• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Convolutional Sparse Coding in Gradient Domain for MRI Reconstruction

    2017-03-12 03:40:21JiaojiaoXiongHongyangLuMinghuiZhangQiegenLiu
    自動(dòng)化學(xué)報(bào) 2017年10期

    Jiaojiao Xiong Hongyang Lu Minghui Zhang Qiegen Liu

    1 Introduction

    Magnetic resonance imaging(MRI)is a crucial medical diagnostic technique which offers clinicians with signi fi cant anatomical structure for lack of ionizing.Unfortunately,although it enables highly resolution images and distinguishes depiction of soft tissues,the imaging speed is limited by physical and physiological constraints and increasing scan duration may bring in some physiological motion artifacts[1].Therefore,it is necessary to seek for a method to decrease the acquisition time.Reducing the number of measurements mandated by Nyquist sampling theory is a way to accelerate the data acquisition at the expense of introducing aliasing artifacts in the reconstructed results.In recent years,compressed sensing(CS)theory,as a promising method,has proposed an essential theoretical foundation for improving data acquisition speed.Particularly,the application of CS to MRI is known as CS-MRI[2]?[6].

    The CS theory states that the image which has a sparse representation in certain domain can be recovered from a reduced set of measurements largely below Nyquist sampling rates[2].The traditional CS-MRI usually utilizes prede fi ned dictionaries[1],[7]?[9],which may fail to sparsely represent the reconstructed images.For instance,Lustiget al.[1]employed the total variation(TV)penalty and the Daubechies wavelet transform for MRI reconstruction.Trzaskoet al.[6]proposed a homotopic minimization strategy to reconstruct the MR image.Instead,adaptive dictionary updating in CS-MRI can provide less reconstruction errors due to the dictionary learned from sampled data[10],[11]. Recently,Ravishankaret al.supposed that each image patch has sparse representation,and presented a prominent two-step alternating method named dictionary learning based MRI reconstruction(DLMRI)[12].The fi rst step is for adaptively learning the dictionary,and the second step is for reconstructing image from undersampledk-space data.Numerical experiments have indicated that these data-driven-learning approaches obtained considerable improvements than previous prede fi ned dictionaries-based methods.Liuet al.[13]proposed a gradient based dictionary learning method for image reconstruction(GradDL),which alleviated the drawback of the popular TV regularization by employing dictionary learning technique.Speci fi cally,it fi rstly trained dictionaries from the horizontal and vertical gradients of the image respectively,and then reconstructed the desired image using the sparse representations of both derivatives.They also extended their ideas to the CT reconstruction and InSAR phase noise fi ltering[14],[15].Nevertheless,most of existing methods did not consider the geometrical pro fi t information sufficiently,which may lead to the fi ne details to be lost.

    All the above methods use conventional patch-based sparse representation to reconstruct MR image,it has a fundamental disadvantage that the important spatial structures of the image of interest may be lost due to the subdivision into patches that are independent of each other.To make up for de fi ciencies of conventional patch-based sparse representation method,Zeileret al.[16]proposed a convolutional implementation of sparse coding method(CSC).In the convolutional decomposition procedure,the decomposition does not need to divide the entire image into overlapped patches,and can naturally utilize the consistency prior.CSC was fi rst introduced in the context of modeling receptive fi elds in human vision[17].Recently,it has been demonstrated that CSC has important applications in a wide range of computer vision problems,like low/midlevel feature learning,low-level reconstruction[18],[19],networks in high-level computer vision or hierarchical struc-tures challenges[16],[20],[21],and in physically-motivated computational imaging problems[22],[23].In addition,CSC can fi nd applications in many other reconstruction tasks and feature-based methods,including denoising,inpainting,super-resolution and classi fi cation[24]?[30].

    In this paper,we propose a new formulation of convolutional sparse coding tailored to the problem of MRI reconstruction.Moreover,due to the image gradients are a sparser representation than the image itself and therefore may have sparser representation with the CSC than the pixel-domain image,we learn CSC in gradient domain for better quality and efficient reconstruction.The present method has two bene fi ts. First,we introduce CSC for MRI reconstruction.Second,since the image gradients are usually sparser representation than the image itself,it is demonstrated that the CSC in gradient domain could lead to sparser representation than those using the conventional sparse representation methods in the pixel domain.

    The remainder of this paper is organized as follows.Section 2 states the prior work in CS and CSC.The proposed algorithm CSC in gradient domain(GradCSC)that employing the augmented Lagrangian(AL)iterative method is detailed in Section 3.Section 4 demonstrates the performance of the proposed algorithm on examples under a variety of sampling schemes and undersampling factors.Conclusions are given in Section 5.

    2 Background

    In this section,we fi rst review several classical models for CS-MRI,and then introduce the theory of CSC.The following notational conventions are used throughout the paper.Letu∈CNdenotes an image to be reconstructed,andf∈CQrepresents the undersampled Fourier measurements.The partially sampled Fourier encoding matrixFp∈CQ×Nmapsutofsuch thatFpu=f.An MRI reconstruction problem is formulated as the retrieval of the vectorubased on the observationfand given the encoding matrixFp.

    2.1 CS-MRI

    The choice of sparsifying transform is an important question in CS theory.In the past several years,reconstructing unknown image from undersampled measurements was usually formulated as in(1)where assuming the image gradients are sparse

    Sparse and redundant representations of image patches based on learned basis has been drawing considerable attention in recent years.Speci fi cally,Ravishankaret al.[12]presented a method named DLMRI to reconstruct MR image from highly undersampledk-space data with its objective shown as follows:

    where Γ =[α1,α1,...,αL]denotes the sparse coefficient matrix of image patches,R(u)=[R1u,R2u,...,RLu]consisting ofLsignals,‖·‖0denotes thel0quasi-norm which counts the number of non-zero coefficients of the vector andT0controls the sparsity of the patch representation.Images are reconstructed by the minimization of a linear combination of two terms corresponding to dictionary learningbased sparse representation and least squares data fi tting.The fi rst term enforces sparsity of the image patches with respect to an adaptive dictionary,and the second term enforces data fi delity ink-space.The method exhibited superior performance compared to those using fi xed basis,through learned adaptive transforms from image.Since DL techniques are more effective and efficient in the sparse domain of the image,Liuet al.[13]proposed a model to reconstruct the image by iteratively reconstructing the gradients via dictionary learning and solving for the fi nal image,instead of learning adaptive structure from the image itself.The method is based on the observation that the gradients are sparser than the image itself.Therefore,it possesses sparser representation in the learned dictionary than the pixel-domain.

    Although conventional patch-based sparse representation has widely applications,it has some drawbacks.First,it typically assumes that training image patches are independent from each other,hence the consistency of pixels and important spatial structures of the signal of interest may be lost.This assumption typically results in fi lters are simply translated versions of each other,and generates highly redundant feature representation.Second,due to the nature of the mathematical formulation that a linear combination of learned patches,these traditional patchbased representation approaches may fail to adequately represent high-frequency and high-contrast image features,thus loses some details and textures of the signal,which is important for MR images.

    2.2 Convolutional Sparse Coding

    Zeileret al.[16]proposed an alternative to patchbased approaches named CSC,decomposing the image into spatially-invariant convolutional features.CSC is the sum of a set of convolutions of the feature maps by replacing the linear combination of a set of dictionary vectors.LetXbe a training set containing 2Dimages with dimensionm×n.Letbe the 2Dconvolutional fi lter bank havingKfi lters,where eachdkis ah×hconvolutional kernel.zkis the sparse feature maps,each of which is the same size asX.CSC aims to decompose the input imageXinto the sparse feature mapszkconvolved with kernelsdkfrom the fi lter bankD,by solving the following objective function:

    Fig.1. One illustration of fi lters learned.(a)Learned dictionary by DLMRI,(b)Learned dictionary by GradDL,and(c)Learned fi lter by GradCSC,respectively.

    where the fi rst and the second terms represent the reconstruction error and the?1-norm penalty respectively;βis a regularization parameter that controls the relative weight of the sparsity term;?is the 2Ddiscrete convolution operator;and fi lters are restricted to have unit energy to avoid trivial solutions.Note that here‖zk‖1represents the entrywise matrix norm,the construction of is realized by balancing the reconstruction error and the?1-norm penalty.

    However,the CSC has led to some difficulties in optimization,Zeileet al.[16]used the continuation method to relax the equality constraints,and employed the conjugate gradient(CG)decent to solve the convolutional least square approximation problem.By considering the property of block circulant with circulant block(BCCB)matrix in the Fourier domain,Bristowet al.[32]presented a fast CSC method.Recently,Wohlberg[33]presented an effi-cient alternating direction method of multipliers(ADMM)to further improve this method.

    3 Convolutional Sparse Coding in Gradient Domain

    The image gradients are sparser than the image itself[13],therefore it has sparser representation in the CSC than that in the pixel-domain image.This motivates us to consider the CSC in the gradient domain.It is expected that such learning is more accurate and robust than that from pixel domain.In this work,we propose an algorithm to reconstruct the image by iteratively reconstructing the gradients via CSC and solving for the fi nal image.

    3.1 Proposed Model

    To reconstruct image from the image gradients,we propose a new model as follows:

    where(▽x,▽y)=(▽(1),▽(2)).The fi rst term and the second term in the cost function(4)capture the sparse prior of the gradient image patches with respect to CSC,and the third termrepresents the data fi delity term ink-space withl2-norm controlling the error.The weightv1balances the tradeoffbetween these three terms,and is set asν1=(λ1/σ)like the DLMRI algorithm does[13],whereλ1is a positive constant.βis a regularization parameter and controls the relative weight of the sparsity term with respect to the data term.The constraint,?k∈{1,...,K}can be included in the objective function via an indicator functionindC(·),which is de fi ned on the convex set of the constraint.

    In order to better understand the bene fi t of the CSC in the gradient domain,one demonstration of visual inspection between traditional sparse coded dictionaries and GradCSC fi lter is shown in Fig.1.The learned dictionaries by DLMRI and GradDL are depicted in Figs.1(a)and(b),both of which are learned from the Lumbar spine image in Fig.2.The learned fi lters by GradCSC shown in Fig.1(c)are learned from the dataset in[16].Compared to the traditional sparse coded dictionaries in Figs.1(a)and(b),it can be seen from Fig.1(c)that the convolutional fi lter in GradCSC shows less redundancy,crisper features,and a larger range of feature orientations.

    3.2 Algorithm Solver

    In the regularization term of(4),the global fi nite difference operators▽(i)are coupled,hence we resort to the splitting technique to decouple them.Speci fi cally,to fi nd a solution to the model(4),an AL iterative technique is employed and an algorithm called GradCSC is developed.The algorithm alternately updates sparse representations of the image patches,reconstructs the horizontal and vertical gradients,and estimates the original image from both gradients.A full description of the algorithm is given in Algorithm 1.

    Equation(4)can be rewritten as follows by introducing auxiliary variablesw(i),i=1,2.

    Fig.2. The reconstruction results of the Lumbar spine image under different undersampling factors with 2D random sampling.

    Algorithm 1.The GradCSC algorithm

    whereν2denotes the positive penalty parameter. The ADMM can be used to address the minimization of(6)with respect tou,w,z,andd.This technique carries out approximation via alternating minimization with respect to one variable while keeping other variables fi xed.

    1)Updating the Solution u:At thejth iteration,we assumew,z,anddto be fi xed with their values denoted aswj,zj,anddj,respectively.Eliminating the constant variables,the objective function for updatinguis given as

    Recognizing that(8)is a simple least squares problem admitting an analytical solution.The least squares solution satis fi es the normal equation

    However,directly solving the equation can be tedious due to(9)has a high computation complexity(O(P3)).Fortunately,we can use the convolution theorem of Fourier transform to obtain the solution:

    similarly as described in DLMRI and GradDL method[12],the matrixis a diagonal matrix consisting of ones and zeroes corresponding to the sampled location ink-space.

    2)Updating the Gradient Image Variables w(i),i=1,2:The minimization in(6)with respect tow(1)andw(2)are decoupled,and then can be solved separately.It yields:

    The least squares solution satis fi es the normal equation,and the solution of(11)is as follow:

    3)Updating the Coefficients z,and the Filters d:The minimization(6)with respect to CSC and coefficient variables of the gradient image in horizontal and vertical yields:

    The problem in(13)can be solved by employing an AL algorithm like mentioned above,(13)needs to introduce auxiliary variables,it solves:

    at the?th iteration fordj+1,?+1,zj+1,?+1,then updates the multipliersλ1,λ2andλ3by the formula

    ADMM is chosen to solve the(14).The corresponding fi ve subproblems can be solved as follows:

    where?represents the point-wise product function and the operation is implemented by component-wise manner.

    4 Experimental Results

    In this section,we evaluate the performance of proposed method at a variety of sampling schemes and undersampling factors.The sampling schemes employed in the experiments contain the 2D random sampling,pseudo radial sampling,and Cartesian sampling with random phase encoding(1D random).The size of images we use in the synthetic experiments are 512×512.The CS data acquisition was simulated by subsampling the 2D discrete Fourier transform of the MR images(except the test with real acquired data)in the light of many prior work on CS-MRI approaches,.In order to fi nd the sparse feature mapzk,we use a fi xed fi lterDwhich is trained from reference MR images.We fi nd that learningK=100 fi lters of size 11×11 pixels ful fi lls these conditions for our data and works well for all the images tested.In the experiment,the proposed method GradCSC is compared with the leading DLMRI[12]and GradDL[13]methods that have shown the substantially outperform other CS-MRI methods.In addition,we use the peak signal-to-noise ratio(PSNR)and highfrequency error norm(HFEN)[20]to evaluate the quality of reconstruction.All of these algorithms are implemented in MATLAB 7.1 on a PC equipped with AMD 2.31GHz CPU and 3GByte RAM.

    4.1 Experiments Under Different Undersampling Factors

    In this subsection,we evaluate the performance of Grad-CSC under different undersampling factors with same sampling scheme.Fig.2 illustrates the reconstruction results at a range of undersampling factors with 2.5,4,6,8,10 and 20.We added the zero-mean complex white Gaussian noise withσ=10.2 in the 2D random sampledk-space.The PSNR and HFEN values for DLMRI,GradDL and GradCSC at various undersampling factors are presented in Figs.2(b)and(c),additionally the PSNR values are listed in Table I.For the subjective comparison,the construction results and magnitude image of the reconstruction error provided by the three methods at 8-fold undersampling are presented in Figs.2(d),(e),(f)and(g),(h),(i),respectively.In this case,it can be seen that the image reconstructed by the DLMRI method(shown in Fig.2(d))is blurred and loses some textures.Although both GradDL and GradCSC present excellent performances on suppressing aliasing artifacts,our GradCSC provides a better reconstruction of object edges(such as the spine)and preserves fi ner texture information(such as the bottom-right of the reconstruction).Such difference in reconstruction quality is particularly clear in the image errors shown in Figs.2(g),(h)and(i).In general,our proposed method provides greater intensity fi delity to the image reconstructed from the full data.

    4.2 Impact of Undersampling Schemes

    In this subsection,we evaluate the performance of Grad-CSC at various sampling schemes.The results are presented in Fig.3 which reconstructed an axial T2-weighted brain image at 8-fold undersampling factors by applying three different sampling schemes,including 2D random sampling,1D Cartesian sampling,and pseudo radial sampling.The PSNR and HFEN indexes versus iterative number for method DLMRI,GradDL and GradCSC are plotted in Figs.3(b)and(c).Particularly,we present the reconstructions of DLMRI,GradDL and GradCSC with 2D random sampling in Figs.3(d),(e),and(f),respectively.In order to facilitate the observation,the difference image between reconstruction results are shown in Figs.3(g),(h),and(i).As can be expected,the convolution operator enables CSC outperform DLMRI and GradDL methods for most of speci fi ed undersampling ratios and trajectories.This exhibits the bene fi ts of employing the convolutional fi lter for sparse coding. In particular,in Fig.3(d),(e),and(f)the skeletons in the top half part of the Grad-CSC reconstruction appear less obscured than those in the DLMRI and GradDL results.the proposed method Grad-CSC reconstructs the images more accurately with larger PSNR and lower HFEN values than the GradDL approach.Particularly when sampled at 2D random trajectory,our method GradCSC outperforms others with a remarkable improvement from 0.7dB to 5.8dB.

    4.3 Performances at Different Noise Levels

    We also conduct experiments to investigate the sensitivity of GradCSC to different levels of complex white Gaussian noise.DLMRI,GradDL and GradCSC are applied to reconstruct a noncontrast MRA of the circle of Willis under pseudo radial sampling at 6.67-fold acceleration.Fig.4 presents the reconstruction results of three methods at different levels of complex white Gaussian noise,which are added to thek-space samples.Fig.4(c)presents the PSNRs of DLMRI,GradDL and GradCSC at a sequence of different standard deviations(0,2,5,8,10,12,15).Reconstruction results with noise 5 are shown in Figs.4(d),(e),and(f).The PSNRs gained by DLMRI and GradDL are 27.03dB and 29.78dB,while the GradCSC method achieves 30.45dB.Obviously,the reconstruction obtained by GradCSC is clearer than those by DLMRI and GradDL.It can be observed that our GradCSC method can reconstruct the images more precisely than DLMRI and GradDL,in terms of extracting more structural and detail information from gradient domain.The corresponding error magnitudes of the reconstruction are displayed in Figs.4(g),(h),and(i).It reveals that our method provides a more accurate reconstruction of image contrast and sharper anatomical depiction in noisy case.

    5 Conclusion

    In this work,a novel CSC method in gradient domain for MR image reconstruction was proposed.The important spatial structures of the signal were preserved by convolutional sparse coding.For the new derived model,we utilized the AL method to implement the algorithm in a few number of iterations.A variety of experimental results demonstrated the superior performance of the method under various sampling trajectories andk-space acceleration factors.The proposed method can produce highly accurate reconstructions for severely undersampled factors.It provided superior performance in both noiseless and noisy cases.The presented framework will be extended to parallel imaging applications in the future work.

    TABLE I RECONSTRUCTION PSNR VALUES AT DIFFERENT UNDERSAMPLING FACTORS WITH THE SAME 2D RANDOM SAMPLING TRAJECTORIES

    Fig.3.The reconstruction results of the axial T2-weighted brain image under different undersampling schemes.

    1 M.Lustig,D.Donoho,and J.M.Pauly,“Sparse MRI:The application of compressed sensing for rapid MR imaging,”Magn.Reson.Med.,vol.58,no.6,pp.1182?1195,Dec.2007.

    2 D.L.Donoho,“Compressed sensing,”IEEE Trans.Inform.Theory,vol.52,no.4,pp.1289?1306,Apr.2006.

    3 D.Liang,B.Liu,J.Wang,and L.Ying,“Accelerating SENSE using compressed sensing,”Magn.Reson.Med.,vol.62,no.6,pp.1574?1584,Dec.2009.

    4 M.Lustig,J.M.Santos,D.L.Donoho,and J.M.Pauly,“k-t SPARSE:high frame rate dynamic MRI exploiting spatiotemporal sparsity,”inProc.13th Ann.Meeting of ISMRM,Seattle,USA,2006.

    5 S.Q.Ma,W.T.Yin,Y.Zhang,and A.Chakraborty,“An efficient algorithm for compressed MR imaging using total variation and wavelets,”inProc.IEEE Conf.Computer Vision and Pattern Recognition,Anchorage,AK,USA,2008,pp.1?8.

    6 J.Trzasko and A.Manduca,“Highly undersampled magnetic resonance image reconstruction via homotopic?0-minimization,”IEEE Trans.Med.Imaging,vol.28,no.1,pp.106?121,Jan.2009.

    7 S.M.Gho,Y.Nam,S.Y.Zho,E.Y.Kim,and D.H.Kim,“Three dimension double inversion recovery gray matter imaging using compressed sensing,”Magn.Reson.Imaging,vol.28,no.10,pp.1395?1402,Dec.2010.

    8 M.Guerquin-Kern,M.Haberlin,K.P.Pruessmann,and M.Unser,“A fast wavelet-based reconstruction method for magnetic resonance imaging,”IEEE Trans.Med.Imaging,vol.30,no.9,pp.1649?1660,Sep.2011.

    9 L.Y.Chen,M.C.Schabel,and E.V.R.DiBella,“Reconstruction of dynamic contrast enhanced magnetic resonance imaging of the breast with temporal constraints,”Magn.Reson.Imaging,vol.28,no.5,pp.637?645,Jun.2010.

    10 Q.G.Liu,S.S.Wang,K.Yang,J.H.Luo,Y.M.Zhu,and D.Liang,“Highly undersampled magnetic resonance image reconstruction using two-level Bregman method with dictionary updating,”IEEE Trans.Med.Imaging,vol.32,no.7,pp.1290?1301,Jul.2013.

    11 X.B.Qu,D.Guo,B.D.Ning,Y.K.Hou,Y.L.Lin,S.H.Cai,and Z.Chen,“Undersampled MRI reconstruction with patch-based directional wavelets,”Magn.Reson.Imaging,vol.30,no.7,pp.964?977,Sep.2012.

    12 S.Ravishankar and Y.Bresler,“MR image reconstruction from highly undersampled k-space data by dictionary learning,”IEEE Trans.Med.Imaging,vol.30,no.5,pp.1028?1041,May 2011.

    13 Q.G.Liu,S.S.Wang,L.Ying,X.Peng,Y.J.Zhu,and D.Liang,“Adaptive dictionary learning in sparse gradient domain for image recovery,”IEEE Trans.Image Process.,vol.22,no.12,pp.4652?4663,Dec.2013.

    14 Z.L.Hu,Q.G.Liu,N.Zhang,Y.W.Zhang,X.Peng,P.Z.Wu,H.R.Zheng,and D.Liang,“Image reconstruction from few-view CT data by gradient-domain dictionary learning,”J.X-Ray Sci.Technol.,vol.24,no.4,pp.627?638,Jul.2016.

    15 X.M.Luo,Z.Y.Suo,and Q.G.Liu,“Efficient InSAR phase noise fi ltering based on adaptive dictionary learning in gradient vector domain,”Chin.J.Eng.Math.,vol.32,no.6,pp.801?811,Dec.2015.

    16 M.D.Zeiler,D.Krishnan,G.W.Taylor,and R.Fergus,“Deconvolutional networks,”inProc.2010 IEEE Conf.Computer Vision and Pattern Recognition(CVPR),San Francisco,CA,USA,2010,pp.2528?2535.

    17 B.A.Olshausen and D.J.Field,“Sparse coding with an overcomplete basis set:a strategy employed by V1?,”Vision Res.,vol.37,no.23,pp.3311?3325,Dec.1997.

    18 A.Szlam,K.Kavukcuoglu,and Y.LeCun,“Convolutional matching pursuit and dictionary training,”arXiv:1010.0422,Oct.2010.

    19 B.Chen,G.Polatkan,G.Sapiro,D.Blei,D.Dunson,and L.Carin,“Deep learning with hierarchical convolutional factor analysis,”IEEE Trans.Pattern Anal.Mach.Intell.,vol.35,no.8,pp.1887?1901,Aug.2013.

    20 K.Kavukcuoglu,P.Sermanet,Y.L.Boureau,K.Gregor,M.Mathieu,and Y.LeCun,“Learning convolutional feature hierarchies for visual recognition,”inProc.23rd Int.Conf.Neural Information Processing Systems,Vancouver,British Columbia,Canada,2010,pp.1090?1098.

    21 M.D.Zeiler,G.W.Taylor,and R.Fergus,“Adaptive deconvolutional networks for mid and high level feature learning,”inProc.2011 IEEE Int.Conf.Computer Vision(ICCV),Barcelona,USA,2011,pp.2018?2025.

    22 F.Heide,L.Xiao,A.Kolb,M.B.Hullin,and W.Heidrich,“Imaging in scattering media using correlation image sensors and sparse convolutional coding,”O(jiān)pt.Express,vol.22,no.21,pp.26338?26350,Oct.2014.

    23 X.M.Hu,Y.Deng,X.Lin,J.L.Suo,Q.H.Dai,C.Barsi,and R.Raskar,“Robust and accurate transient light transport decomposition via convolutional sparse coding,”O(jiān)pt.Lett.,vol.39,no.11,pp.3177?3180,Jun.2014.

    24 J.Y.Xie,L.L.Xu,and E.H.Chen,“Image denoising and inpainting with deep neural networks,”inProc.25th Int.Conf.Neural Information Processing Systems,Lake Tahoe,Nevada,USA,2012,pp.341?349.

    25 S.H.Gu,W.M.Zuo,Q.Xie,D.Y.Meng,X.C.Feng,and L.Zhang,“Convolutional sparse coding for image superresolution,”inProc.2015 IEEE Int.Conf.Computer Vision(ICCV),Santiago,Chile,2015,pp.1823?1831.

    26 A.Krizhevsky,I.Sutskever,and G.E.Hinton,“Imagenet classi fi cation with deep convolutional neural networks,”inProc.25th Int.Conf.Neural Information Processing Systems,Lake Tahoe,Nevada,USA,2012,pp.1097?1105.

    27 Y.Y.Zhu,M.Cox,and S.Lucey,“3D motion reconstruction for real-world camera motion,”inProc.2011 IEEE Conf.Computer Vision and Pattern Recognition(CVPR),Providence,RI,USA,2011,pp.1?8.

    28 Y.Y.Zhu and S.Lucey,“Convolutional sparse coding for trajectory reconstruction,”IEEE Trans.Pattern Anal.Mach.Intell.,vol.37,no.3,pp.529?540,Mar.2015.

    29 Y.Y.Zhu,D.Huang,F.De La Torre,and S.Lucey,“Complex non-rigid motion 3D reconstruction by union of subspaces,”inProc.2014 IEEE Conf.Computer Vision and Pattern Recognition(CVPR),Columbus,OH,USA,2014,pp.1542?1549.

    30 A.Serrano,F.Heide,D.Gutierrez,G.Wetzstein,and B.Masia,“Convolutional sparse coding for high dynamic range imaging,”Computer Graphics,vol.35,no.2,pp.153?163,May 2016.

    31 J.F.Yang,Y.Zhang,and W.T.Yin,“A fast alternating direction method for TVL1-L2 signal reconstruction from partial Fourier data,”IEEE J.Sel.Topics Signal Process.,vol.4,no.2,pp.288?297,Apr.2010.

    32 H.Bristow,A.Eriksson,and S.Lucey,“Fast convolutional sparse coding,”inProc.2013 IEEE Conf.Computer Vision and Pattern Recognition(CVPR),Portland,OR,USA,2013,pp.391?398.

    33 B.Wohlberg, “Efficient convolutional sparse coding,” inProc.2014 IEEE Int.Conf.Acoustics,Speech and Signal Processing(ICASSP),Florence,Italy,2014,pp.7173?7177.

    1000部很黄的大片| 校园春色视频在线观看| 亚洲国产欧美网| 久久香蕉精品热| 搡老岳熟女国产| 国产精品爽爽va在线观看网站| 午夜精品在线福利| 国产高清三级在线| 欧美三级亚洲精品| 美女高潮喷水抽搐中文字幕| 国产亚洲精品久久久com| 亚洲av电影不卡..在线观看| 亚洲最大成人中文| 91av网一区二区| 九九热线精品视视频播放| 国产精华一区二区三区| 日韩欧美国产在线观看| 亚洲中文字幕日韩| 国产私拍福利视频在线观看| 母亲3免费完整高清在线观看| 欧美黄色淫秽网站| 9191精品国产免费久久| 亚洲真实伦在线观看| 国产一区二区在线av高清观看| 亚洲最大成人手机在线| 免费观看精品视频网站| 国内少妇人妻偷人精品xxx网站| 国产精品一区二区三区四区久久| 欧美乱妇无乱码| 欧美大码av| 老司机在亚洲福利影院| 在线观看一区二区三区| 欧美黑人巨大hd| 亚洲欧美精品综合久久99| 韩国av一区二区三区四区| 日韩人妻高清精品专区| 嫩草影院精品99| 狂野欧美白嫩少妇大欣赏| 免费人成在线观看视频色| 三级国产精品欧美在线观看| 琪琪午夜伦伦电影理论片6080| 真人一进一出gif抽搐免费| 中文在线观看免费www的网站| 黄色成人免费大全| 婷婷六月久久综合丁香| 乱人视频在线观看| 成年女人毛片免费观看观看9| 欧美日韩国产亚洲二区| 国产不卡一卡二| 一个人免费在线观看电影| e午夜精品久久久久久久| 国产亚洲精品综合一区在线观看| 国产野战对白在线观看| 性色av乱码一区二区三区2| av片东京热男人的天堂| 免费看光身美女| 一级a爱片免费观看的视频| 超碰av人人做人人爽久久 | 国产精品乱码一区二三区的特点| 色噜噜av男人的天堂激情| 国产伦人伦偷精品视频| 欧美另类亚洲清纯唯美| 亚洲成人免费电影在线观看| 天堂√8在线中文| 真人一进一出gif抽搐免费| 淫妇啪啪啪对白视频| 午夜福利在线观看免费完整高清在 | 婷婷精品国产亚洲av在线| 亚洲精品国产精品久久久不卡| 欧美日韩一级在线毛片| 欧美高清成人免费视频www| 午夜免费成人在线视频| 精品国产美女av久久久久小说| ponron亚洲| 91字幕亚洲| 精华霜和精华液先用哪个| 在线免费观看的www视频| 亚洲精品国产精品久久久不卡| 亚洲狠狠婷婷综合久久图片| 日本精品一区二区三区蜜桃| 亚洲av一区综合| 午夜免费激情av| 国产视频内射| 制服人妻中文乱码| 9191精品国产免费久久| 国产视频一区二区在线看| 国产精品影院久久| 欧美黑人欧美精品刺激| 无人区码免费观看不卡| 欧美日韩瑟瑟在线播放| 久久久久久久久久黄片| 嫁个100分男人电影在线观看| 黄色丝袜av网址大全| 日韩中文字幕欧美一区二区| 成人特级av手机在线观看| 午夜激情福利司机影院| www日本在线高清视频| 午夜福利欧美成人| tocl精华| 人人妻人人看人人澡| 国产男靠女视频免费网站| 香蕉丝袜av| 成人亚洲精品av一区二区| 黄色成人免费大全| 国产精品日韩av在线免费观看| АⅤ资源中文在线天堂| 夜夜夜夜夜久久久久| 亚洲中文日韩欧美视频| avwww免费| 精品久久久久久久末码| 久久久精品大字幕| 男女午夜视频在线观看| 天天躁日日操中文字幕| 中文在线观看免费www的网站| 国内精品美女久久久久久| 国产国拍精品亚洲av在线观看 | 两性午夜刺激爽爽歪歪视频在线观看| www.色视频.com| 久久九九热精品免费| 99久久精品一区二区三区| 亚洲精品在线观看二区| 免费搜索国产男女视频| av专区在线播放| 午夜免费成人在线视频| www.www免费av| 看免费av毛片| 亚洲国产精品999在线| 一个人观看的视频www高清免费观看| 久久久久精品国产欧美久久久| 国产一级毛片七仙女欲春2| 九色成人免费人妻av| 99热6这里只有精品| 在线国产一区二区在线| 九九在线视频观看精品| 黄色日韩在线| 午夜视频国产福利| 国产爱豆传媒在线观看| 在线天堂最新版资源| 少妇人妻一区二区三区视频| 最新中文字幕久久久久| 亚洲性夜色夜夜综合| 麻豆国产av国片精品| 国产在线精品亚洲第一网站| av福利片在线观看| 国产高清有码在线观看视频| 深爱激情五月婷婷| 夜夜夜夜夜久久久久| 国产亚洲精品综合一区在线观看| 亚洲精品亚洲一区二区| 国产av不卡久久| 午夜精品久久久久久毛片777| 啦啦啦观看免费观看视频高清| 欧美日韩黄片免| 欧美黄色片欧美黄色片| 久久久久九九精品影院| 亚洲av成人精品一区久久| 精品国产超薄肉色丝袜足j| 久久99热这里只有精品18| 中亚洲国语对白在线视频| 99久久综合精品五月天人人| 成人国产综合亚洲| 人人妻人人澡欧美一区二区| av在线天堂中文字幕| 在线免费观看不下载黄p国产 | 亚洲精品色激情综合| 18禁裸乳无遮挡免费网站照片| 国产精品亚洲av一区麻豆| 中文资源天堂在线| 婷婷精品国产亚洲av在线| 久久香蕉国产精品| 成人性生交大片免费视频hd| www.熟女人妻精品国产| 黄色成人免费大全| 欧美在线黄色| 日本免费a在线| 久久精品国产99精品国产亚洲性色| 9191精品国产免费久久| 欧美日本亚洲视频在线播放| 国产亚洲欧美在线一区二区| 麻豆国产av国片精品| 99热精品在线国产| 国产99白浆流出| 99精品欧美一区二区三区四区| tocl精华| 老司机福利观看| 免费av不卡在线播放| 日韩欧美三级三区| 亚洲欧美日韩卡通动漫| 特大巨黑吊av在线直播| 亚洲在线观看片| 亚洲av二区三区四区| 国产免费av片在线观看野外av| 欧美成人一区二区免费高清观看| 成人亚洲精品av一区二区| 国产精品一区二区三区四区免费观看 | 国产精品亚洲av一区麻豆| 少妇的逼水好多| 国产免费一级a男人的天堂| 午夜免费观看网址| 桃红色精品国产亚洲av| 亚洲精品乱码久久久v下载方式 | 色噜噜av男人的天堂激情| 国产精品三级大全| 午夜精品久久久久久毛片777| 一本精品99久久精品77| 日本成人三级电影网站| 丰满的人妻完整版| av在线天堂中文字幕| 亚洲av免费高清在线观看| 最近最新中文字幕大全电影3| 欧美乱码精品一区二区三区| 精品不卡国产一区二区三区| avwww免费| 国产精品日韩av在线免费观看| 亚洲成av人片免费观看| 亚洲精品乱码久久久v下载方式 | 啪啪无遮挡十八禁网站| 国产精品久久电影中文字幕| 在线观看66精品国产| 国产男靠女视频免费网站| 色吧在线观看| 俺也久久电影网| 久久久久久久亚洲中文字幕 | 国产成人a区在线观看| 国内精品一区二区在线观看| 精品一区二区三区人妻视频| 国产免费av片在线观看野外av| 色综合站精品国产| 一本久久中文字幕| 男人和女人高潮做爰伦理| 夜夜躁狠狠躁天天躁| 变态另类成人亚洲欧美熟女| 国产男靠女视频免费网站| 国产一区二区亚洲精品在线观看| 欧美性感艳星| 久久午夜亚洲精品久久| 国产 一区 欧美 日韩| 国内精品一区二区在线观看| 亚洲av成人av| 亚洲天堂国产精品一区在线| eeuss影院久久| 成人av在线播放网站| 岛国在线观看网站| 噜噜噜噜噜久久久久久91| 久久国产精品人妻蜜桃| 色噜噜av男人的天堂激情| 男插女下体视频免费在线播放| 久久久久精品国产欧美久久久| 免费av不卡在线播放| 久久这里只有精品中国| 香蕉丝袜av| 亚洲成av人片免费观看| 国产 一区 欧美 日韩| 动漫黄色视频在线观看| 五月玫瑰六月丁香| 国产精品久久视频播放| 99热6这里只有精品| 日韩欧美在线二视频| 99久久99久久久精品蜜桃| 国产99白浆流出| 午夜福利欧美成人| 九九热线精品视视频播放| 51午夜福利影视在线观看| 中国美女看黄片| 精品99又大又爽又粗少妇毛片 | 啦啦啦免费观看视频1| a级毛片a级免费在线| 99在线视频只有这里精品首页| 国产激情欧美一区二区| 国产精品综合久久久久久久免费| 淫秽高清视频在线观看| 精品无人区乱码1区二区| 一级毛片高清免费大全| 欧美日本亚洲视频在线播放| 一夜夜www| 亚洲久久久久久中文字幕| 亚洲人成网站在线播放欧美日韩| 亚洲国产欧洲综合997久久,| 国产麻豆成人av免费视频| 啦啦啦韩国在线观看视频| 99国产精品一区二区三区| 在线观看免费视频日本深夜| 欧美+亚洲+日韩+国产| 国产欧美日韩精品亚洲av| 日本 欧美在线| 欧美极品一区二区三区四区| 亚洲一区二区三区不卡视频| 中文字幕人成人乱码亚洲影| 色精品久久人妻99蜜桃| 国产高清三级在线| 麻豆久久精品国产亚洲av| 国产精品三级大全| 少妇的丰满在线观看| 成人永久免费在线观看视频| 人人妻,人人澡人人爽秒播| 他把我摸到了高潮在线观看| 久久香蕉国产精品| 国产亚洲av嫩草精品影院| 久久久久精品国产欧美久久久| 婷婷亚洲欧美| 夜夜看夜夜爽夜夜摸| 中文字幕人成人乱码亚洲影| 18禁在线播放成人免费| 久99久视频精品免费| 欧美乱色亚洲激情| 精品久久久久久,| 久久久久久久精品吃奶| 欧美国产日韩亚洲一区| 国产精品久久久久久久电影 | 亚洲人成网站在线播| 日韩中文字幕欧美一区二区| 成年女人永久免费观看视频| 最新在线观看一区二区三区| 国产精品一区二区三区四区免费观看 | 在线观看一区二区三区| 中出人妻视频一区二区| 搡老岳熟女国产| 免费在线观看成人毛片| 久久久久久人人人人人| 日韩有码中文字幕| 日本免费一区二区三区高清不卡| 亚洲成人久久爱视频| 精品国产超薄肉色丝袜足j| 久久精品91无色码中文字幕| 亚洲av二区三区四区| 51午夜福利影视在线观看| netflix在线观看网站| 国产亚洲欧美在线一区二区| 一级毛片女人18水好多| 五月玫瑰六月丁香| 日韩大尺度精品在线看网址| 国产欧美日韩精品亚洲av| 国产高清三级在线| 亚洲激情在线av| 国产久久久一区二区三区| 亚洲精品日韩av片在线观看 | 国产午夜福利久久久久久| 日本免费a在线| 精品久久久久久久久久免费视频| 男人舔奶头视频| 啪啪无遮挡十八禁网站| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 精品久久久久久成人av| 午夜两性在线视频| 国产精品日韩av在线免费观看| 亚洲精品456在线播放app | 国产精品亚洲av一区麻豆| 麻豆成人av在线观看| 一个人免费在线观看的高清视频| 精品日产1卡2卡| 999久久久精品免费观看国产| 精品久久久久久久毛片微露脸| 国产精品永久免费网站| 99久久久亚洲精品蜜臀av| 亚洲av一区综合| 国产在线精品亚洲第一网站| 亚洲乱码一区二区免费版| 嫁个100分男人电影在线观看| 欧美最黄视频在线播放免费| 亚洲精品美女久久久久99蜜臀| 中文字幕人妻熟人妻熟丝袜美 | 窝窝影院91人妻| 波多野结衣高清作品| 午夜精品一区二区三区免费看| 97超视频在线观看视频| 天堂网av新在线| 亚洲18禁久久av| 男女那种视频在线观看| 亚洲熟妇熟女久久| 国产av麻豆久久久久久久| 19禁男女啪啪无遮挡网站| 免费在线观看日本一区| 欧美性猛交黑人性爽| 成人精品一区二区免费| 国产精品自产拍在线观看55亚洲| 91九色精品人成在线观看| 舔av片在线| 亚洲成av人片在线播放无| a级毛片a级免费在线| 看黄色毛片网站| 最近视频中文字幕2019在线8| 一级毛片女人18水好多| 国产亚洲欧美在线一区二区| 欧美日本视频| 欧美日韩乱码在线| 激情在线观看视频在线高清| 免费看十八禁软件| 999久久久精品免费观看国产| 精品欧美国产一区二区三| 久久精品91蜜桃| 毛片女人毛片| 人妻夜夜爽99麻豆av| 精品一区二区三区视频在线 | 亚洲成a人片在线一区二区| 夜夜看夜夜爽夜夜摸| av视频在线观看入口| 99热精品在线国产| 男女午夜视频在线观看| 久久精品91无色码中文字幕| 成人一区二区视频在线观看| 18禁黄网站禁片免费观看直播| 日韩亚洲欧美综合| 国产伦一二天堂av在线观看| 日本精品一区二区三区蜜桃| 成人鲁丝片一二三区免费| 动漫黄色视频在线观看| 啪啪无遮挡十八禁网站| 在线播放无遮挡| 国产一区二区在线av高清观看| 男女下面进入的视频免费午夜| 黄色片一级片一级黄色片| 国产精品1区2区在线观看.| a级毛片a级免费在线| 国产色爽女视频免费观看| 色在线成人网| 欧美日韩福利视频一区二区| 成人精品一区二区免费| 国产欧美日韩一区二区三| 国产日本99.免费观看| 日韩中文字幕欧美一区二区| 我要搜黄色片| 国产欧美日韩精品一区二区| 国产精品av视频在线免费观看| 国产精品美女特级片免费视频播放器| 欧美精品啪啪一区二区三区| 欧美日韩中文字幕国产精品一区二区三区| 99久久成人亚洲精品观看| 日本与韩国留学比较| 成人性生交大片免费视频hd| 黄色日韩在线| 观看美女的网站| 国产乱人视频| 精品一区二区三区视频在线 | 成年女人毛片免费观看观看9| 欧美bdsm另类| xxx96com| 午夜福利免费观看在线| 亚洲欧美日韩东京热| 天天躁日日操中文字幕| 精品一区二区三区人妻视频| 禁无遮挡网站| 在线天堂最新版资源| 欧美xxxx黑人xx丫x性爽| 网址你懂的国产日韩在线| 亚洲欧美日韩卡通动漫| 一个人看视频在线观看www免费 | 久久久久久久亚洲中文字幕 | 香蕉av资源在线| 欧美极品一区二区三区四区| 2021天堂中文幕一二区在线观| 国产成人av教育| 免费在线观看影片大全网站| 丝袜美腿在线中文| 无限看片的www在线观看| 久久久久久久午夜电影| 亚洲欧美日韩高清在线视频| 精品国产美女av久久久久小说| 色av中文字幕| 97人妻精品一区二区三区麻豆| 美女 人体艺术 gogo| av在线蜜桃| 午夜精品在线福利| 欧美日韩综合久久久久久 | 91九色精品人成在线观看| 久久久久久久午夜电影| 免费在线观看日本一区| 高清日韩中文字幕在线| 精品久久久久久成人av| 午夜免费观看网址| 午夜视频国产福利| 欧美激情在线99| 亚洲国产高清在线一区二区三| 十八禁人妻一区二区| 久久久久久人人人人人| 99久国产av精品| 草草在线视频免费看| 国产精品一区二区免费欧美| 欧美性猛交黑人性爽| 国内精品一区二区在线观看| 青草久久国产| ponron亚洲| 少妇的丰满在线观看| 亚洲激情在线av| 国产激情偷乱视频一区二区| 亚洲av熟女| 日本黄色视频三级网站网址| 在线看三级毛片| 国内揄拍国产精品人妻在线| 高潮久久久久久久久久久不卡| 99在线人妻在线中文字幕| 国产精品99久久久久久久久| 亚洲精品久久国产高清桃花| 日韩欧美国产一区二区入口| 精品99又大又爽又粗少妇毛片 | 五月伊人婷婷丁香| 亚洲人成网站高清观看| 18禁在线播放成人免费| 国产亚洲精品久久久久久毛片| av女优亚洲男人天堂| 美女大奶头视频| 国产aⅴ精品一区二区三区波| 九九热线精品视视频播放| 婷婷亚洲欧美| av女优亚洲男人天堂| 97人妻精品一区二区三区麻豆| 国内久久婷婷六月综合欲色啪| www.999成人在线观看| 亚洲国产日韩欧美精品在线观看 | 一进一出抽搐gif免费好疼| 国产97色在线日韩免费| 久久久成人免费电影| 亚洲av中文字字幕乱码综合| 丝袜美腿在线中文| 国产精品综合久久久久久久免费| 欧美一级毛片孕妇| 亚洲熟妇中文字幕五十中出| 免费看光身美女| 给我免费播放毛片高清在线观看| 欧美日本亚洲视频在线播放| 最新美女视频免费是黄的| 九九热线精品视视频播放| 欧美不卡视频在线免费观看| 久99久视频精品免费| 18禁黄网站禁片免费观看直播| 99热这里只有是精品50| 欧美日韩乱码在线| 亚洲中文字幕一区二区三区有码在线看| 亚洲欧美激情综合另类| 亚洲激情在线av| 免费av观看视频| 免费看十八禁软件| 午夜福利在线在线| 中文字幕人妻熟人妻熟丝袜美 | 波野结衣二区三区在线 | 成年女人看的毛片在线观看| 热99re8久久精品国产| 国产伦精品一区二区三区视频9 | www.999成人在线观看| 国产免费男女视频| 日韩亚洲欧美综合| 国产真人三级小视频在线观看| 中文字幕久久专区| 狠狠狠狠99中文字幕| 国产一区二区三区视频了| 久久精品国产99精品国产亚洲性色| 亚洲av免费在线观看| 香蕉久久夜色| 久久午夜亚洲精品久久| www日本黄色视频网| 日日夜夜操网爽| 亚洲黑人精品在线| 成人国产一区最新在线观看| 亚洲第一电影网av| 乱人视频在线观看| 婷婷精品国产亚洲av| 国产淫片久久久久久久久 | 亚洲熟妇熟女久久| 欧美不卡视频在线免费观看| 18禁黄网站禁片午夜丰满| 国产精品av视频在线免费观看| 久久久久久久久中文| 男女视频在线观看网站免费| 在线观看av片永久免费下载| 99热这里只有精品一区| 久久久国产精品麻豆| 在线观看66精品国产| av片东京热男人的天堂| 亚洲精品色激情综合| 成人高潮视频无遮挡免费网站| av女优亚洲男人天堂| 国产精品av视频在线免费观看| 在线国产一区二区在线| 桃红色精品国产亚洲av| 亚洲精品日韩av片在线观看 | 免费电影在线观看免费观看| 国产精品99久久久久久久久| 午夜精品久久久久久毛片777| 国内揄拍国产精品人妻在线| 亚洲国产欧美网| 日本一二三区视频观看| eeuss影院久久| 麻豆一二三区av精品| 99riav亚洲国产免费| 国产真实伦视频高清在线观看 | 18禁黄网站禁片午夜丰满| 亚洲乱码一区二区免费版| 成熟少妇高潮喷水视频| 国产真实伦视频高清在线观看 | 深夜精品福利| 小蜜桃在线观看免费完整版高清| 18禁美女被吸乳视频| 欧美最新免费一区二区三区 | 热99在线观看视频| 99久久成人亚洲精品观看| 五月玫瑰六月丁香| 午夜免费男女啪啪视频观看 | 精品不卡国产一区二区三区| 99在线视频只有这里精品首页| 人人妻,人人澡人人爽秒播| 久久精品国产99精品国产亚洲性色| 色噜噜av男人的天堂激情| 最新美女视频免费是黄的| 久久久久久久午夜电影| 老司机深夜福利视频在线观看| 午夜福利在线观看吧| 国产一区二区三区视频了| 亚洲欧美激情综合另类| 在线观看一区二区三区| 天堂网av新在线| 叶爱在线成人免费视频播放| 欧美激情久久久久久爽电影| 国产亚洲av嫩草精品影院| 此物有八面人人有两片| 精品日产1卡2卡| 99精品欧美一区二区三区四区|