expressions for the thickness noise and loading noise of FW-H equation.The solution of Eq. (4), the formulation of Farassat 1A, is expressed as follows [Dunn,Tinetti and Nark (2015)]

    3 Acoustic velocity formulation for sources in arbitrary motion

    The procedure of the velocity formulation for the thickness and loading sources has been recently proposed by[Farassat (2007)]. Following the same procedure gives the thickness and loading acoustic velocity as follows:

    where Q = ρ ( un?vn) +ρ0vn,andare the acoustic velocity components for the thickness and loading sources.unand vnare the fluid and the data surface normal velocity, respectively.ρdenotes the local fluid density, and ρ0is the density of the undisturbed medium. The subscript ret*indicates that all of the values have to be taken at the retarded time t*.

    For any function F(x, τ (x,t)), one has

    To improve the speed and accuracy of the velocity formulation V1, the time derivatives of formulation V1 can be taken inside the integrals. From the Eq. (11), one obtains

    The second term of the right hand of Eq.(13) can be given by

    Expansion of the expression in the same manner as in the derivation of Farassat 1A gives

    Next, simplifying Eq. (12) further, one can rewrite it as follows

    Using Eq.(14), we have

    Expansion of the expression in the same manner as in the derivation of Farassat 1A gives

    4 Thin-body acoustic boundary element method (BEM)

    In this section, a thin-body boundary integral formulation is applied to calculate the far field sound pressure. Due to the scattering effect of the solid wall in the duct, the total sound pressure is acquired as the sum of the incident and scattered pressure

    Figure 1: A diagram of acoustic scattering by a thin-body.

    where n1and n2are normal unit vectors at the two sides of the wall,C+(x)and C?(x)are the two constants that depend on the position of x

    Adding Eq. (27) and Eq.(28) gives the thin-body boundary integral equation

    where ?/? n1=??/? n2=?/?n, and the continuous boundary conditions of the pressure and its partial derivation on the imaginary surface s are used

    The assumption of acoustic rigid boundary conditions are used over the entire surface S

    Then Eq.(31) and Eq.(32) reduce to

    Eq.(36) is not sufficient to obtain the two unknowns P′+(x,ω)and P′?(x,ω).Differentiating Eq.(35) with regard to the direction of normal vector n(x), it can be transformed into

    The problem of scattering by the duct can be dealt with initially solving Eq.(37) to calculate the sound pressure jump P ′+( y , ω ) ? P ′?(y,ω)on the surface S , and afterwards evaluating the acoustic pressure at any filed point. Then the acoustic pressure on both sides of the duct could be easily got. However, the value ofcannot be obtained easily by using Eq.(6) or Eq.(7). We can acquire it indirectly by using the acoustic velocity formulation. If Eq.(37) satisfies the Neumann boundary condition, we will

    where vn={(x, ω ),(x, ω ),(x,ω)}for the thickness sources,vn={(x, ω ),x, ω ),(x,ω)}for the loading sources.

    Then, to solve the Eq.(37), a discretized scheme based on BEM should be used to calculate the unknown value P ′+( y , ω ) ? P ′?(y,ω). The simplest constant boundary element is applied in this paper and the thin-body surface S is discretized into N elements. Each element has one node which is located in the center of the element. Then,Eq.(37) can be transformed into a system of algebraic equations.

    Eq.(40) may be solved easily by using the software Mathematica. When the unknown ?is calculated, the acoustic pressure at any filed point can be obtained through Eq.(35)and (36).

    5 Numerical results

    In this part, the acoustic velocity field simulated by the derived formulation and scattering effect of the duct are validated through three test cases. The first case considers a monopole source, which is identified with a pulsating sphere. The second test case is a dipole source. The third case contains the consistency test known as the Isom thickness noise. All these sources are located at the center of the duct. Showing the validity and reliability of the developed formulation for acoustic scattering problems is our main work.The sound pressure is expressed as dB (decibels) and the predicted SPLs (sound pressure levels) is given by the following

    5.1 Pulsating sphere

    In order to verify the algorithms, the analytical solution of a monopole source has been investigated. The monopole is identified with a pulsating sphere as the small sphere with a radius a in Figure 2. The pressure fluctuation induced by the pulsating sphere is expressed by a harmonic spherical wave

    Figure 2: Monopole source and data surface are shown.

    where ωand k are angular velocity and the wave number, respectively, and

    where A=4πa2U. To perform this case, we take the radius of the spherical penetrable data surface rsto be 3.25a . The speed of sound c0is 340m/s. The density for medium is 1.2kg/m3. The angular velocity of the source is 1020rad/s. The other parameters are a =0.01m and U =8m/s. The pulsating sphere is located at the center of the duct, which is shown in Figure 3. The diameter of the duct is 0.07m. The length of the duct is 0.5m.The observer distance is assumed to be 2m.

    Figure 3: The duct in BEM.

    The acoustic velocity components are calculated by using the numerical method. The results are compared with analytical solutions for different observer time. The x ,y and z components of the acoustic velocity obtained with the derived formulation is plotted in Figures 4-6. From Figures 4-6, we find that the numerical solutions are very good agreement with the analytical solution. To perform the acoustic scattering problems of the duct, we use the thin-body BEM. Figure 7 shows the scattering performance of the pulsating sphere. The left is the incident sound pressure, the middle is the scattering effect of the duct and the right is the total sound pressure.

    Figure 4: The calculated x -component of acoustic velocity compared with that of the analytical solution for β1 = 1 8°. Monopole source.

    Figure 5: The calculated y -component of acoustic velocity compared with that of the analytical solution for β1 = 1 8°. Monopole source.

    Figure 6: The calculated z -component of acoustic velocity compared with that of the analytical solution for β1 = 1 8°. Monopole source.

    Figure 7: Directivity of calculated far-field SPLs at 4918 Hz (a) free field, (b) scattering effect of the duct and (c) total field. Monopole source.

    From the Figure 7, we can see the directivity of the incident sound pressure is circular as the property of monopole sound source. When the scattering effect is considered, the directivity of the sum sound becomes non-circular. For the angle (210 to 330 degrees and 30 to 150 degrees), SPLs of the total field is louder due to scattering where at the angle (-30 to 30 degrees and 150 to 210 degrees), it is quieter. It shows that the sound pressure is strengthened in the direction of duct both ends, and the sound pressure is subdued in the other direction.

    5.2 A three dimensional dipole source

    A dipole point source is equivalent to a compact oscillating sphere, which is denoted as two closely positioned identical monopole point sources. A dipole has an axis, which is the line connecting the centers of the two monopoles (pulsating sphere with radius of a ).The monopoles are positioned in the z direction at a distance of d =2.5a from the center(d is the distance between the two monopole points). The pressure fluctuation induced by the dipole source for an observer positioned at (x,y,z )is

    The integration surface used in the previous test case is also used here (rs=3.25a , in Figure 8). The other parameters are the same as the previous case. The observer distance is assumed to be 5m.

    Figure 8: Dipole source and data surface are shown.

    The calculation is performed for this case, and the acoustic velocity components are computed. The numerical results are compared with those of the analytical solution in Figures 9-11. Again, the numerical solution is in perfect coincidence with the analytical solution.

    Figure 9: The calculated x -component of acoustic velocity compared with that of the analytical solution for β1 = 1 8°. Dipole source.

    Figure 10: The calculated y -component of acoustic velocity compared with that of the analytical solution for β1 = 1 8°. Dipole source.

    Figure 11: The calculated z -component of acoustic velocity compared with that of the analytical solution for β1 = 1 8°. Dipole source.

    Figure 12 shows the scattering performance of the dipole source. The left is the incident sound pressure, the middle is the scattering effect of the duct and the right is the total sound pressure.

    Figure 12: Directivity of calculated far-field SPLs at 4918 Hz (a) free field, (b) scattering effect of the duct and (c) total field. Dipole source.

    From the Figure 12, we can find the directivity of the incident sound pressure is symmetrical as the property of dipole sound source. When the scattering effect is considered, the SPLs of the total field becomes slightly louder. It implies that the sound pressure of dipole source is strengthened through the duct scattering effect. The directivity of the total sound pressure is the same as the incident sound pressure.

    5.3 Isom noise consistency

    The Isom thickness noise property is discussed in [Brentner and Farassat (2003)]. When a constant aerodynamic load p=is used over a moving surface, the generated dipole loading noise should be identical to the monopole thickness noise. So we only consider the dipole loading noise for this problem.

    In this case, we will show the scattering effect of the Isom noise consistency. The numerical example is applied to the noise generated by the flow around a helicopter tail rotor. The tail rotor consists of 11 equally spaced blades 0.594m in diameter with a constant chord of 0.056m. The CATIA geometric model of the tail rotor is shown in Figure 13. The blade tip Mach number is 0.8. The tail rotor is located at the center of the duct with diameter 0.7m, and length 1.5m. The observer is located 5m from the origin of the blade fixed frame.

    Figure 13: Geometric model of tail rotor.

    The incident sound pressure, the scattering sound pressure and the total sound pressure generated by the Isom source are shown in Figure 14.

    Figure 14: Directivity of calculated far-field SPLs at 4930 Hz (a) free field, (b) scattering effect of the duct and (c) total field. Isom noise source.

    From the Figure 14, we can conclude the directivity of incident sound pressure and total sound pressure are the similar to the dipole noise source. The total sound pressure of Isom noise source is strengthened due to the duct scattering effect of the duct. However,the total sound pressure is slightly quieter in some local direction. The reason for the sound decreasing is likely due to noise cancellation.

    6 Conclusion

    The aim of this paper is to develop the FW-H/thin-body BEM method for studying the scattering effect of a duct numerically. An analytical formulation is derived for prediction the acoustic velocity generated by moving bodies. The acoustic velocity formulation can be used as boundary condition for thin-body BEM. Furthermore, a verification study was given based on three test cases: a pulsating sphere, a dipole source and Isom consistency test for helicopter tail rotor. The comparison is performed between analytical and numerical solution for acoustic velocity, and showed remarkable agreement. The scattering effect of duct for each case has been discussed. For the pulsating sphere, due to the scattering effect, the amplitude and directivity of SPLs are changed. For the dipole source, the amplitude only becomes greater.

    Brentner, K. S.; Farassat, F. (2003): Modeling aerodynamically generated sound of helicopter rotors. Progress in Aerospace Science, vol.39, no.2, pp. 83-120.

    Ciskowski, R. D.; Brebbia, C. A. (1991): Boundary element method in acoustics.Elsevier Science Publishing Co. Inc., New York.

    Dunn, M. H.; Tinetti, A. F. (2008): Application of fast multipole methods to the NASA fast scattering code, 14thAIAA/CEAS Aeroacoustics Conference, AIAA, 2008-2875.

    Dunn, M. H.; Tinetti, A. F.; Nark, D. M. (2015): Open rotor noise prediction using the time domain formulations of Farassat. Aeroacoustic, vol.14, no.1-2, pp. 51-86.

    Ffowcs Williams, J. E.; Hawkings, D. L. (1969): Sound Generated by Turbulence and Surfaces in Arbitrary Motion. Philosophical Transactions of the Royal Society, vol.A264,no. 1151, pp.321-342.

    Farassat, F.; Brentner, K. S. (1988): The Uses and Abuses of the Acoustic Analogy in Helicopter Rotor Noise Prediction. Journal of the AHS, vol. 33, no.1, pp.29-36.

    Farassat, F.; Brentner, K. S. (1998): Supersonic Quadruple Noise Theory for High-Speed Helicopter Rotors. Journal of Sound and Vibration, vol.218, no.3, pp.481-500.

    Ffowcs Williams, J. E.; Hawkings, D. L. (1969): Sound Generated by Turbulence and Surfaces in Arbitrary Motion. Philosophical Transactions of the Royal Society, vol.A264,no.1151, pp. 321-342.

    Farassat, F. (2007): Derivation of formulations 1 and 1A of Farassat. NASA, TM 214853.

    Ghorbaniasl, G.; Hirsch, C. et al. (2015): Acoustic velocity formulation for Kirchhoff data surfaces. Aerocoustics, vol.14, no.1-2, pp.105-132.

    Huang, J.; Zhang, C. P.; Xiang, S. et al. (2015): Computation of aerodynamic noise radiated from open propeller using boundary element method. CMES-Computer Modeling in Engineering & Sciences, vol. 108, no.5, pp. 315-330.

    Johnson,W. (1980): Helicopter Theory. Princeton University Press.

    Kingan, M. J. (2014): Advanced open rotor noise prediction. Aeronautical Journal,vol.118, no. 1208, pp.1125-1135.

    Kingan, M. J.; Powles, C.; Self, R.H. (2010): Effect of centerbody scattering on advanced open rotor noise. AIAA Journal, vol.48, no.5, pp. 975-980.

    Lee, S.; Brentner, K.S.; Farassat, F. et al. (2009): Analytic formulation and numerical implementation of an acoustic pressure gradient prediction. Journal of Sound and Vibration, vol.319, no.3-5, pp. 1200- 1221.

    Lee, S.; Brentner, K. S.; Morris, P. J. (2010): Acoustic scattering in the time domain using an equivalent source method. AIAA Journal, vol.48, no.12, pp. 2772-2780.

    Mao, J. Y.; Zhang, Q. L.; Xu, C.; Qi, D. T. (2015): Two Types of Frequency-Domain Acoustic Velocity Formulation for Rotating Thickness and Loading Sources. AIAA Journal, vol.53, no.3, pp.713-722.

    Mao, J. Y.; Qi, D. T. (2009): Computation of rotating blade noise scattered by a centrifugal volute. Proceedings of Institution of Mechanical Engineers, Part A: Journal of Power and Energy, vol.223, no.8, pp. 965-972.

    McAlpine, A.; Astley, R.; Hii, V. et al. (2006): Acoustic scattering by an Axiallysegmented Turofan inlet duct liner at supersonic fan speeds. Journal of Sound and Vibration, vol. 294, no. 4-5, pp. 780-806.

    Qian, Z. Y.; Han, Z. D. ; Atluri, S. N. (2013): A fast regularized boundary integral method for practical acoustic problems. CMES-Computer Modeling in Engineering &Sciences, vol. 91, no.6, pp. 463-483.

    Swift, S.; Blaisdell, G.; Lyrintzis, A. (1983): A time domain equivalent source method for acoustic scattering with coincident source and control points. AIAA, 2013-2017.

    Tausch, J.; Xiao, J. (2010): A spectral boundary element method for scattering problems.CMES-Computer Modeling in Engineering & Sciences, vol. 58, no.3, pp. 221-245.

    Wu, T. W. (2000): Boundary element acoustics: fundamentals and computer codes, WIT Press, Southampton.

    Wu, T. W.; Wan, G. C. (1992): Numerical modeling of acoustic radiation and scattering from thin bodies using a Cauchy principal integral equation. J. Acoust. Soc. Am., vol.92,pp. 2900- 2906.

    国产av一区在线观看免费| 午夜日韩欧美国产| 少妇被粗大的猛进出69影院| 日韩精品免费视频一区二区三区| 激情视频va一区二区三区| 国产精品一区二区精品视频观看| 精品不卡国产一区二区三区| 精品久久久精品久久久| 亚洲av成人一区二区三| 可以在线观看毛片的网站| av天堂久久9| 精品午夜福利视频在线观看一区| 久久这里只有精品19| 美女 人体艺术 gogo| 欧美人与性动交α欧美精品济南到| 国产精品秋霞免费鲁丝片| 国产av精品麻豆| 少妇裸体淫交视频免费看高清 | 国产精品亚洲av一区麻豆| 日韩欧美在线二视频| 夜夜躁狠狠躁天天躁| 午夜福利影视在线免费观看| 欧美精品啪啪一区二区三区| 亚洲欧美日韩另类电影网站| 亚洲一区二区三区不卡视频| 国产亚洲精品综合一区在线观看 | a级毛片在线看网站| 日韩大码丰满熟妇| 久久久久九九精品影院| 国产色视频综合| 亚洲色图 男人天堂 中文字幕| 久久午夜亚洲精品久久| 午夜精品久久久久久毛片777| 欧美乱妇无乱码| 国产av又大| 日本一区二区免费在线视频| 国产精品秋霞免费鲁丝片| 两人在一起打扑克的视频| 女人精品久久久久毛片| 日本vs欧美在线观看视频| 国产97色在线日韩免费| e午夜精品久久久久久久| 欧美丝袜亚洲另类 | 亚洲av美国av| 国产私拍福利视频在线观看| 国产一区在线观看成人免费| av视频免费观看在线观看| 久久中文看片网| 久久久久久国产a免费观看| 成在线人永久免费视频| cao死你这个sao货| 久久久久久久久久久久大奶| 大香蕉久久成人网| 精品熟女少妇八av免费久了| 国产精品亚洲美女久久久| 岛国视频午夜一区免费看| 国产91精品成人一区二区三区| 国产精品,欧美在线| 国产精品免费一区二区三区在线| АⅤ资源中文在线天堂| 国产欧美日韩精品亚洲av| 日韩欧美一区视频在线观看| 午夜a级毛片| 日本 av在线| 999久久久国产精品视频| 999久久久精品免费观看国产| 欧美性长视频在线观看| 久久国产精品影院| 亚洲欧美日韩另类电影网站| 一进一出抽搐gif免费好疼| 国产成人欧美| 女人高潮潮喷娇喘18禁视频| 韩国精品一区二区三区| 中文字幕人成人乱码亚洲影| av视频免费观看在线观看| 亚洲精品美女久久久久99蜜臀| videosex国产| 久久久久久久精品吃奶| 一边摸一边抽搐一进一小说| 后天国语完整版免费观看| 性少妇av在线| 亚洲男人的天堂狠狠| 日日摸夜夜添夜夜添小说| 少妇熟女aⅴ在线视频| 国产高清激情床上av| 国产一卡二卡三卡精品| 国产午夜精品久久久久久| 久久久久久久久久久久大奶| 欧美乱妇无乱码| 精品欧美一区二区三区在线| 黑人欧美特级aaaaaa片| 精品久久久精品久久久| 又紧又爽又黄一区二区| 精品电影一区二区在线| 一区福利在线观看| 亚洲成av片中文字幕在线观看| 淫秽高清视频在线观看| 久久中文字幕一级| 又大又爽又粗| 亚洲免费av在线视频| 精品久久久久久久久久免费视频| 国产99久久九九免费精品| 免费一级毛片在线播放高清视频 | 91成人精品电影| 黑人巨大精品欧美一区二区蜜桃| 中文字幕人成人乱码亚洲影| 长腿黑丝高跟| 久久精品国产亚洲av高清一级| 一区二区三区精品91| 欧美一级毛片孕妇| 成人18禁高潮啪啪吃奶动态图| 亚洲国产精品久久男人天堂| 黄色a级毛片大全视频| 搡老熟女国产l中国老女人| 亚洲精品在线美女| 亚洲国产看品久久| 亚洲av电影在线进入| 在线观看午夜福利视频| 亚洲一区高清亚洲精品| 亚洲情色 制服丝袜| 日韩精品中文字幕看吧| 亚洲一区二区三区色噜噜| 久久国产乱子伦精品免费另类| 午夜福利,免费看| 18禁美女被吸乳视频| 黄色片一级片一级黄色片| 亚洲av电影不卡..在线观看| 免费一级毛片在线播放高清视频 | 两个人视频免费观看高清| 在线观看免费日韩欧美大片| 性少妇av在线| xxx96com| 久久精品亚洲精品国产色婷小说| 久久精品91蜜桃| 无遮挡黄片免费观看| 日韩欧美一区二区三区在线观看| 欧美激情高清一区二区三区| 高清毛片免费观看视频网站| 夜夜夜夜夜久久久久| 日日爽夜夜爽网站| www日本在线高清视频| 老熟妇仑乱视频hdxx| 久久精品国产亚洲av香蕉五月| 99热只有精品国产| 一夜夜www| 欧美日韩一级在线毛片| 午夜福利成人在线免费观看| 窝窝影院91人妻| 一级黄色大片毛片| 黄网站色视频无遮挡免费观看| 男女午夜视频在线观看| 午夜免费观看网址| 国产精品久久久久久人妻精品电影| 这个男人来自地球电影免费观看| 亚洲五月天丁香| 久久国产精品男人的天堂亚洲| 国产精品久久久人人做人人爽| 18禁国产床啪视频网站| 午夜两性在线视频| 精品人妻1区二区| 婷婷六月久久综合丁香| 亚洲狠狠婷婷综合久久图片| 男人操女人黄网站| 欧洲精品卡2卡3卡4卡5卡区| 精品国产国语对白av| 午夜两性在线视频| 婷婷六月久久综合丁香| 亚洲七黄色美女视频| 久99久视频精品免费| 91老司机精品| 欧美不卡视频在线免费观看 | 欧美成狂野欧美在线观看| 美女扒开内裤让男人捅视频| 欧美最黄视频在线播放免费| 国产精品98久久久久久宅男小说| 欧美av亚洲av综合av国产av| 久久久久久国产a免费观看| 亚洲成av人片免费观看| 免费在线观看亚洲国产| 一区二区三区精品91| 亚洲熟妇熟女久久| 国产高清视频在线播放一区| 女警被强在线播放| 亚洲成人国产一区在线观看| 免费一级毛片在线播放高清视频 | 一二三四在线观看免费中文在| 一区二区三区激情视频| 国产免费av片在线观看野外av| 制服丝袜大香蕉在线| 国产麻豆69| 黄色视频不卡| 国产精品精品国产色婷婷| 国产极品粉嫩免费观看在线| 中文字幕久久专区| 久久久久久免费高清国产稀缺| 国产主播在线观看一区二区| av网站免费在线观看视频| 精品日产1卡2卡| 看片在线看免费视频| 麻豆成人av在线观看| 日本五十路高清| 女性生殖器流出的白浆| 成年人黄色毛片网站| 国内久久婷婷六月综合欲色啪| 少妇熟女aⅴ在线视频| avwww免费| 欧美日韩乱码在线| 国产欧美日韩综合在线一区二区| 午夜久久久久精精品| 久久国产精品影院| 久久国产精品男人的天堂亚洲| 俄罗斯特黄特色一大片| 男人操女人黄网站| 中文字幕久久专区| 国产午夜福利久久久久久| 他把我摸到了高潮在线观看| 69av精品久久久久久| 色综合欧美亚洲国产小说| 国产成+人综合+亚洲专区| www.自偷自拍.com| 琪琪午夜伦伦电影理论片6080| 波多野结衣一区麻豆| 成熟少妇高潮喷水视频| 国产精品亚洲美女久久久| 人人妻,人人澡人人爽秒播| 日韩三级视频一区二区三区| 在线观看免费日韩欧美大片| 在线av久久热| 亚洲av成人一区二区三| 999久久久国产精品视频| 美女高潮喷水抽搐中文字幕| 母亲3免费完整高清在线观看| 欧美黄色淫秽网站| 在线观看舔阴道视频| 午夜精品国产一区二区电影| 欧美黑人欧美精品刺激| 给我免费播放毛片高清在线观看| 国产成人欧美在线观看| 又黄又粗又硬又大视频| 久久欧美精品欧美久久欧美| 成人免费观看视频高清| 欧美日韩一级在线毛片| 人妻丰满熟妇av一区二区三区| 亚洲三区欧美一区| 久久精品国产亚洲av香蕉五月| 亚洲aⅴ乱码一区二区在线播放 | 日本欧美视频一区| av在线天堂中文字幕| 两人在一起打扑克的视频| 国产亚洲精品一区二区www| 婷婷精品国产亚洲av在线| 久久久国产精品麻豆| 日本一区二区免费在线视频| 中文字幕高清在线视频| 国产男靠女视频免费网站| 亚洲九九香蕉| 欧美色欧美亚洲另类二区 | 欧美日本中文国产一区发布| 99久久国产精品久久久| 99国产精品99久久久久| 久久人人精品亚洲av| 色综合站精品国产| 免费在线观看亚洲国产| 好看av亚洲va欧美ⅴa在| 亚洲国产精品999在线| 亚洲黑人精品在线| 久久久久久久久免费视频了| 国产精品久久久久久亚洲av鲁大| 一进一出好大好爽视频| 亚洲精品在线观看二区| 日韩视频一区二区在线观看| 操出白浆在线播放| tocl精华| 久久午夜亚洲精品久久| 亚洲欧美日韩高清在线视频| 亚洲国产高清在线一区二区三 | 午夜福利影视在线免费观看| 国产又爽黄色视频| cao死你这个sao货| 国产激情久久老熟女| 亚洲精品一卡2卡三卡4卡5卡| 国产免费av片在线观看野外av| 久久久国产成人免费| 亚洲 欧美一区二区三区| 欧美日本亚洲视频在线播放| 性色av乱码一区二区三区2| 97超级碰碰碰精品色视频在线观看| 欧美乱色亚洲激情| 国产一级毛片七仙女欲春2 | АⅤ资源中文在线天堂| 最新在线观看一区二区三区| 欧美不卡视频在线免费观看 | 亚洲国产精品合色在线| 精品国产美女av久久久久小说| 禁无遮挡网站| 精品高清国产在线一区| 91成人精品电影| 国产精品久久视频播放| 夜夜躁狠狠躁天天躁| 欧美一区二区精品小视频在线| 搡老妇女老女人老熟妇| 午夜久久久久精精品| 午夜福利高清视频| 欧美日韩亚洲综合一区二区三区_| www.精华液| 黄色 视频免费看| 免费高清在线观看日韩| 精品欧美一区二区三区在线| 麻豆成人av在线观看| 变态另类丝袜制服| 国产97色在线日韩免费| 女性被躁到高潮视频| 色综合欧美亚洲国产小说| 精品久久久久久成人av| 女性被躁到高潮视频| 国产精品,欧美在线| 精品国产一区二区久久| 国产日韩一区二区三区精品不卡| 伊人久久大香线蕉亚洲五| 精品国产乱码久久久久久男人| 欧美日韩亚洲国产一区二区在线观看| 少妇 在线观看| 在线免费观看的www视频| 久久性视频一级片| 窝窝影院91人妻| 最好的美女福利视频网| 国产亚洲精品久久久久5区| 午夜成年电影在线免费观看| 在线观看免费视频日本深夜| 十八禁网站免费在线| 国产国语露脸激情在线看| 午夜日韩欧美国产| 亚洲欧美日韩无卡精品| 亚洲黑人精品在线| xxx96com| 日韩精品青青久久久久久| 亚洲九九香蕉| 亚洲第一电影网av| 999精品在线视频| 欧美日韩中文字幕国产精品一区二区三区 | 少妇被粗大的猛进出69影院| 桃红色精品国产亚洲av| 啦啦啦观看免费观看视频高清 | 久久久国产成人免费| 丝袜美足系列| 精品久久久久久,| 母亲3免费完整高清在线观看| 亚洲欧美日韩高清在线视频| 日韩欧美国产一区二区入口| 精品国产乱码久久久久久男人| 国产成人啪精品午夜网站| 欧美亚洲日本最大视频资源| 国产一区二区在线av高清观看| 午夜福利成人在线免费观看| 一级黄色大片毛片| 亚洲熟妇中文字幕五十中出| 日韩有码中文字幕| 日韩国内少妇激情av| 欧美午夜高清在线| 国产成人一区二区三区免费视频网站| 亚洲自偷自拍图片 自拍| av欧美777| 如日韩欧美国产精品一区二区三区| 欧美日本视频| 他把我摸到了高潮在线观看| 精品无人区乱码1区二区| 欧美不卡视频在线免费观看 | 色播在线永久视频| 美女午夜性视频免费| 这个男人来自地球电影免费观看| 成人18禁高潮啪啪吃奶动态图| 97碰自拍视频| 1024视频免费在线观看| 成人精品一区二区免费| 久久狼人影院| 无人区码免费观看不卡| 成人国产综合亚洲| 国产精品日韩av在线免费观看 | 国产xxxxx性猛交| 欧美乱妇无乱码| 搞女人的毛片| 午夜免费观看网址| 国产极品粉嫩免费观看在线| 成年版毛片免费区| 国产一区二区三区在线臀色熟女| 亚洲国产中文字幕在线视频| 99久久久亚洲精品蜜臀av| 亚洲性夜色夜夜综合| √禁漫天堂资源中文www| 亚洲专区中文字幕在线| 最近最新中文字幕大全免费视频| 日日爽夜夜爽网站| 他把我摸到了高潮在线观看| 日本vs欧美在线观看视频| 一级黄色大片毛片| 欧美激情极品国产一区二区三区| 欧美日韩亚洲国产一区二区在线观看| 久久精品91蜜桃| 久久中文字幕人妻熟女| 亚洲欧美日韩高清在线视频| 精品人妻在线不人妻| 操美女的视频在线观看| 日日摸夜夜添夜夜添小说| netflix在线观看网站| 国产av在哪里看| 1024视频免费在线观看| 亚洲中文av在线| www国产在线视频色| 91字幕亚洲| 欧美色视频一区免费| 一边摸一边做爽爽视频免费| 一个人免费在线观看的高清视频| 欧美大码av| 日韩欧美国产一区二区入口| 青草久久国产| 女人爽到高潮嗷嗷叫在线视频| 国产蜜桃级精品一区二区三区| av片东京热男人的天堂| 国产精品99久久99久久久不卡| АⅤ资源中文在线天堂| 国产精品亚洲av一区麻豆| 在线观看www视频免费| 亚洲性夜色夜夜综合| 91老司机精品| 纯流量卡能插随身wifi吗| 欧美激情极品国产一区二区三区| 大码成人一级视频| 黄网站色视频无遮挡免费观看| 免费观看人在逋| 久久草成人影院| 国产精品亚洲美女久久久| 国产精品,欧美在线| 大香蕉久久成人网| 亚洲av片天天在线观看| 久久精品影院6| 亚洲一区二区三区不卡视频| 最近最新中文字幕大全电影3 | av天堂久久9| 人人妻人人澡欧美一区二区 | 久久国产精品影院| 久久久精品欧美日韩精品| 脱女人内裤的视频| 久久婷婷人人爽人人干人人爱 | 人人妻,人人澡人人爽秒播| 欧美成狂野欧美在线观看| 日韩精品中文字幕看吧| 国产成人精品在线电影| 国产aⅴ精品一区二区三区波| 国产成人系列免费观看| 别揉我奶头~嗯~啊~动态视频| 又紧又爽又黄一区二区| 亚洲av第一区精品v没综合| 日日爽夜夜爽网站| 日韩欧美三级三区| 午夜久久久在线观看| 村上凉子中文字幕在线| 亚洲一卡2卡3卡4卡5卡精品中文| 久久香蕉精品热| 人成视频在线观看免费观看| 韩国av一区二区三区四区| 国产精品一区二区三区四区久久 | 午夜精品在线福利| 国产精品1区2区在线观看.| 国内毛片毛片毛片毛片毛片| 高潮久久久久久久久久久不卡| 男女做爰动态图高潮gif福利片 | 好看av亚洲va欧美ⅴa在| 欧美激情极品国产一区二区三区| 91大片在线观看| 欧美黑人精品巨大| 国产精品亚洲av一区麻豆| 精品电影一区二区在线| a在线观看视频网站| 岛国在线观看网站| 成在线人永久免费视频| 国产1区2区3区精品| 国产精品一区二区三区四区久久 | 人人妻人人澡人人看| 悠悠久久av| 一本久久中文字幕| 手机成人av网站| 香蕉丝袜av| 黑人操中国人逼视频| 国产午夜精品久久久久久| 最近最新中文字幕大全电影3 | 国产精品综合久久久久久久免费 | 久久久久精品国产欧美久久久| 美女大奶头视频| 免费不卡黄色视频| 国产高清视频在线播放一区| 久久性视频一级片| 久热爱精品视频在线9| cao死你这个sao货| 不卡av一区二区三区| 午夜亚洲福利在线播放| 在线观看舔阴道视频| 国产三级黄色录像| 高潮久久久久久久久久久不卡| 老汉色av国产亚洲站长工具| 九色国产91popny在线| 国产精品久久久久久精品电影 | 国产日韩一区二区三区精品不卡| 黄色女人牲交| 日本三级黄在线观看| 国产高清激情床上av| 亚洲欧美精品综合久久99| 在线视频色国产色| 可以免费在线观看a视频的电影网站| 欧美精品亚洲一区二区| 久久久久久久精品吃奶| 亚洲va日本ⅴa欧美va伊人久久| 免费观看人在逋| 欧美日本视频| 99国产综合亚洲精品| 色播在线永久视频| 女性生殖器流出的白浆| 9191精品国产免费久久| 一个人免费在线观看的高清视频| 亚洲中文日韩欧美视频| 欧美av亚洲av综合av国产av| АⅤ资源中文在线天堂| 美女扒开内裤让男人捅视频| 国产精品久久久av美女十八| 久久久久九九精品影院| 99久久久亚洲精品蜜臀av| 欧美日韩福利视频一区二区| 国产精品影院久久| 精品午夜福利视频在线观看一区| 久久久国产欧美日韩av| 成熟少妇高潮喷水视频| 精品人妻在线不人妻| 制服人妻中文乱码| 黄片小视频在线播放| 99在线视频只有这里精品首页| 黄片播放在线免费| 国产91精品成人一区二区三区| 色av中文字幕| 巨乳人妻的诱惑在线观看| 欧美中文日本在线观看视频| 村上凉子中文字幕在线| 在线av久久热| 丁香欧美五月| 精品午夜福利视频在线观看一区| 亚洲国产精品999在线| 成年女人毛片免费观看观看9| 久久国产乱子伦精品免费另类| 久久久国产成人精品二区| 美女午夜性视频免费| 亚洲国产中文字幕在线视频| 欧美在线黄色| 久久久久国产一级毛片高清牌| 999精品在线视频| 亚洲七黄色美女视频| 免费在线观看视频国产中文字幕亚洲| 一夜夜www| 亚洲午夜精品一区,二区,三区| 99国产精品一区二区蜜桃av| 亚洲午夜精品一区,二区,三区| av网站免费在线观看视频| 在线观看免费视频日本深夜| 给我免费播放毛片高清在线观看| 久久久久久免费高清国产稀缺| a在线观看视频网站| 久久久久久免费高清国产稀缺| 中文字幕人妻熟女乱码| av中文乱码字幕在线| 性欧美人与动物交配| 美女大奶头视频| 久久伊人香网站| 天堂动漫精品| 制服人妻中文乱码| 十八禁网站免费在线| 一级毛片高清免费大全| 天天添夜夜摸| 两性午夜刺激爽爽歪歪视频在线观看 | 男女下面插进去视频免费观看| av免费在线观看网站| 中国美女看黄片| 亚洲精品在线美女| 99精品久久久久人妻精品| 波多野结衣高清无吗| 久久精品国产99精品国产亚洲性色 | 身体一侧抽搐| 无人区码免费观看不卡| 久久久国产欧美日韩av| 成人特级黄色片久久久久久久| 久久中文字幕人妻熟女| 岛国在线观看网站| 电影成人av| 妹子高潮喷水视频| 99香蕉大伊视频| 国产精品久久久久久亚洲av鲁大| 欧美黄色淫秽网站| 欧美黑人精品巨大| 在线播放国产精品三级| 免费在线观看完整版高清| 日日摸夜夜添夜夜添小说| 香蕉丝袜av| 亚洲欧美日韩另类电影网站| 午夜免费激情av| 身体一侧抽搐| 国产麻豆69| 午夜a级毛片| 午夜免费鲁丝| 国内毛片毛片毛片毛片毛片| 老司机在亚洲福利影院| 两性夫妻黄色片| av中文乱码字幕在线| www.精华液| 亚洲精品国产精品久久久不卡| 不卡av一区二区三区| 欧美成人一区二区免费高清观看 | 久久婷婷人人爽人人干人人爱 | 人人妻人人爽人人添夜夜欢视频| 看片在线看免费视频|